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The optical spectrum of a quantum dot is typically dominated by the fundamental transition between the
lowest-energy configurations. However, the radiative Auger process can result in additional redshifted emission
lines. The origin of these lines is a combination of Coulomb interaction and symmetry breaking in the quantum
dot. In this paper, we present measurements of such radiative Auger lines for a range of InGaAs/GaAs
self-assembled quantum dots. We account for the Auger lines with a tight-binding model with a configuration
interaction including symmetry breaking via alloy disorder. We show that the model accounts for the intensities
of the Auger lines and the changes from quantum dot to quantum dot. We relate our findings to group theory
explaining how the reduction in symmetry caused by alloy disorder is essential for the appearance of the radiative
Auger lines.
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I. INTRODUCTION

A self-assembled quantum dot (QD) can often be treated as
a few-level system, in the simplest case as a two-level system,
with discrete transition lines in the optical spectrum. Most
pronounced is the fundamental transition associated with the
recombination of the ground-state electron-hole pair. Such a
transition can result in the emission of single photons to be
used for quantum technologies [1–5].

Recently, additional spectral lines redshifted from the fun-
damental trion transition have been observed on a single
negatively charged QD [6], as seen in Fig. 1. Remarkably,
it is possible to drive these transitions with a resonant laser
[7]. Similar features occur for positively charged QDs [8]. In
a singly charged QD, the fundamental transition is associated
with an electron-hole recombination that originates from the
lowest-energy three-particle (trion) state and leaves the addi-
tional (“spectator”) single electron or hole in its ground state.
The additional lines stem from radiative Auger transitions
mediated by the Coulomb interaction [6]. In the radiative
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Auger process the energy of the recombining electron-hole
pair is partially transferred to an intraband electronic excita-
tion, which promotes the resident carrier to an excited state
and redshifts the photon emission. Analogous transitions have
been observed in the x-ray spectra of atoms [9–12] and, more
recently, in optical spectra of semiconductor nanostructures
[13,14]. Note that this effect includes a photon and there-
fore differs from the Auger scattering between electrons only,
typically resulting in electron ejection from the QD [15,16].
When explored in QDs, the radiative Auger lines can be used
for characterization of otherwise-unreachable single-particle
excitation energies and provide temporal characteristics of
single-carrier relaxation [6,7].

To describe theoretically the radiative Auger transitions,
models including higher excited QD states and the Coulomb
mixing between these states need to be employed [17–20]. In a
perfectly symmetric QD (and neglecting any symmetry break-
ing at the atomic level), most of these transitions would be
forbidden by symmetry. Accordingly, in order to account for
the radiative Auger lines, it is important to consider asymme-
tries and imperfections. In addition, some observed features
are not straightforward to explain. In particular, the strength of
the radiative Auger lines varies from QD to QD and may reach
values on the order of one percent of the fundamental line
[6]; yet the observed lines do not show spin-related Zeeman
splittings in a magnetic field, indicating a unique final spin
state.

In this paper, we provide a thorough understanding of the
radiative Auger process in InGaAs/GaAs QDs, including the
above-mentioned peculiarities. We consider measurements on
four QDs and model them using a tight-binding model. We
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explain how symmetry breaking induced by alloy disorder is
crucially related to the appearance of the Auger lines. Alloy
disorder occurs on the atomistic level by random appear-
ance of either Ga or In atoms on the cation lattice sites. On
the mesoscopic level, the alloy disorder can be investigated
systematically by introducing an In-rich cluster. A statistical
analysis of the consequences of symmetry breaking on the
atomistic level accounts for the relative line intensities as
found in the experiment. We support our finding by classifying
the symmetry breaking using group theory.

II. THE RADIATIVE AUGER TRANSITIONS

Before introducing the theoretical model, we briefly de-
scribe the experimental observation of the radiative Auger
transitions in QDs and the mechanism underpinning it. In the
simplest, highly symmetric single-particle model, one obtains
a series of transitions between valence and conduction band.
For each transition line the initial and final state belong to
the same single-particle shell of the QD spectrum. Addition-
ally, the created electron and hole have opposite projections
of the envelope angular momentum, corresponding to null
envelope angular momentum projection of the electron-hole
pair [21]. The resulting shell structure of optical excitations,
corresponding to the sequence of s–s, p–p etc. transitions, has
indeed been observed experimentally [22,23].

The Coulomb interaction modifies this simple picture in
several ways. It renormalizes the energy of the electron-hole
pair (which becomes an exciton) and introduces energy shifts
between transitions taking place in the presence of other car-
riers (biexciton or trion transitions) [24,25]. It splits the lines
according to their spin configurations due to exchange interac-
tions [26]. It also hybridizes two-particle configurations [27].
The latter effect has been demonstrated in a double-QD struc-
ture, where the symmetry is lowered by a lateral offset of the
QDs. The configuration mixing may then involve two-particle
states of different angular momentum projections, which is
revealed in the optical spectra of the system [27]. The radiative
Auger process is another consequence of the Coulomb inter-
action and reveals Coulomb-induced configuration mixing in
a single QD.

The structures investigated here are InGaAs QDs grown
in the Stranski-Krastanov mode using a flushing technique
[28,29]. To control the charge state, the QDs are placed in an
n-i-p diode with a tunnel barrier of 40 nm between QDs and
an n-type (silicon doped) backgate. The spectrum of scattered
light (resonance fluorescence) was recorded upon resonant
excitation of a single negatively charged QD [6]. At nonzero
magnetic fields a selected spin configuration of the trion was
excited by appropriate tuning of the resonant excitation. All
experiments are performed at 4.2 K using a dark-field micro-
scope that can distinguish QD emission from backreflected
laser light by a cross-polarization scheme. Details on fabrica-
tion and measurement of the QDs can be found in Ref. [6].

An example spectrum is shown in Fig. 1. Some general
properties of the measured spectra can be described using the
idealized diagrams shown in Fig. 2, where we characterize the
initial and final states using the spin, band, and envelope an-
gular momenta (despite the fact that in presence of spin-orbit
interaction and symmetry breaking, they are not strictly good
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FIG. 1. Measured resonance fluorescence spectrum of an
InGaAs/GaAs QD integrated for 1 s (red line, main panel) and 80 s
(green line, inset). The spectrum corresponds to QD1 in Fig. 6.

quantum numbers). The first measurement of Fig. 1 (red line),
performed using an integration time of 1 s, reveals a strong
line at about 1.321 eV. It corresponds to the fundamental
trion transition in which the “spectator” electron remains in its
ground state. This situation is depicted schematically in Fig. 2,
where the initial state is represented on the left, followed by
the final state after optical emission [(a) for the fundamental
transition]. Here the depicted levels and their labels (s, p, d)
represent shells corresponding to the envelope states, while
the Bloch wave functions are assumed p and s type for the
valence and conduction bands, respectively. We stress that
the fundamental transition is expected in the naive picture of
uncorrelated interband transitions in a charged QD, where the

FIG. 2. Angular momentum in ground-state trion recombination.
The initial state (left) decays into one of the final states, yielding
either (a) the fundamental transition, (b) the Auger transition to the p
shell, or (c) the spin-flip Auger transition to the p shell. Below each
diagram we account for the angular momentum of the state, with Lz

and Sz denoting the z projections of the envelope and band angular
momenta of the carrier(s), respectively. σz represents the photon
angular momentum (σ± denotes right and left circularly polarized
photons), and Jz denotes the total angular momentum.
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band angular momentum changes by 1 and the symmetry of
the envelope function is conserved. Below the diagrammatic
figures, we indicate the z projections of the envelope angular
momentum (Lz), the band angular momentum (Sz), as well as
the total angular momentum (Jz). Because the photon carries
away an angular momentum of σz, the fundamental transition
conserves the projection of the angular momentum on the
symmetry axis and is therefore allowed.

While the strong fundamental transition line appears to
be the only feature at short integration times, two additional
lines appear at lower energies in the measurement performed
with an extended integration time, plotted in the inset to
Fig. 1. For this particular QD, the relative integrated intensity
(compared to the fundamental transition) of these two lines
is 0.34 × 10−3 and 1.2 × 10−3, respectively. These lines are
attributed to radiative Auger transitions. Crucially, we find
that the overall intensities of the Auger lines as well as the
intensity distribution between the two lines strongly varies
from QD to QD.

In the idealized picture of the shells, the radiative Auger
transition corresponds to the recombination of one electron-
hole pair, while the remaining electron is promoted to the
p shell. This is schematically shown in Figs. 2(b) and 2(c),
where we indicate the two possible orientations of the electron
spin in the final state. Note that apart from the spin degener-
acy, the p shell in Fig. 2 is further twofold degenerate with
respect to the envelope angular momentum, while in realistic
QDs this degeneracy is lifted by anisotropy (caused by the
inversion asymmetry of the underlying lattice, enhanced by
anisotropy in the QD shape, atomic disorder, composition pro-
file, strain, piezoelectric field, and nearby charge traps [14])
or an external magnetic field [30,31], yielding the two Auger
lines visible in Fig. 1. At the bottom of Figs. 2(b) and 2(c) we
list the values of the projection of the angular momentum in
the initial state and in the final states. Note that the spin-flip
Auger transition (c) can conserve angular momentum, while
the transition (b) cannot.

To explain the observed features of the Auger lines, we
develop a theoretical model that connects the observations to
symmetry considerations.

III. THEORETICAL MODEL

A. QD shape

We assume an InGaAs QD in GaAs, which is elliptical in
the lateral plane and capped in the z plane as shown in Fig. 3.
Using a truncated elliptical Gaussian the surface of the dot is
modelled by

S = w exp

{
− l2(x cos θ + y sin θ )2 + (x sin θ − y cos θ )2

r2
0

}
,

where w is a parameter determining the slope, 2r0 is related
to the lateral extension, while l describes the elongation in the
direction given by θ . At the height h above the wetting layer
the QD is truncated, which is consistent with the flushing step
of the manufacturing process [28,32].

We take the following parameters: The slope is w = 25a
(where a ≈ 0.565 nm is the GaAs lattice constant), r0 = 21a,
and the thickness of the wetting layer is chosen to be two
monolayers corresponding to one lattice constant a. The size

FIG. 3. Cross sections of compositions (In site occupation prob-
ability) for InGaAs/GaAs QDs without (a), (c) and with (b), (d) a
composition cluster.

and shape of the QD is taken to be similar to the one de-
scribed in Ref. [32]. Because InGaAs/GaAs QDs are often
elongated in the [11̄0] direction [33], we include such an
effect in our model: we set the ellipticity to l = (1.1)−1 and
θ = −π/4 corresponding to 10% elongation in the [11̄0] di-
rection. The composition is taken as In0.35Ga0.65As in the QD
and In0.20Ga0.80As in the wetting layer.

B. Cluster

In order to study symmetry breaking systematically, we
introduce symmetry breaking on the mesoscopic level by
introducing a cluster with a higher In content than assumed
elsewhere in the QD. The cluster is modeled by assuming
a position-dependent composition profile of Inx(r)Ga1−x(r)As
with x(r) = c0 + c(r), where c0 is the nominal indium content
in the QD and

c(r) = Ccl exp
{−ξ [(x − x0)2 + (y − y0)2 + (z − z0)2]

}
describes the locally increased indium content. Here
(x0, y0, z0) and ξ define the cluster position (with respect to
the bottom of the wetting layer) and its spatial extension,
respectively, while Ccl denotes the maximum additional In
content. As the model is atomistic, the composition distribu-
tion x(r) refers to the probability of finding an In atom at the
given cation site. The cluster extends over a few lattice con-
stants. An example is shown in Figs. 3(b) and 3(d). We note
that such clusters are not unrealistic: in real nanostructures
atoms of the same type may group together in some regions
of the structure, and hence their positions are correlated to
some degree. In fact, alloy intermixing effects were invoked to
explain experimental data for the oscillator strength in InGaAs
QDs [34].

As parameters we take (x0, y0, z0) = a(16/
√

2, 16/
√

2, 2),
ξ = 1/(6a)2. We consider a cluster with a higher In concentra-
tion, Ccl = 0.15. Note that this assumed maximum additional
indium content is not very large compared to the overall
nominal content of c0 = 0.35. The composition distribution
is processed by a Gaussian blur with a standard deviation of
one GaAs lattice constant.
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C. Atomistic disorder

Even in the absence of a cluster, the spatial “noise” in
the underlying atomic arrangement (the alloy disorder) lowers
the symmetry of the system on the atomistic level. In the
tight-binding approach this effect is inherently present by the
random appearance of Ga and In atoms (where the probability
is related to the local composition) at the cation sites, and
hence we refer to this as atomistic disorder. Such an approach
neglects any correlation between the atomic positions, assum-
ing a perfectly uncorrelated random alloy [35].

D. Coulomb interaction

To calculate the Coulomb-coupled states, we use the tight-
binding sp3d5s∗ implementation described in Refs. [36,37]
and utilize a configuration-interaction approach. The strain
related to the lattice mismatch is accounted for within the
valence-force-field model [38]. The resulting strain-induced
piezoelectric potential is calculated including the polarization
up to the second order in strain tensor elements using param-
eters from Ref. [39].

The wave functions of the single-particle states can be
written as

|�i〉 =
Na∑
n

20∑
α

ϕi,α (Rn)|Rn; α〉,

where Na is the total number of atoms in the system, |Rn; α〉 is
an α atomic orbital on the site localized at Rn, and ϕi,α (Rn) are
complex coefficients. As spin is taken into account, the basis
for the sp3d5s∗ model contains 20 atomic states.

For the calculation of the Coulomb-coupled states, we
change to the notation of second quantization, with a†

i (ai)
and h†

i (hi) being the creation (annihilation) operators for the
electron and hole single-particle states, respectively. With this
we calculate the negative trion states |X −

ν 〉 consisting of two
electrons and one hole. The corresponding Hamiltonian reads
[40,41]

H =
∑

i

ε
(e)
i a†

i ai +
∑

j

ε
(h)
j h†

j h j + 1

2

∑
ii′ j j′

V ee
i j j′i′a

†
i a†

j a j′ai′

−
∑
ii′ j j′

V eh
i j j′i′a

†
i h†

j h j′ai′ +
∑
ii′ j j′

V eh,exch
i ji′ j′ a†

i h†
j ai′h j′ . (1)

This Hamiltonian accounts for the electron/hole single-
particle energies via ε

(e/h)
i [first two terms in Eq. (1)], as

well as for the electron-electron and electron-hole Coulomb
interaction (direct and exchange interaction) with the matrix
elements given in Appendix. Because we only consider states
with a single hole, the hole-hole Coulomb interaction does not
contribute. We then use a configuration-interaction approach
to obtain the Coulomb-coupled trion states.

The Hamiltonian is diagonalized in the basis of the low-
est ne electron and nh hole states for expansion yielding the
ground trion state |X −〉 given by

|X −〉 =
nh∑
k

ne∑
i, j

cki j a†
j a

†
i h†

k |vac.〉, (2)

as well as the corresponding energy EX− . Here |vac.〉 is the
vacuum state and cki j are numerically found expansion coeffi-

cients with i > j. In addition, we consider the single-electron
states |l〉 = a+

l |vac.〉 with the corresponding energies El .

E. Optical spectra

The radiative transitions in the many-particle system are
described in the dipole approximation with the interband
dipole moment operator [41]

D =
∑
i, j

d i j hia j . (3)

The matrix elements of the dipole moment between single-
particle states are expressed in the tight-binding approach by

d i j ≈ −e
Na∑
n

20∑
α

ϕ
(v)∗
i,α (Rn)ϕ(c)

j,α (Rn) Rn,

with the indices “v” denoting a state from the valence band
and “c” a state from the conduction band. Here we neglect the
contributions coming from the terms involving different nodes
or orbitals, 〈Rm; α|d|Rn; β〉 ≈ −e Rn δmnδαβ .

The emission line intensity I for the optical transition
|X −〉 → |l〉 is then given by

Il = 2m0

h̄2e2
(EX− − El )

∑
ν=x,y,z

|〈l|Dν |X −〉|2, (4)

where m0 is the free electron mass, and the matrix element
〈l|Dν |X −〉 is related to the expansion coefficients for trion
states (see Appendix).

IV. RESULTS

We now use the tight-binding model to calculate the optical
spectra in the vicinity of the fundamental transition line.

A. QD spectra with cluster

We start by considering a QD with a high In-composition
cluster as shown in Fig. 4. We find a strong fundamental
exciton transition line (red) at 1.334 meV. Redshifted by
about 15 meV, we see a double-peak structure (green), which
corresponds to the radiative Auger transition in which the re-
maining electron is promoted to the p shell. When presenting
the computational results, we always sum over both spin con-
figurations of the final state. Due to the in-plane asymmetry of
the QD (including strain and piezoelectric field [30,42]), the p
shell is split into the p− and the p+ line by about 5 meV in this
calculation. In addition, about 30 meV below the fundamental
line, we find three Auger lines (blue) belonging to the d-shell
transitions with different oscillator strengths. The summed
intensity of the p+, p− radiative Auger lines is about 10−2 of
the main line. The particular in-plane anisotropy introduced
by the cluster leads to a strong asymmetry in the p+, p− inten-
sities. The in-plane anisotropy can be understood by looking
at the wave functions of the electronic states as shown in the
insets to Fig. 4. The wave functions become distorted towards
the cluster, making them asymmetric. In particular, for the
p-shell wave function, such asymmetry affects the p− much
more strongly than the p+ wave function, thus leading to the
different oscillator strengths of the p− and p+ radiative Auger
lines.

The cluster, by controlling the symmetry breaking in a
parametric way, enables us to understand how the p− and
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FIG. 4. Line intensity (logarithmic scale) of the transitions for a
QD with a high In composition cluster as described in Sec. III A, nor-
malized to the s-shell transition. The widths of the lines are artificial.
A small magnetic field was added to lift the spin degeneracy (not
visible, as the spin Zeeman splitting is smaller than the linewidths).
The panels present probability densities of s- and p-type electron
states in the (001) plane in the same crystallographic orientation as
in Figs. 3(c) and 3(d).

p+ radiative Auger lines are so sensitive to the details of the
p-shell wave functions.

B. QD spectra with only atomic disorder

Theoretical results for the same QD parameters (size, alloy
concentration) but without a cluster are presented in Table I
for ten randomly chosen alloy configurations, S1–S10. We
define 
Ep as the energy difference between the p− and p+
lines, and p− (p+) as the integrated intensity of the p−-line
(p+-line) relative to the fundamental line. As metrics for the
total Auger intensity and the asymmetry in the spectrum, we
take �p = p+ + p− and p−/�p, respectively.

TABLE I. Calculated energy difference 
Ep between the p+ and
p− Auger lines, their intensities relative to the fundamental transition
p− and p+, as well as the sum �p = p− + p+ and the ratio p−/�p

for ten randomly chosen alloy configurations. The results are for
vanishing magnetic field. Bottom rows display the calculated mean
and standard derivation (SD) values.


Ep (meV) p− (10−3) p+ (10−3) �p (10−3) p−/�p

S1 2.5 0.96 0.48 1.44 0.66
S2 2.1 0.94 0.77 1.71 0.55
S3 0.9 0.07 1.75 1.82 0.04
S4 0.8 0.10 2.36 2.46 0.04
S5 2.2 0.09 0.22 0.31 0.29
S6 2.1 0.77 2.65 3.42 0.22
S7 2.3 3.07 0.07 3.14 0.98
S8 2.2 0.71 0.04 0.75 0.95
S9 3.4 0.52 0.08 0.60 0.87
S10 3.7 5.88 0.05 5.93 0.99

Mean 2.21 1.31 0.85 2.16 0.56
SD 0.91 1.82 1.02 1.68 0.39

TABLE II. Energy difference 
Ep between the p+ and p− Auger
lines, their intensities relative to the fundamental transition p− and
p+, as well as the sum of the two intensities �p = p+ + p− and
the ratio p−/�p at zero magnetic field for the four experimentally
studied QDs (cf. Fig. 6). Bottom rows display the calculated mean
and standard derivation (SD) values.


Ep (meV) p− (10−3) p+ (10−3) �p (10−3) p−/�p

QD1 2.4 1.2 0.34 1.54 0.78
QD2 5.6 2.7 1.9 4.6 0.59
QD3 2.1 2.2 0.0 2.2 1.0
QD4 2.0 0.50 0.97 1.47 0.34

Mean 3.03 1.65 0.8 2.45 0.68
SD 1.73 0.99 0.83 1.47 0.28

The results in Table I show that both �p = p+ + p− and
p−/�p fluctuate from alloy configuration to alloy configura-
tion. This is clear evidence for the importance of atomic-scale
disorder. The particular alloy configuration can have a signif-
icant effect on the p− and p+ wave functions. Based on the
understanding gleaned with the cluster, this dependence leads
to a strong dependence of the p− and p+ radiative Auger in-
tensities on the alloy configuration. In other words, we deduce
that even in the absence of a well-defined cluster, the absolute
and relative intensities of the p+, p− radiative Auger lines are
determined by the details of the atomic disorder.

C. Comparison of calculated and experimental QD spectra

Four QDs were measured in detail. All the metrics describ-
ing the radiative Auger lines vary from QD to QD, despite the
fact that all three QDs are in the same sample and are therefore
self-assembled under the same conditions (Table II). p−/�p

is above 50% in three cases (QD1-QD3), below 50% in one
(QD4).

In the theory (focusing on the results without a cluster),
the radiative Auger parameters change from run to run. We
compare the statistics (mean and standard deviation) of 
Ep,
�p, and p−/�p between experiment and theory.

The theory accounts for the total intensity of the radia-
tive Auger lines convincingly: the measured average of �p

is (2.45 ± 1.47) · 10−3; the calculated average is (2.16 ±
1.68) · 10−3. Without atomic-scale disorder, �p is negligible.
Furthermore, the standard deviations of �p, experiment and
theory, also match quite well. For the available data, the aver-
age p−/�p values, experiment and theory, also match. This is
evidence that atomistic alloy disorder alone is sufficient to ac-
count for the in-plane anisotropy. Finally, there is a reasonable
match in the average values of 
Ep. This is a less powerful
metric for the radiative Auger process: QD shape anisotropy
has a strong effect on 
Ep but not on �p. The main point
concerning 
Ep is that alloy disorder results in significant
changes from QD to QD, even for the same shape and alloy
concentration.

We stress that both in the experiment and in the theory a
wide range of �p and 
Ep values is observed for the radiative
Auger lines. The overall agreement between the statistical
properties of the experimental and theoretical data sets is very
good. This quantitative agreement in the statistical properties

235410-5



KRZYSZTOF GAWARECKI et al. PHYSICAL REVIEW B 108, 235410 (2023)

FIG. 5. Line intensity (logarithmic scale) of the transitions for
two realizations of atomic disorder in QD as described in Sec. IV B,
normalized to the s-shell transition. The widths of the lines are
artificial. A small magnetic field was added to lift the spin degeneracy
(not visible, as the spin Zeeman splitting is smaller than the widths
of the lines). The panels present probability densities of s- and p-
type electron states in the (001) plane in the same crystallographic
orientation as in Figs. 3(c) and 3(d).

is compelling evidence that the theory isolates the correct
source of symmetry breaking, namely, atomic-scale alloy
disorder.

D. Spin-flip radiative Auger

The spin-flip Auger transition, represented in Fig. 2(c),
may conserve the axial projection of the angular momen-
tum upon transferring the angular momentum between the
orbital and spin degrees of freedom. One could therefore

expect that this transition may be allowed in the presence of
spin-orbit couplings. Our simulations show, however, that the
spin-conserving processes [Fig. 2(b)] typically dominate for
the p-shell Auger lines. We conclude, therefore, that spin-orbit
effects are overwhelmed by the effects of symmetry breaking
in the radiative Auger process. This also describes the exper-
imental results for which no spin-flip radiative Auger lines
could be observed with the present experiment.

E. Magnetic field dependence

Another interesting feature of the Auger lines is their de-
pendence on an applied external magnetic field. Examples
of the measured magnetic field dependence are shown in
Figs. 6(a)–6(d) [6]. While the fundamental transition remains
rather unchanged under the influence of a magnetic field, apart
from a slight diamagnetic shift, the p-shell Auger lines show a
typical orbital Zeeman splitting. In some cases an anticrossing
with the d-shell Auger lines is observed [e.g., at a magnetic
field of B = 6 T in Fig. 6(b)]. The overall behavior of the
p-shell Auger lines is rather similar for QD1-4, with the main
difference found in the relative line intensities as discussed
in the previous section. However, the visibility of the d shell
varies from QD to QD. This could be a consequence of the
proximity of the continuum states in the wetting layer. It
is known that the thickness of the wetting layer and hence
the energetic separation between wetting layer and QD levels
fluctuates [43].

In the theoretical modeling we include the interaction with
the magnetic field in Faraday geometry in the tight-binding
approach by the Peierls substitution and on-site Zeeman terms
[44,45]. A detailed description of the model is given in
Ref. [46]. The obtained spectra are shown in Fig. 6(e) for

FIG. 6. (a)–(d) Experimentally measured spectra of four different QDs; (e) theoretically calculated spectrum of a QD (S1 alloy configu-
ration) as a function of the external magnetic field. The color bar refers to the experimental plots (a)–(d) and shows the number of detection
counts within the integration period indicated in each panel. In the theoretical data, the color is related to the intensity [Eq. (4)] with an artificial
broadening. Both color bars use a logarithmic scale.
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TABLE III. Character table of the irreducible representations
of the C2v and Cs point groups [47]. E is an identity element, σ

are reflection planes described by the Miller indices, and C2 is the
rotation by π . Note that in the basis functions used here, in contrast
to the other parts of the article, the x direction is [110] and y is [1̄10].

C2v E C2 σv (110) σv (1̄10) Basis functions

�1 1 1 1 1 1, z, x2, y2, z2

�2 1 1 -1 -1 xy
�3 1 -1 1 -1 y, yz
�4 1 -1 -1 1 x, xz

Cs E σv (110) Basis functions

�1 1 1 1, y, z
�2 1 -1 x

a QD with the S1 realization of atomic disorder. We find
that the overall agreement with the experimental data is very
good. In particular, the energetic behavior of the lines can be
well reproduced, and we also find the anticrossing between
the different shells. Throughout the considered magnetic field
range, the p-shell Auger transitions are strongly dominated by
the spin-conserving process [Fig. 2(b)].

V. GROUP-THEORETICAL CONSIDERATIONS

The appearance of the radiative Auger lines by symmetry
breaking can be explained using group theory. While these
arguments are not sufficient to predict the strength of the lines
as obtained from the numerical calculation, they allow one to
predict some qualitative properties of the Auger process for
various system symmetries.

We focus initially on major symmetry breaking at the level
of the QD shape, ignoring for the moment atomic disorder,
band mixing, spin-orbit coupling, and the effect of a mag-
netic field. In such an approximation, the optical transitions
take place only if the envelopes of the initial and the final
state belong to the same irreducible representation of a given
group. The participating states in the optical transition are the
electron states |l〉 and the ground trion state |X −〉, for which
we investigate the representations linked to their envelopes. It
is convenient to highlight the symmetry of the single-particle
states |l〉 by using a shell-based notation, where we label the
states with their approximate envelope type starting with l = s
followed by the lower and upper p-shell states, l = p− and p+,
and then the d-shell states.

The bare elliptical QD [Figs. 3(a) and 3(c)] is described
by the C2v group, which contains one operation of rotation
and two reflection planes (see the character table, Table III).
Due to its transformation rules, the electron ground state |s〉
belongs to the identity representation �1. On the other hand,
the first excited states |p−〉 and |p+〉 belong to �3 and �4,
respectively [which can also be seen in the insets of Fig. 5(b)].
Being a ground state, |X −〉 belongs to the �1 representation. In
consequence, the fundamental transition from |X −〉 to the |s〉
electron state is allowed, while the Auger transitions to |p−〉
and |p+〉 are prohibited by group-theoretical arguments.

The symmetry can be reduced in a parametric way by
adding a composition cluster to the QD [Figs. 3(b) and 3(d)].
The cluster reduces the symmetry to the Cs group, which

contains a reflection by a single plane (see the character Ta-
ble III). As before, the trion |X −〉 and the electron |s〉 states
are linked to the identity representation �1. However, due to
the symmetry reduction by the cluster, |p−〉 and |p+〉 now
belong to �1 and �2, respectively. In consequence, the Auger
transition |X −〉 ↔ |p−〉 is now allowed. This is in agreement
with the observation of a large peak related to this process, as
observed in the numerical simulations of Fig. 4. The symme-
try reduction from C2v to Cs was also shown to be crucial for
optical activity of dark excitons in self-assembled QDs [48].

Even without a cluster, an InGaAs QD does not have C2v

symmetry: in an exact approach, the alloy disorder reduces the
symmetry. All the considered systems have strictly C1 symme-
try, where all the states reside in the same representation. This
is the origin of the p− and p+ Auger lines in the simulations
of Fig. 5. In fact, this symmetry reduction allows even further
Auger transitions.

VI. CONCLUSIONS

In conclusion, we have presented a tight-binding approach
to model the radiative Auger lines as observed recently on
semiconductor QDs. We were able to reproduce the line po-
sitions and their behavior in a magnetic field. We showed
that in the presence of alloy disorder, the model explains the
measured relative strength of the radiative Auger lines and the
changes from QD to QD. Additionally, we linked the Auger
lines to group-theoretical considerations. This highlights the
importance of symmetry breaking below the C2v point group
that characterizes elliptical QDs on the mesoscopic level.

The overriding point is that the radiative Auger process is
highly sensitive to symmetry breaking on the mesoscopic or
atomic length scale, i.e., on length scales smaller than the QD
dimensions. As such, radiative Auger can reveal information
on morphological details of QDs. Furthermore, given that al-
loying is sufficient to deliver the required symmetry breaking,
also other types of self-assembled QDs will show radiative
Auger emission lines.

Note added in proof. Recently, we became aware of a paper
by Jain et al. [49], where a mechanism of symmetry breaking
by alloy disorder, similar to ours, was invoked in a different
system of CdSe/CdS core-shell quantum dots to explain the
nonradiative Auger effect (pure Coulomb scattering).
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APPENDIX: MODEL IMPLEMENTATION

Here we present some additional details of our model
complementing Sec. III, including explicit expressions for the
Coulomb matrix elements. The piezoelectric potential �p(r)
[entering the Hamiltonian via Vp(r) = −e�p(r)] is calculated
by solving the Poisson-like equation [51]

−ε0∇·[εr (r)∇�(r)] = −∇·P(r), (A1)

where ε0 is the vacuum permittivity, εr (r) is the position-
dependent relative permittivity, and P(r) is the polarization,
which is calculated from the local strain tensor elements
[39,52]:

P = 2e14

⎛
⎝εyz

εxz

εxy

⎞
⎠ + 2B114

⎛
⎝εxxεyz

εyyεxz

εzzεxy

⎞
⎠ + 4B156

⎛
⎝εxzεxy

εyzεxy

εyzεxz

⎞
⎠

+ 2B124

⎛
⎝(εyy + εzz )εyz

(εxx + εzz )εxz

(εxx + εyy)εxy

⎞
⎠.

The strain tensor elements at cations are calculated following
Ref. [38], and at anions they are obtained by averaging the
values from the neighboring cations. We take εr (InAs) = 14.6
and εr (GaAs) = 12.4 [53,54]. The values of e14, B114, B156,
and B124 are taken from Ref. [39]. We discretize Eq. (A1)
using the finite-difference scheme for the atomistic grid [55].
For the anion at position Ri, this gives

NN(i)∑
j

[εr (Ri + d j ) + εr (Ri )][�p(Ri + d j ) − �p(Ri )]

= a

4ε0
{[Px(Ri + d1) − Px(Ri + d2) − Px(Ri + d3)

+ Px(Ri + d4)] + [Py(Ri + d1) − Py(Ri + d2)

+ Py(Ri + d3) − Py(Ri + d4)] + [Pz(Ri + d1)

+ Pz(Ri + d2) − Pz(Ri + d3) − Pz(Ri + d4)]}, (A2)

where NN(i) denote the nearest neighbors of the ith atom. For
the unstrained lattice, the positions of the surrounding cations
are given by

d1 = a

4
(1, 1, 1),

d2 = a

4
(−1,−1, 1),

d3 = a

4
(−1, 1,−1),

d4 = a

4
(1,−1,−1).

In the case of the cation at Ri, the discretization takes the form
NN(i)∑

j

[εr (Ri − d j ) + εr (Ri )][�p(Ri − d j ) − �p(Ri )]

= − a

4ε0
{[Px(Ri − d1) − Px(Ri − d2) − Px(Ri − d3)

+ Px(Ri − d4)] + [Py(Ri − d1) − Py(Ri − d2)

+ Py(Ri − d3) − Py(Ri − d4)] + [Pz(Ri − d1)

+ Pz(Ri − d2) − Pz(Ri − d3) − Pz(Ri − d4)]}. (A3)

One should note that Eqs. (A2) and (A3) are derived for the
unstrained zinc-blende lattice. We use this approach here with
relaxed atomic positions. However, this approximation can be
justified by the fact that strain is typically on the order of a
few percent. The resulting set of linear equations is solved
numerically using the library PETSC [56].

The starting point of further calculations is the single-
particle wave functions |�i〉 as given in Sec. III D, which are
superpositions of the electronic wave functions of the atoms
in the system. In the next step, we use the configuration-
interaction (CI) Hamiltonian as given in Eq. (1). The
calculations were performed with the basis of ne = 20 and
nh = 20. The valence-band wave functions were transformed
to the hole picture via a time-reversal operation. The differ-
ence between the p-shell Auger intensities obtained with 12
and 20 basis states for the QD without cluster is up to 50%. On
the other hand, with a high-In cluster, these results are much
less affected (the difference is below 5% for the p− emission
line). In the tight-binding basis, the Coulomb matrix elements
between a particle A and B are given by [40,41]

V AB
i j j′i′ ≈V0 + |e|2

4πε0εr

Na∑
n,m �=n

20∑
α,β

× ϕ
(A)∗
i,α (Rn)ϕ(B)∗

j,β (Rm)ϕ(B)
j′,β (Rm)ϕ(A)

i′,α (Rn)

|Rn − Rm| ,

V AB,exch
i ji′ j′ ≈V exch

0 + |e|2
4πε0εr

Na∑
n,m �=n

20∑
α,β

× ϕ
(A)∗
i,α (Rn)ϕ(B)∗

j,β (Rm)ϕ(A)
i′,β (Rm)ϕ(B)

j′,α (Rn)

|Rn − Rm| ,

where we took the value for GaAs, εr = 12.4. V0 and V exch
0

account for the short-range on-site contributions, which we
neglect here. Such elements could be calculated using the
basis of atomic orbitals (e.g., the Slater orbitals) [41,57,58].
However, for direct-band-gap QDs, the on-site elements
vanish much faster with an increasing QD size than the
monopole-monopole long-range terms [59–61]. For the InAs
QDs considered in Ref. [61], the on-site terms contributed
only about 1% to the direct Coulomb attraction for the ground
electron-hole states and 20% to the exchange-interaction-
induced splitting. We calculate the two center contributions
using the expansion according to the Fourier theorem,

1

|Rn − Rm| = 1

(2π )3

∫
4π

q2
eiq(Rn−Rm )dq,

which allows us to write

V AB
i j j′i′ ≈ |e|2

8π3ε0εr

∫ F (AA)
ii′ (q)F (BB)∗

j′ j
(q)

q2 dq,

V AB,exch
i ji′ j′ ≈ |e|2

8π3ε0εr

∫ F (AB)
i j′ (q)F (AB)∗

i′ j
(q)

q2 dq,
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where

F (AB)
i j (q) =

Na∑
n

20∑
α

ϕ
(A)∗
i,α (Rn)ϕ(B)

j,α (Rn)eiqRn ,

which we calculated efficiently using the FINUFFT library
[62–64]. To perform the calculations for V AB

i j j′i′ and V AB,exch
i ji′ j′ ,

we use spherical coordinates where the 1/q2 singularity is re-
moved by the Jacobian. We take the maximal value of q in the
integration as π/a. We checked that the exchange-interaction
terms have a relatively small impact on the considered p-shell
Auger transitions. After the diagonalization in the basis of the
ne electron and nh hole states, we obtain the energies EX−

and coefficients cki j from which the trion ground state |X −〉
is formed as described in Eq. (2).

The expansion coefficients of the Coulomb-coupled trion
states, on the other hand, enter in the calculation of the matrix
element of the transition operator D given in Eq. (3):

〈l|D|X −〉 = 〈vac.|al

∑
i′, j′

d i′ j′ hi′a j′
∑
k,i, j

cki j

× a†
j a

†
i h†

k |vac.〉
=

∑
k,i, j

cki j (dkiδl j − dk jδli ),

where i > j.
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Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers,
J. P. Reithmaier, S. Höfling, and G. Sek, Exciton life-
time and emission polarization dispersion in strongly in-
plane asymmetric nanostructures, Phys. Rev. B 96, 245425
(2017).

[18] M. Holtkemper, D. E. Reiter, and T. Kuhn, Influence of
the quantum dot geometry on p-shell transitions in dif-
ferently charged quantum dots, Phys. Rev. B 97, 075308
(2018).

[19] D. Huber, B. U. Lehner, D. Csontosová, M. Reindl, S. Schuler,
S. F. Covre da Silva, P. Klenovský, and A. Rastelli, Single-
particle-picture breakdown in laterally weakly confining GaAs
quantum dots, Phys. Rev. B 100, 235425 (2019).
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