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Visualizing the merger of tunably coupled graphene quantum dots
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We examine graphene quantum dots in back-gated devices on hexagonal boron nitride (hBN) and visualize
their merger using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. These dots are
formed by the combination of nanoscale potential wells created by pulsing the voltage of an STM tip above
charged defects in the hBN underlayer, and strong magnetic fields gapping the density of states, which add
insulating rings in the potential wells. Control of the charge state is achieved via the back gate and sample bias
voltages, and the position of the STM tip which serves as a mobile top gate. The individual quantum dots present
a distinct phenomenology of single-electron charging due to multiple Landau levels crossing the Fermi energy
concentrically. Here, we study side by side pairs of these quantum dots via STM, where we observe a tunable
interdot coupling and mergeability. Specifically, with increasing charge filling, the quantum dots formed by
electrons belonging to one Landau level merge into a single quantum dot, while the electrons in the next-higher
Landau level remain spatially separated into two charge pockets. Using the probe tip as a multifunction tool,
we visualize the evolution, growth, and merger of this unique double quantum dot system as a function of tip
position and gate voltages.

DOI: 10.1103/PhysRevB.108.235407

I. INTRODUCTION

In recent years, defect charging in hBN has proved a
versatile avenue to controlling charge density and poten-
tial landscape in graphene devices, thus forming structures
with novel electronic properties [1–6]. When the charging is
achieved via electric fields enhanced by the end of a scanning
probe tip, the doping is concentrated in nanoscale pockets,
and the resulting potential wells display intriguing phenomena
which greatly depend on the magnetic field strength. When
the magnetic length is comparable to the well size, the semi-
classical orbits are bent, leading to a discontinuous shift of
the quantum state energies as a function of the field [7–9].
At stronger fields, Landau levels become apparent in the den-
sity of states, and wedding-cake-like structure of alternating
compressible-incompressible quantum Hall states form be-
cause of electron interactions [10]. At yet stronger fields, the
gaps between Landau levels give rise to insulating behavior
between the pinning rings, creating islands with quantized
charge [11]. Adding to the complexity, under certain condi-
tions more than one successive Landau level will be filled
within the dot, creating a type of concentric double quantum
dot (DQD) within a single potential well, with unique single-
electron charging properties [11]. Unlike the better-known
semiconductor DQDs where the barrier is formed by a gate-
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tunable constriction [12,13], this DQD cannot be merged by
electrostatic means but only by turning off the magnetic field,
which destroys the insulating barriers altogether.

Here, by contrast, we describe double quantum dots con-
sisting of adjacent potential wells of the type described in
[11], constructed in the same back-gated graphene device
(Fig. 1). Although each single dot retains the concentricity
features of [11], the double-dot system as a whole possesses
the electrostatically tunable coupling associated with the clas-
sic DQD systems in ordinary semiconductors (Fig. 2), where
the gating in the constriction tunes between separate dots with
small tunnel coupling, and a stadium-shaped merged single
dot. But compared to those systems, there is the additional
differentiation that our imaging and charge-sensing tool, the
scanning tunneling microscopy (STM) tip, is a strong source
of gating for the dots [14,15], which disturbs the potential
and produces concentric series of charging rings in tip scans,
similar to the images obtained in scanning gate microscopy
[16]. The resulting experimental system is very feature-rich,
but requires careful analysis to extract meaningful physical
conclusions.

II. RESULTS

The data presented here are the differential tunneling con-
ductance, dI/dV, signals acquired from the STM tunneling
current, using the standard lock-in technique. Under certain
frequently encountered conditions dI/dV is proportional to the
sample’s local density of states [17,18], but in experiments
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FIG. 1. Back-gated graphene device used to create the double
quantum dot. (a) Cross-sectional view of the graphene device in-
cluding STM tip. (b) Optical microscope image of the device; bright
green is hBN, yellow is the Au landing pad.

on semiconducting systems containing chargeable defects, the
charging creates additional contributions to the dI/dV signal,
in the form of sharp peaks or rings at the threshold loci, where
the defect charge state changes as a function of tip position,
bias, or gate voltage [15,19–21]. These signatures arise from
the sudden change in the local density of states underneath the
tip, due to changes in screening when the defect is charged or
discharged. In this situation, the tunnel current develops an
exquisite sensitivity to the electrostatic state of the sample,
somewhat analogous to that of the quantum point contact in
fixed-gate DQD experiments (e.g., [22]). Thus the tip here
plays the multiple roles of mobile top gate, current lead
(with currents on the order of 100 pA), and charge sensor.

Figure 3 shows STM dI/dV data on a p-type DQD.
Figure 3(a) is a topographic height map of the area containing
the quantum dots, at B = 0. The graphene lattice is pristine
over the double-dot landscape and the only significant topo-
graphic features are ≈20 nm “hills” a few angstroms tall,
which have no apparent correlation with the potential land-
scape and are likely due to the roughness of the SiO2 substrate,
and is smoothed by the ≈30 nm hBN underlayer. Two p-type
potential wells were fashioned in this area using the method
described in [1], near the centers of the dashed circles. At
B = 8 T, STM scans [Figs. 3(b)–3(h)] show multiple series
of concentric charging rings, where the peak positions depend
systematically on tunneling sample bias, Vb, and back-gate

FIG. 2. Schematic of the graphene Landau level double quantum
dot (DQD). (a), (c) Top-view schematics showing the compressible
areas where labeled Landau levels cross the Fermi energy, with gate
voltage decreasing from (a) to (c) in a p-type potential well. (b), (d)
Energy-displacement schematic through the center of the two dots.
The Y axis of (b), (d) is aligned with that of (a), (c), and the latter
represent the Fermi-energy slices of the energy diagrams (b), (d)
respectively. The islands formed by the N = 0 Landau level merge
between (a) and (c), and (b) and (d).

voltage Vg. In p-type QD wells the Landau levels are concave
down in an energy-position plot, and the dot consists of the
unoccupied region of the Landau level, where the well po-
tential pulls it above the Fermi energy [Figs. 2(b) and 2(d)]
[10,11]. As the back-gate potential Vg decreases, the Landau
levels rise above the Fermi level which increases the lateral
size of the unoccupied hole states (Fig. 2). This larger size
decreases the spacing between consecutive charging peaks in
the dI/dV versus Vg measurements [Fig. 3(i)] [11].

To investigate the DQD system in detail, we acquired a
dense three-dimensional dataset of dI/dV in the DQD as a
function of the lateral tip position (X and Y) and Vg, at fixed
Vb and tunnel current, which is exhibited in Figs. 3(b)–3(i). At
high Vg it is apparent that the charging peaks, which take the
form of annular rings about each well center, can be ascribed
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FIG. 3. Spatial tunneling measurements of a graphene double quantum dot (DQD). (a) STM topography showing the area of the graphene
DQD at zero magnetic field. Tunneling set point: Current I = 50 pA, Vb = −100 mV, Vg = 12 V. (b)–(h) Spatial map of the dI/dV signal
in the DQD at fixed sample bias Vb = −150 mV and gate voltage Vg indicated in each panel. As the tip gates the dots, concentric rings
correspond to single-electron charging events. The dashed yellow circles in (b) outline the areas of dot 1 and dot 2. Tunneling set point:
Current I = 80 pA, Vb = −150 mV. (i) Series of dI/dV versus Vg curves as a function of the Y-axis tip position along the green dashed line at
X = 70 nm in (b) and the same fixed sample bias. The regions of separate dots, coupled dots, and a merged dot are indicated by yellow, blue,
and red ovals, respectively. Temperature T = 4.3 K in all panels, magnetic field, B = 8 T in panels (b)–(i).

to one dot or the other [Figs. 3(c) and 3(d)]. The sole exception
is a single quartet of charging rings, visible along the top and
right edges of Fig. 3(i), related to a small quantum dot induced
by tip gating which is observed even in graphene without QDs
[11,23]. These do not form part of the series of DQD charging

lines, and are not relevant to the present discussion. As Vg

decreases, the situation becomes more complex; for example,
in Fig. 3(e) the charging rings of the upper dot seem to blur as
they approach the lower dot, while others seem to encompass
the whole dot like a stadium. At still lower Vg, [Figs. 3(g)
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and 3(h)] the charging features in the interior of each dot
meander and are no longer concentric. Each charging peak
seems smeared out over the large parts of the DQD and one
can hardly distinguish the individual peaks (see Supplemental
Material [24]).

To better visualize the evolution of the DQD, we slice
this dataset in the Vg−Y plane producing Fig. 3(i). Here the
charging rings in the top view plots appear as curves which
are mostly concave to the left, and three regions are readily
distinguishable: (1) the high-Vg regime where each curve is
concave within one dot and does not penetrate the other dot
(two yellow ovals); (2) a transitional regime in which the
charging curves still decrease in intensity between dots, but
interleaving of the lines is readily apparent (blue oval); (3) a
regime of dense charging curves which seem to occupy the
whole DQD, with a spacing that is even and almost uniform
as a function of position within the DQD (red oval). This
increasing parallelism and indistinguishability of consecutive
charging lines is a clear indicator of a merged quantum dot
[12,25,26]. In what follows, we will relate the physical pa-
rameters of our DQD as extracted from these charging curves
to the theoretical models [25,26], which are tunable between
strongly coupled dots and a merged “single” dot (reached in
the strong-coupling limit).

To extract more quantitative information, we systemat-
ically swept Vg and Vb along a dense sequence of spatial
points through the DQD (Fig. 4). Figure 4(a) shows the dI/dV
measurement in the Y versus Vg plane at Vb = −150 mV,
for comparison with Fig. 3(i). Figures 4(b)–4(f) shows the
corresponding Vb versus Vg maps at the points indicated
in Fig. 4(a), moving from dot 2 up toward dot 1. Similar
to measurements on DQDs with fixed gates, in the
voltage-voltage plots the “charging curves” from the top
views of the DQD [Figs. 3(b)–3(i)] become lines with definite
slopes, which indicate the relative capacitance between the
gate electrodes and the dot whose constant-charge condition
the charging line represents. These lines divide the Vg−Vb

plane into stretched hexagonal cells [see features in blue
circle in Fig. 4(d), for example], within which each element
of the DQD contains a definite number of electrons (N1, N2).
Here, the Landau levels appear as increased intensity in
nearly horizontal lines or strips which are gradually pulled
down to lower tunneling energies by increasing back-gate
voltage, as indicated by green dashed lines in Fig. 4(b). The
single-electron charging peaks from the dots have positive
slope, because Vb is applied to the sample rather than the
virtually grounded tip. Thus from the plots in Figs. 4(b)–4(f)
we can obtain what amounts to experimentally derived charge
stability diagrams for the DQD. The blue circle in Fig. 4(d)
shows a representative cluster of hexagonal cells in the
weak-coupling regime [see also Fig. 5(a)]. As we move to the
left and the interdot coupling strengthens with decreasing Vg,
the “pinch points” of the hexagons [avoided crossing points,
white arrows in Fig. 4(d)] at the lower-left and upper-right cell
corners widen until, around Vg = 14 V, the two sets of lines
become roughly parallel, evenly spaced, and indistinguishable
[green circle in Fig. 4(d)]. An interesting observation is that
the two sets of lines swap their relative slopes as we move
from the lower dot to the upper dot between Figs. 4(b) and
4(f), with the crossover point occurring roughly at Fig. 4(e).

Before trying to extract quantitative dot parameters from
these charge stability diagrams, let us make some qualitative
remarks about the slope of the charging lines and its physical
significance [11,25]. Because the charging line represents a
constant-charge condition of one of the quantum dots, its
slope in the Vg−Vb plane reveals the relative capacitance of
the gate electrodes, in this case the Si back gate and the
STM tip. As the tip moves away from the dot, the tip-dot
capacitance decreases, and a greater amount of voltage needs
to be applied to counteract an incremental voltage on the back
gate; the slope goes up as we move away from the bottom
dot. Therefore, in Fig. 4(f) where the tip is closest to dot 1,
we can confidently assert that the steeper and fainter group
of charging lines belongs to dot 2, and vice versa: moving
the tip back toward dot 2 steepens the charging lines of dot
1. In addition to changing the slope, charging lines in the
weak-coupling regime also fade in intensity as the tip moves
away from the corresponding dot [Fig. 4(a)], confirming our
physical intuition regarding their relative slope. To help the
reader visualize the hexagonal cells, yellow and cyan dashed
lines are included in Figs. 4(d) and 4(f) as guides to the eye
for the charging lines of dots 1 and 2, respectively, as well
as white arrows indicating the corners of the hexagons, which
open up with increasing interdot coupling.

III. DISCUSSION

Our attempts to extract quantitative dot parameters from
the observed charging line avoided crossings are based on the
models described in Refs. [25–28]. Reference [25] describes
a model which regards each dot as a metal island connected
to the gate electrodes and the other dot by capacitor plates.
Ignoring quantum-mechanical terms in the addition energy,
the charging energies of each dot are calculated electrostati-

cally in terms of the dot capacitances: ECi = e2

Ci

(
1− C2

m
C1C2

)−1

where i is the dot index, Ci is the sum of all capacitances con-
nected to the ith dot, and Cm is the interdot capacitance. The
interdot capacitance leads to a mutual charging energy ECm =
e2

Cm

(
C1C2
C2

m
− 1

)−1
. It follows from Cm < Ci that ECm < ECi. The

limit of merged dots corresponds to Cm � all other elec-
trode capacitances, so that C1 ≈ C2 ≈ Cm and EC1≈EC2≈ECm .
This equalization of the charging energies is retained in
the Hubbard-model treatments [26,28,29], which discard the
unphysical infinite increase of Cm and typically label the
charging energies U1, U2, and U12, respectively. In addition
to electrostatic coupling, the Hubbard models allow for tunnel
coupling in the form of a hopping energy t . In the theoretical
charge stability diagrams of either model, at zero coupling
the charging lines form a grid of parallelograms with respect
to N1 and N2. Finite U12 or ECm splits two corners of each
parallelogram, making hexagons with open faces between
adjoining cells with the same total charge count N1 + N2. The
Hubbard-model t term introduces curvature in the charging
lines at these corners, and together with U12 converts the grid
of hexagons into a pattern of roughly parallel wavy lines
[26,28]. In both models the positions of the charging lines
are determined by chemical potentials μi, which are obtained
from the gate voltages using capacitive lever arms.
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FIG. 4. Single-electron charging measurements of the double quantum dot. (a) Series of dI/dV versus Vg curves as a function of the Y-axis
tip position obtained in the center of the dot at X = 70 nm in Fig. 3(b) and fixed sample bias Vb = −150 mV. (b)–(f) dI/dV measurements in
the Vb, Vg plane at the tip positions indicated by green×’s in (a). Moving from (b) to (f) up the Y axis, the tip departs dot 2 and moves toward
dot 1, with corresponding changes in the slopes of the two series of charging lines belonging to dot 1 and dot 2 [yellow and cyan dashed lines,
respectively, in (d), (f)]. Avoided crossings are visible, illustrated by the arrows in (d), (f). Regions of weakly coupled dots and nearly merged
dots are circled in blue and green in (d), respectively. Tunneling set point: Current I = 150 pA, Vb = 300 mV. Temperature T = 4.3 K, magnetic
field, B = 8 T.

For our datasets, the observed curvature is insufficiently
resolved to reliably estimate the hopping parameter (which
in any case is often small compared to U12 [26,28]), so we
omitted it here. In this regime a full reconstruction of the
Hubbard model would involve seven parameters: the capac-
itances between the two gates and each dot, Ui, and U12.
Equivalently, within the capacitor model one would also have
the four gate-dot capacitances, Cm, and an unknown additional

capacitance between each dot and the rest of the universe,
making seven parameters total; Ui and U12 would be de-
rived quantities—but regardless of the choice of model, the
hexagonal cell of the charge stability diagram has only six
degrees of freedom. Empirically and algebraically (see Ap-
pendix B), we found that by fitting within the capacitance
model we can obtain reliable estimates for the four dot-gate
capacitances and the two ratios U12/Ui. The seventh free
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FIG. 5. Model calculations for charge stability diagrams of the double quantum dot DQD. (a) An expanded section of data in Fig. 3(d),
with labels indicating the hexagonal cells whose dimensions were used to estimate capacitances and to generate the simulated charge-stability
diagram of a fixed-size DQD in (b)–(d). The diagrams show the lines becoming more parallel in going from (b) to (d), indicating the increased
interdot coupling (f). The panels (b)–(d) use capacitances estimated from cells labeled 1, 6, and 14 in (a), respectively. The estimated model
parameters are shown in (e), (f) and the slopes of the charging lines are shown in (g).

parameter results in an unknown overall energy scale factor
U , which is controlled by the three unknown capacitances
including Cm.

Figure 5 shows the results of such model fittings for a
contiguous series of 14 hexagonal cells extracted from the
data in Fig. 4(d). The choice of the contiguous series, shown
in Fig. 5(a), makes a zigzag path charge stability diagram
in order to avoid going over the edges of the experimental

voltage range. The first cell having been designated arbitrarily
as (N1, N2) = (1, 1) [Fig. 5(b), white numerals in Fig. 5(a)],
the sixth cell [Fig. 5(c)] is (4,3) and the 14th cell [Fig. 5(d)] is
(8,7). (The fitting was stopped after 14 cells because the lines
were too parallel to reliably identify the cell corners.) With
increasing total charge count, the fitted coupling parameters
U12/Ui [Fig. 5(e)] show a general upward trend, consistent
with expectations. The model-fitted capacitances also show
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characteristic behavior. The tip capacitance of dot 2 [green
curve in Fig. 5(e)], which is more closely underneath the tip at
this position [position D in Fig. 4(a)], is more than twice that
of dot 1 [blue curve in Fig. 5(e)], but dot 1, which is bigger
than dot 2 at these voltages [see Figs. 3(e)–3(g)], has a larger
capacitance to the back gate. Although the fitted capacitances
fluctuate, possibly due to quantum energy effects [25], the
fitted slopes are relatively stable and the upward trend in dot 2
is evident [Fig. 5(g)]. The relative flatness of dot 1′s slope with
the cell index in Fig. 5(g) compared to dot 2 can be attributed
to the greater distance of dot 1 from the tip where this dataset
was acquired [at position D in Fig. 4(a)]. At this greater
distance the tip and back gate act more like parallel plates,
but since dot 2 is closer to the tip, the tip’s curvature plays a
greater role in the tip capacitance–dot size relationship. The
overall capacitance values are well within the expectations of
finite-element electrostatic calculations, as performed in [11].

Additional insight into the properties of the QD system
can be shown by examining the dI/dV signal near the Fermi
level, where the STM tip functions as a transport lead in the
low-bias regime. Here, electrons tunnel from the surrounding
bath to the STM tip via the dot, and the charging lines inter-
sect with peaks having the opposite slope to form diamonds
near EF , the Vb height of which (from EF to the top of the
diamond) indicates the energy difference between successive
quantum dot states [27]. Examining the part of Figs. 4(b)–4(f)
closest to the Fermi level, we observe diamonds whose height
ranges from ≈6 mV on the left, where they are sometimes
difficult to distinguish from noise, to up to 12–15 mV on the
right. In principle the diamond height should enable a direct
readout of U2 [since the tip is Figs. 4(b)–4(f) is above dot 2]
and thus remove the ambiguity of the overall energy scale
from the modeling—but in the present experiment, the most
visible hexagons in the charge stability diagram were located
several tens of meV from the Fermi energy, so we cannot
use the diamonds to assign U2 values to each hexagonal cell
and thus complete Fig. 5(f) with a plot in energy units. It is
probable that in future STM experiments, higher-quality data
would enable resolution of the hexagon and diamond features
in the same regions of gate-bias maps, enabling a complete
characterization of the system at the Hubbard-model level.

IV. CONCLUSION

We have explored a side by side DQD system in monolayer
graphene under a high magnetic field. Our previous study of a
single potential well system in the same material [11] showed
striking and distinct single-electron charging behavior incon-
sistent with existing models. Here, although the interrelation
between successive Landau levels is retained, the side by side
dots show a tunable mergeability expected from the physical
setup and capturable from the classic models of DQD systems
in semiconductor devices.
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APPENDIX A: EXPERIMENTAL METHODS

Data were acquired from the graphene device described
in [11]. To form the double-dot system, voltages pulses
spaced 100 nm apart were performed according to the follow-
ing procedure: (1) stable tunneling is established at Vbias =
−100 mV, Iset = 40 pA; (2) tip is raised 1.7 nm; (3) Vbias is
ramped to 5 V at 1 V/s, held for 30 s, then ramped down.
During these steps the gate voltage was set at Vgate = 40 V.
Vbias was applied to the sample, and the tunnel current was
measured from the tip (etched from a 0.25 mm Ir wire).
All STM experiments were performed at 4 K, and dI/dV
data were acquired using the standard lock-in technique with
modulation amplitude 3 mV and frequency 1815 Hz with an
8 T applied magnetic field.

The Supplemental movies M1 and M2 [24] show slices of
the dataset depicted in Figs. 3(b)–3(i), with the same color
scale. Movie M1 has the same spatial axes as Figs. 3(b)–3(h),
and Movie M2 has the same vertical and horizontal axes as
Fig. 3(i), except that the Vg axis extends on the right to 25 V.

APPENDIX B: QUANTUM DOT MODELING

The description of the electrostatic energy model in
Ref. [25] assumes that each QD is gated by only one of the
two gates. When this is no longer assumed, the expressions
for the dimensions of cells in the charge stability diagram be-
come slightly more complicated, but they still allow for direct
analytic solutions for the four gate capacitances given four
characteristic features of the hexagonal cells: the horizontal
spacing of parallel, sequential charging lines and their slope,
or equivalently the horizontal and vertical spacings of these
lines. First, a brief recapitulation of the expressions obtained
in [25].

The total energy is calculated from U =
1
2 (V1 V2 )

(
C1 −Cm

−Cm C2

)(
V1
V2

)
where the vector V represents

the unknown potentials of the two dots. This vector is
expressed in terms of the dot charges and gate potentials as(

V1
V2

)
= 1

C1C2 − C2
m

(
C1 Cm

Cm C2

)(
Q1 + S1
Q2 + S2

)
,

where Qi = −Nie is the charge on the ith quantum dot and
Si = ∑

j Ci jVj is the weighted capacitance-voltage sum be-
tween the ith dot and the j voltage terminals, excluding the
other dot. Unlike in Ref. [11] where the unusual avoidance
pattern compelled us to modify Q2, here it is sufficient to
construct the sums Si in the same way: Si = CigVg − CitVB,
where the minus sign is caused by the bias being applied to
the sample rather than the tip.

The total energy then becomes U (N1, N2) = 1
2 N2

1 U1 +
1
2 N2

2 U2 + N1N2U12 − 1
|e| [S1(N1U1 + N2U12) + S2(N2U2 + N1

U12)] + f (Vg,Vt ), where f is independent of N1 and
N2. Then the chemical potentials are found to be

235407-7



DANIEL WALKUP et al. PHYSICAL REVIEW B 108, 235407 (2023)

μ1 ≡ U (N1, N2) − U (N1−1, N2) = (N1− 1
2 − 1

|e|S1)U1 +
(N2− 1

|e|S2)U12, and μ2 ≡ U (N1, N2) − U (N1, N2−1) =
(N2− 1

2 − 1
|e|S2)U2 + (N1− 1

|e|S1)U12.
The charging lines of the separate dots are given by the

condition μi = 0, and the slopes of the lines can be obtained
easily from the gradients of μi in the Vg,VB plane:

∇μ1 = − 1

|e|

(
C1gU1 + C2gU12

−[C1tU1 + C2tU12]

)
,

∇μ2 = − 1

|e|

(
C2gU2 + C1gU12

−[C2tU2 + C1tU12]

)
.

Then the corresponding slopes are m1 = C1g+C2gγ1

C1t +C2t γ1
,

m2 = C2g+C1gγ2

C2t +C1t γ2
, where γi ≡ U12

Ui
is the coupling parameter

which goes to unity in the limit of merged dots. (Note that
in this limit, the slopes become identical.) The horizontal

spacing of parallel charging lines is determined by the
following conditions (for dots 1 and 2, respectively):

μ1(N1 + 1, N2,Vg + �Vg1) = μ1(N1, N2,Vg),

μ2(N1, N2 + 1,Vg + �Vg2) = μ2(N1, N2,Vg),

and these conditions yield �Vg1 = |e|/(C1g + C2gγ1), �Vg2 =
|e|/(C2g + C1gγ2). Finally, we have the conditions for the hor-
izontal shift of one dot’s charging line from charging the other
dot, denoted �V m

gi and obtained from

μ1
(
N1, N2 + 1,Vg + �V m

g1

) = μ1(N1, N2,Vg),

μ2
(
N1 + 1, N2,Vg + �V m

g2

) = μ2(N1, N2,Vg),

resulting in �V m
g1 = γ1�Vg1, �V m

g2 = γ2�Vg2; this result is
identical to Ref. [25]. These six equations are sufficient to
obtain the six constants γ1, γ2,C1g,C2g,C1t ,C2t from the di-
mensions of cells measured from dI

dV (Vg,VB) maps, appearing
in Fig. 5. (Due to the definitions of U1,U2,U12 within the
capacitive model, γi ≡ U12

Ui
= Cm/C3−i.)
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