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Optical conductivity of a topological system driven using a realistic pulse

Ranjani Seshadri 1,2,* and T. Pereg-Barnea 2,†

1Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
2Department of Physics, McGill University, Montréal, Québec, Canada H3A 2T8

(Received 24 July 2023; accepted 13 November 2023; published 6 December 2023)

The effect of a time-periodic perturbation, such as radiation, on a system otherwise at equilibrium has been
studied in the context of Floquet theory with stationary states replaced by Floquet states and the energy replaced
by quasienergy. These quasienergy bands in general differ from the energy bands in their dispersion and,
especially in the presence of spin-orbit coupling, in their states. This may, in some cases, alter the topology
when the quasienergy bands exhibit different topological invariants than their stationary counterparts. In this
paper, motivated by advances in pump-probe techniques, we consider the optical response of driven topological
systems when the drive is not purely periodic but is instead multiplied by a pulse shape/envelope function. We
use real time-evolved states to calculate the optical conductivity and compare it to the response calculated using
Floquet theory. We find that the conductivity bears a memory of the initial equilibrium state even when the pump
is turned on slowly and the measurement is taken well after the ramp. The response of the time-evolved system
is interpreted as coming from Floquet bands whose population has been determined by their overlap with the
initial equilibrium state. In particular, at band inversion points in the Brillouin zone the population of the Floquet
bands is inverted as well.
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I. INTRODUCTION

The theoretical prediction and experimental realization of
topological insulators (TIs) [1–9] has been one of the greatest
developments in condensed matter physics in the last decade.
Not only do topological insulators represent a paradigm shift
in condensed matter physics, they are also predicted to have a
variety of applications [10–14].

While spin-orbit coupling is a key ingredient, it need not
always lead to nontrivial topology as band inversion may not
always occur or the presence of a Fermi surface may not be
avoided. It has therefore been proposed to use a time-periodic
perturbation in order to control the topology [15–38]. When
a time-periodic perturbation is added to a Hamiltonian the
system is no longer invariant under an arbitrary translation in
time. However, a reduced discrete time-translation symmetry
still exists. This allows finding solutions to the time-dependent
Schrödinger equation using Floquet theory. These solutions or
Floquet states are eigenstates of the time evolution operator
over a single drive cycle. In other words, Floquet states are
periodic up to a phase which is interpreted as −εT , where ε is
the quasienergy and T is the drive period. The quasienergies
and Floquet states (say, spinors) in general differ from the
equilibrium energies and eigenstates, respectively. Therefore,
along with other properties, topological invariants can change
as a result of irradiation, leading to driven topological phase
transitions. For example, graphene may be driven into a topo-
logical phase [31] where gaps appear in the spectrum. In the
case of Weyl semimetals, Weyl nodes may split into Dirac
points or gap out and give rise to Chern bands [39] while spin-
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orbit coupled insulators are predicted to become topological
upon diving [15].

While there are several theoretical predictions, the exper-
imental realization of such Floquet-driven topological phase
transitions seems to be challenging. Notably, analog photonic
systems were the first to realize some of these predictions [40]
and recently driven graphene has shown signs of topology [41]
while the general idea of Floquet bands has been demonstrated
by time-resolved angle-resolved photoemission spectroscopy
(ARPES) [42,43].

Several obstacles occur while trying to realize such
Floquet-driven topological transitions. These include sample
heating, damping, and disorder. But perhaps the most elemen-
tary deviation from the pure Floquet drive is the unavoidable
pulse shape [Fig. 1(c)]. The drive cannot be turned on at
time t = −∞ and therefore the state of the system is always

FIG. 1. (a) The gapped equilibrium spectrum with Chern number
±1. (b) With a periodic drive of frequency � = 2A the ideal Floquet
spectrum is also gapped with Chern numbers ±2. The transitions
marked in (b) correspond to features marked with asterisks (∗) in
Fig. 2. (c) The drive protocols of in Eq. (2): the ideal Floquet case
(red dotted), the slow quench (black dotted dashed), and the Gaussian
pump (green solid).
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connected to that of the equilibrium state. One might expect
that at long times after the turning on of the drive, the state
will resemble a Floquet state. However, as will be shown
below, the notion of adiabaticity does not hold at relevant
drive frequencies. In particular, as will be discussed here, the
system does not forget its initial conditions. While Floquet
states may be a good approximation for the single-particle
states at long times after the perturbation has been turned
on, their population is highly dependent on the initial state.
Therefore, one should not expect completely filled or empty
Floquet bands at low temperature, meaning that the full poten-
tial of topological invariance may not be realized. Moreover,
it seems that relaxation effects do not necessarily lead to the
desired population as the quasienergy is periodic and energy
may not necessarily relax to one band [44]. Similarly, when
connecting a Floquet spin-Hall insulator to leads, one cannot
measure quantized conductivity due to mismatch between the
equilibrium states of the leads and the driven system [45,46].

The task at hand is therefore to accurately describe a sys-
tem driven by a pulse of light whose width is in the range of
a few to many time periods, as appropriate for pump-probe
techniques and understand the relation between the optical
conductivity and Floquet band population.

The main question of this work is whether a Floquet
topological insulator is, in fact, analogous to an equilibrium
topological insulator. In other words, do Floquet bands with
nonzero topological invariants lead to the same observables
as topological bands in equilibrium. The result of this work
suggest that the answer is negative. In order to realize the same
response as an equilibrium TI, a two-level Floquet system
should have one topological Floquet band full and one empty.
However, since the Floquet system is driven, the initial state
at the distant past cannot be a Floquet state. Instead, it is an
eigenstate of the undriven system. Naively, one would think
that it is possible to turn on the drive slowly enough such that
the Floquet bands are completely filled or empty. However,
since the initial state is an eigenstate of the nondriven system,
and since energy is only conserved up to a photon energy, the
occupation of Floquet bands cannot be simply set. In fact,
we find that no matter how slowly the drive is turned on, a
fingerprint of the initial state persists and the band occupation
reflects that state.

In this paper we are interested in the physics of such pump-
probe measurements and how topological systems respond to
a perturbation that breaks time periodicity. We look at the
behavior of the Bernevig-Hughes-Zhang (BHZ) model of a
two-dimensional TI [6] in the presence of a perturbation in
the form of a short pulse and compare it with the response of
an exactly periodic (Floquet) drive.

II. DRIVEN BHZ MODEL

The equilibrium Hamiltonian in momentum space is writ-
ten as

H0(k) = d(k) · σ, (1)

with d(k) = [A sin kx, A sin ky, M − 2B(2 − cos kx − cos ky)]
and σ = (σ x, σ y, σ z ) are the 2 × 2 Pauli matrices. The mass
M and hopping amplitude B are expressed in units of the
spin-orbit coupling strength A. The spectrum, in general, is
insulating in the bulk with a finite band gap. We work in a pa-

rameter regime (M = 0.2A and B = 0.2A) where the system
is topological. The equilibrium Chern numbers are calculated
numerically as explained in the Supplemental Material [47]
following the method prescribed in Ref. [48] and are found
to be CEq

± = ±1 for the top and bottom band, respectively, as
shown in Fig. 1(a).

A time dependence H (t ) = H0 + V (t )σ z effectively makes
the mass time dependent. In the ideal case, V (t ) is perfectly
periodic with a frequency �. However, in reality, this perfect
periodicity cannot exist forever and is instead approximated
by realistic cases of a slow quench or a Gaussian pulse,

V (t ) =

⎧⎪⎪⎨
⎪⎪⎩

VFloq(t ) = V0 sin(�t ),

VPump(t ) = V0 sin(�t )e− t2

2�2 ,

VQuench(t ) = V0 sin(�t ) 1+tanh(βt )
2 ,

(2)

where VFloq, VPump, and VQuench have different envelope
functions—constant, Gaussian, and a smooth ramp, respec-
tively. Here, β and � are the rate of the quench and the width
of the pulse, respectively. V0 (=0.35A) is the peak amplitude
of the perturbation in all cases. The VFloq(t ) with frequency
� = 2A drives the system to a topological phase with Chern
numbers CFl

± = ±2, as shown in Fig. 1(b).
In the perfectly periodic case we employ Floquet theory to

find the wave functions which are then used to calculate the
response functions, assuming that one of the Floquet bands
is completely filled while the other is completely empty. In
the cases of quench and pump, the analysis requires an ac-
tual time evolution over several drive cycles since the perfect
periodicity is lost due to the envelope. The response to a
nonperiodic drive (Gaussian or quench) is calculated using the
time-evolved states starting from the equilibrium states of the
lower band of the undriven system. We use these states in the
Kubo formula as described below.

III. LINEAR RESPONSE THEORY

According to Kubo formula, the susceptibility, which is in
our case is the response of the driven system to a small probe
field, is given by

χAB(t, t ′) = lim
η→0+

eηt ′
(i	(t − t ′)Tr{g0[AI (t ′), BI (t )]}

+δ(t − t ′)Tr{g0MI (t )}), (3)

where AI , BI , and MI are operators in the interaction repre-
sentation. The density matrix g0 determines the initial state of
the system and η > 0 is a small parameter used to smoothen
the response function. The Heaviside step function 	(t − t ′)
ensures that causality is not violated. The diamagnetic term
MI (t ) contributes only to the dc conductivity in the limit
ω → 0.

For computing electrical conductivity, both A and B are
current operators. As explained in the Supplemental Mate-
rial [47], following Ref. [49], Eq. (3) becomes

χuv (t, t ′) = lim
η→0+

eηt ′ ∑
αγ

g0α[2i	(t − t ′)

× (〈ψα (t ′)|Ju|ψγ (t ′)〉〈ψγ (t )|Jv|ψα (t )〉 − u ↔ v)

+ δ(t − t ′)〈ψα (t )|Muv|ψα (t )〉]. (4)
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Here, |ψα (t )〉 is the state corresponding to band α at time
t , and g0α gives the occupation of states at the initial time;
the current operator Ju = ∂ku H and the inverse mass Muv =
∂ku∂kv

H . The subscripts u and v are the in-plane directions
with u = ( 	=)v being longitudinal (transverse) conductivity.
and the k dependence has been skipped for brevity. In the spe-
cific case of the model we have considered, the diamagnetic
term contributes only to the longitudinal conductivity, since
Muv = 0 identically when u 	= v. To obtain the frequency
response, we Fourier transform Eq. (4) with respect to the time
difference τ = t − t ′,

χuv (ω, t ) =
∫ τ=0

τ=−∞
dτ χuv (t, t + τ )e−iωτ . (5)

In general, this depends on the probe time t . This is especially
important when the perturbation breaks time periodicity as in
the case of a pump-probe experiment and the results are sen-
sitive to the time of measurement. Additionally, we average
this over one cycle around t to take into account the small but
finite width of the probe,

χ̄uv (ω, t ) = 1

T

∫ t+T

t
dt ′χuv (ω, t ′). (6)

The reason we choose to average over a single drive cycle
is in order to take into account the finite width of the probe
signal (assumed to be much smaller than the pump width D),
while at the same time not losing much information and time
resolution which is essential towards understanding the results
of a pump-probe experiment such as a time-resolved ARPES.

The electrical conductivity is then expressed as

σuv (ω) = χ̄uv (ω)/ω. (7)

IV. RESPONSE OF A SYSTEM AT EQUILIBRIUM

For the special case of an unperturbed system, by noting
that stationary states evolve as |ψα (t )〉 = e−iEαt |ψα (0)〉 with
Eα being the energy of the αth band, Eq. (5) becomes

χEq
uv (ω) = i

∑
αγ k

g0α

[ 〈ψα|Hu|ψγ 〉〈ψγ |Hv|ψα〉
ω + (Eα − Eγ ) + iη

−〈ψγ |Hu|ψα〉〈ψα|Hv|ψγ 〉
ω − (Eα − Eγ ) + iη

]

+
∑
αk

g0α〈ψα|Muv|ψα〉. (8)

Note that in the absence of a drive, there is no dependence on
the final time t as the system is actually time independent and
the averaging in Eq. (6) is skipped.

V. RESPONSE OF A PERFECT FLOQUET DRIVE

Similarly, we derive a simpler expression for a Floquet
system by noting that the Floquet states can be written in terms
of the Fourier components |φ(n)

α 〉, i.e.,

|�α (t )〉 = e−iεαt |φα (t )〉 =
∑

n

e−i(εα−�n)t
∣∣φ(n)

α

〉
,

∣∣φ(n)
α

〉 = 1

T

∫ T

0
dt e−in�t |φα (t )〉. (9)

The details of calculating these quasimode wave functions are
given in the Supplemental Material [47]. The expression for
the homodyne [49] susceptibility is then modified to

χFl
uv (ω) = i

∑
αγ mk

g0α

[∑
l

〈
φ(l )

α

∣∣Hu

∣∣φ(l+m)
γ

〉∑
l ′
〈
φ(l ′+m)

γ

∣∣Hv

∣∣φ(l ′ )
α

〉
ω + (εα − εγ − m�) + iη

−
∑

l

〈
φ(l )

α

∣∣Hv

∣∣φ(l+m)
γ

〉∑
l ′
〈
φ(l ′+m)

γ

∣∣Hu

∣∣φ(l ′ )
α

〉
ω − (εα − εγ + m�) + iη

]

+
∑
αkl

g0α

〈
φ(l )

α

∣∣Muv

∣∣φ(l )
α

〉
. (10)

The terms in the above expression correspond to optical tran-
sitions from the α band of the lth Floquet zone to the γ

band of the (l + m)th Floquet zone. While in principle the
Fourier indices being summed over should span all integers
from −∞ to +∞, in practice only a few Fourier components
of each state are significant. This can be seen by solving a
simpler case of a driven single-band system where the weight
of the nth Fourier mode is proportional to the Bessel function
Jn(V0

�
) [45]. For a small ratio V0/� this drops rapidly with |n|.

In our case we find that |φ(n)
α 〉 is negligible beyond n = ±3 for

the drive parameters that we are working with. Therefore, in
order to numerically evaluate the conductivity, we terminate
the sums in Eq. (10) at l = ±3 and m = ±3. For lower drive
frequencies or higher amplitudes a higher cutoff may be re-
quired.

Importantly, since we assume a perfectly periodic drive we
take the population of the levels to have the simple form,

g0α =
{

1 for the lower band (α = −),
0 for the upper band (α = +). (11)

While this is never the case for a driven system, since all drives
are turned on at some finite time, many authors resort to this
population as it is the simplest.

VI. GAUSSIAN AND QUENCH PUMPS

We now turn our attention to a realistic scenario where the
drive is a Gaussian pulse. We first compute the conductivity
from Eq. (4) using the real time evolution for a Gaussian pump
as well as a quench. We compare that to the response of a per-
fectly periodic drive as well as the unperturbed (equilibrium)
case which are obtained from Eqs. (10) and (8), respectively.
For the Floquet response we have used the form of g0α given
in Eq. (11).

This comparison is shown in Fig. 2 for � = 2A for the real
and imaginary parts of longitudinal and transverse conduc-
tivity, i.e., σ Re

xx [Fig. 2(a)], σ Im
xx [Fig. 2(b)], σ Re

xy [Fig. 2(c)],
and σ Im

xy [Fig. 2(d)]. The width of the Gaussian is � = 20
cycles and the quench ramp time is 1/β = 20 cycles. The
conductivities are shown at the peak of the Gaussian (green
solid line) and after the quench has reached saturation (black
dotted-dashed line). Although some features seem to agree,
there is a significant difference between the ideal Floquet
response and the actual response with a Gaussian drive or a
quench. This difference is more pronounced when the probe
frequency is higher than the drive frequency, i.e., ω > �,
where the sign of certain features is inverted. Moreover, we
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FIG. 2. Conductivities for the undriven case (grey solid), pure
Floquet drive (red dotted), a Gaussian pump of width � = 20 cycles
(green solid) and a slow quench (black dashed dotted) with β = 0.05.
As the response to a Gaussian and quench is almost identical, it is
safe to infer that the response is almost entirely dependent on the
instantaneous drive amplitude.

see that some features which are very strong in the Floquet
response are suppressed in the Gaussian/quench response.

VII. MEMORY OF INITIAL STATE

A comparison between the response of the periodically
driven systems and the ones with a pulse shape leads us
to speculate that the initial state is not forgotten even after
several cycles of the drive. To illustrate this we devise an
approximate expression for the time-evolved conductivity as
follows. For a measurement of the Gaussian-driven system
at time t̃ we calculate the Floquet states of a system driven
by an ideal sinusoidal drive whose amplitude is VPump(t̃ ). We
then use these states to calculate the response using Eq. (10),
albeit with one important difference. We replace the simple
population g0α of Eq. (11) by the overlap of the Floquet state
with the equilibrium state,

g0α (t̃ ) = ∣∣〈φ t̃
α

∣∣�0
〉∣∣2

, (12)

where |�0〉 is the initial state, which in our case we have taken
to be lying in the lower band of the equilibrium spectrum. The
Floquet state |φ t̃

α〉 is the eigenstate of the Floquet operator
corresponding to the drive frequency and the instantaneous
amplitude, i.e., the magnitude of the envelope function at the
probe time t̃ . We refer to the response thus obtained as the
“modulated Floquet response.” The inset in Fig. 3 shows g0α

at the peak, with the colors showing the population of the
lower band of a given Floquet zone. Here, red represents the
regions where the lower band is populated and the response
in these regions is very close to the Floquet-like response. On
the other hand, blue is where the upper band is populated and
the response is exactly inverted from the Floquet response.
Moreover, at the momenta where the original bands have
folded to create the Floquet bands, both bands are partially
populated. This intermediate regime is responsible for the
behavior around the drive frequency and optical transitions
around there are suppressed. This is marked with an asterisk
(*) in Figs. 2 and 3 and corresponds to the transitions shown
in the Floquet spectrum of Fig. 1(b).

FIG. 3. Comparison of the response of a Gaussian evaluated us-
ing a real time evolution (green) and the modulated Floquet response
(blue) using the g0α in Eq. (12) at the peak of the Gaussian pictured
in Fig. 1, when the response is expected to have the most similarity
to the ideal Floquet case.

We compare the above modulated Floquet response to that
of the time-evolved system for the case of a Gaussian drive
at various probe times (see Supplemental Material [47]). The
response well before the peak/ramp is found to be close to the
equilibrium response, as naturally expected. However, even at
the peak of the Gaussian pump (t = 0), i.e., where the drive
amplitude is the highest, where there is a significant mismatch
between the time-evolved response and either the Floquet or
equilibrium response, the modulated Floquet response gives a
good fit. The same holds for the quench scenario, where even
though the drive amplitude is kept on for a significantly long
time, the response saturates and does not replicate the case of
a pure Floquet drive. This means that even when an external
driving is switched on very slowly, the system never forgets its
initial state and never goes into a pure Floquet regime where
only one of the Floquet bands is fully populated.

We also plot the response obtained from the real time
evolution and the modulated Floquet response for probe time
t = −2� in Fig. 4, where again the two behaviors are in
agreement. Similar plots for intermediate probe times and

FIG. 4. Comparison of the response of a Gaussian evaluated us-
ing a real time evolution (green) and the modulated Floquet response
(blue) using the g0α in Eq. (12) at t = −2�, i.e., well before the peak
of the Gaussian.
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for a higher drive frequency are shown in the Supplemental
Material [47].

VIII. CONCLUSIONS

The agreement between the real time-evolved conductivity
and the modulated Floquet response is a clear sign of the
importance of the initial state at any time of probe, even at
the center of a wide Gaussian-shaped pulse or late after the
ramp time of a quench. While the quasimodes which con-
tribute to the relevant optical transitions can be approximated
by an instantaneous Floquet theory, one must keep in mind
that band inversion may invert energies but does not invert
the population of the bands. This unfortunately means that,

unlike at equilibrium, a situation in which quasienergy bands
with topological character are not in general completely full
or empty and with quantized dc conductivity is not likely.
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