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Local measurements of heat flux in quantum Hall devices can deviate from the expected equilibrium heat
flux due to interactions. We present a model of a simple mesoscopic device consisting of an Ohmic reservoir
contacted by chiral edge states. In contrast to the well studied heat Coulomb blockade (HCB) effect, we report
the opposite phenomenon, an enhancement of the heat flux carried by an edge state in the HCB regime due
to an additional contribution of the collective charge mode via the fluctuating potential of the Ohmic contact.
We discuss the thermometry of these correlated states and discuss their detectability. The enhancement effect
is also reflected in modified correlation functions, which influences the electrical and thermal linear response
coefficients in a tunneling probe measurement. On a technical level, we introduce a Langevin formalism that
elucidates the role of these extra fluctuations in electrical and thermal transport, both in uniformly heated and
Joule heated devices, and argue that our approach has advantages in the latter scenario compared to the standard
P(E ) theory. We report a violation of the Wiedemann-Franz law, which is modified by the external resistance of
the mesoscopic circuit.
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I. INTRODUCTION

The Ohmic contact, a small piece of metal on a highly
doped semiconductor region containing a two-dimensional
electron gas, is a fundamental component in electron quan-
tum optical experiments. It provides low-resistance contact
between edge states and external circuits and control of
dephasing [1–9] and energy equilibration [10–12] through
strong tunneling. Additionally, it serves as an incoherent
source and detector of quasiparticles.

Despite the difficulty of providing a theoretical, micro-
scopic description of an Ohmic contact, progress has been
made by considering an effective description in terms of
charge and neutral degrees of freedom [13]. The resulting
physics is rich and can be attributed to different regimes
of macroscopic quantities such as the effective temperature
or the charging energy of the contact. Notably, it involves
dynamical Coulomb blockade [14,15] in and out of equilib-
rium, heat Coulomb blockade effect [16,17], Luttinger liquid
physics [18–20], charge fractionalization [21,22], and Kondo
physics [23–29].

Our recent work focused on using an Ohmic contact as a
toy model to investigate the influence of edge reconstruction
or disorder on thermal transport in quantum Hall samples [30].
We applied a combination of Langevin equations and scat-
tering theory to a Caldeira-Leggett type system to effectively
model dissipation in chiral systems. We proved the quantiza-
tion of heat for these systems and derived a low-energy theory
for the collective degrees of freedom of the edge capturing the
universal properties of the edge in the presence of dissipation.

In a subsequent step, we showed how to break the universal
quantization of heat flux in nonchiral systems [31], which led
to the appearance of a negative heat drag effect due to the
presence of extra correlations of the collective charge degree

of freedom in the edge. Our main result is that a local mea-
surement of heat can reveal a nontrivial amount of heat current
carried by edge states in a globally equilibrium system. This
led to the present paper in which we analyze the electrical
and thermal properties of these correlated states in a similar
device.

In this paper, we present a minimal model of an Ohmic
contact, and show that it can host correlated states that emerge
due to strong Coulomb interactions similar to the considera-
tions in [21,22]; see Fig. 1. The Ohmic contact is connected
to macroscopically large electrodes via n chiral edge states.
One additional edge state is prepared such that it forms a loop
and is fed back into the Ohmic contact. The anomalous state
appears in the looped edge state. The corresponding experi-
mental setup closely resembles the one presented in [16,17].
We show that these correlated states are related to voltage
fluctuations of the Ohmic contact, which are in full agreement
with P(E ) theory [14]; however the role of these extra fluctu-
ations in electrical and thermal transport remains elusive. In
the approach presented in this paper we explicitly resolve the
temperature dependence of the additional fluctuations, which
had to be found with an experimental hypothesis in P(E ) the-
ory. We report a multiplication of heat, counterintuitively in
the Coulomb blockade regime: a higher than quantum amount
of heat carried by the interacting edge states, which poses a
paradox of having a hot channel in a globally equilibrium sys-
tem. The paradox is resolved by coupling this interacting state
to another state capacitively or via a quantum point contact
(QPC) and explicitly showing energy conservation. We study
the linear electrical conductance and thermal tunneling con-
ductance and report a violation of the Wiedemann-Franz law
by a number that only depends on the external resistance R =
Rq

n of the Ohmic contact Ln = 3 2+n
2+3nL0, with the resistance

quantum Rq = h
e2 . Furthermore, we study the Lorenz number
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FIG. 1. An Ohmic contact connected to n � 1 external edge
states and m = 1 looped edge state. This setup can be generalized to
multiple loops. A setup like this was already experimentally realized
in [16,17]. The loop can be achieved by a quantum point contact
(QPC) in the pinch-off regime. As we will show in Sec. IV at
finite transmission the QPC can be used to probe the edge state. We
consider the Ohmic contact at a uniform temperature T , but experi-
mentally the contact might be heated via Joule heating. This situation
can be treated under the assumption of local thermal equilibrium by
taking different temperatures in the noise powers of the boundary
currents and Langevin sources; see Sec. IV B.

in experimentally more realistic situations and numerically for
arbitrary temperatures in equilibrium.

II. MULTIPLICATION OF HEAT CARRIED
BY AN EDGE STATE

Let us consider a generalization of the previously proposed
model consisting of N incoming and N outgoing edge chan-
nels to the Ohmic contact. The bosonic Hamiltonian of this
system can be written as

H = h̄vF

4π

2N∑
i=1

∫ ∞

−∞
dx [∂xφi(x, t )]2 + Q2(t )

2C
, (1)

where i = 1, . . . , N labels the incoming, and i =
N + 1, . . . , 2N the outgoing edge states, and Q(t ) =∑

i′
∫ 0
−∞ dx ρi′ (x, t )e

εx
vF is the integral of the charge

density ρi(x, t ) = e
2π

∂xφi(x, t ) inside the interaction region
x ∈ (−∞, 0]. The exponentially decaying term arises due to
the finite lifetime of excitations ε inside the Ohmic contact.
A similar Hamiltonian was used in Refs. [13,32,33]. The
Heisenberg equation of motion ∂tφi(x, t ) = − i

h̄ [φi(x, t ),H]
can be recast into yet another form,

d

dt
Q(t ) =

N∑
j=1

[
jin
i (t ) − jout

i (t )
]
, (2)

jout
i = 1

RqC
Q(t ) + jc

i (t ), (3)

where Eq. (2) is Kirchoff’s law describing the rate of change
of charge on the Ohmic contact in terms of incoming and
outgoing boundary currents and Eq. (3) is a Langevin equa-
tion that contains a contribution from the collective charge
mode via the fluctuating potential Q(t )/C of the Ohmic con-
tact and the neutral thermal current fluctuations jc

n(t ).

Next, consider taking m outgoing states and loop them
back onto the Ohmic contact, which reduces the number of
unlooped external states to n = N − m incoming and outgoing
states, as depicted in Fig. 1 [34]. This can be implemented by
an additional constraint on the equation of motion Eqs. (2)
and (3) of the form

jin
k = ei ωL

vF jout
k , n < k � N. (4)

Our goal is to compute the heat flux carried by the looped
edge states, which is expected to be anomalous, since ad-
ditionally to the free fermionic neutral excitation carrying a
heat flux quantum, we expect the presence of some charge
fluctuations adding to this heat flux.

To compute the heat flux carried by any edge state outgoing
of the Ohmic contact, we solve Eqs. (2) to (4) and express
the outgoing currents in terms of incoming boundary currents
and the Langevin sources. For simplicity let us assume that
the system is in thermal equilibrium; i.e., the noise power of
the incoming boundary current and the noise power of the
Langevin sources are equal to an equilibrium noise power at a
known temperature Sin = Sc = Seq:

Seq(ω) = 1

Rq

h̄ω

1 − e−β h̄ω
, (5)

where β = 1
kBT is the inverse temperature. This constraint will

be relaxed in Sec. IV B. Furthermore let us assume that we
look at the simple case of one loop m = 1 and n external
channels and short loops L = 0, which corresponds to the
experimental situation in [17]. For more general solutions see
Appendix A.

To obtain the heat carried by an outgoing edge state we
integrate the noise power over all frequencies [35],

J = Rq

∫ ∞

−∞

dω

4π
{Si(ω) − Si(ω)|T →0}, (6)

where the noise power is defined as

Si(ω) = 2πδ(ω + ω′)
〈
δ jout

i (ω)δ jout
i (ω′)

〉
(7)

and can be found by a Fourier transformation of Eqs. (2) to
(4). The noise power is given by

Si(ω) = Seq(ω), 1 < i � n, (8)

Sn+1(ω) =
(

1 + 2n

n2 + (ω/ωc)2

)
Seq(ω), (9)

where the time constant ω−1
c = RqC = π h̄

Ec
is related to the

charging energy Ec = e2

2C . The expression for the noise power
of the external channels is equilibrium as expected from the
unitarity of the scattering matrix; however the noise power of
the loop acquires an additional contribution due to the charge
fluctuations of the Ohmic contact. According to Eq. (6) the
heat flux carried by the looped edge state is given by

J = π

12h̄
k2

BT 2 = Jq, (10)

for high temperatures compared to the charging energy
βEc � 1, and

J =
(

1 + 2

n

)
Jq, (11)
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FIG. 2. The excess heat flux in the looped edge state normalized
to a quantum J/Jq − 1 as a function of the dimensionless inverse
temperature h̄βωc ∼ Ec/T for n ∈ {1, 2, 3, 4} (solid lines) external
edge channels. Note that increasing the number of edge channels
decreases the magnitude of the excess heat flux as well as increas-
ing the convergence toward the strongly interacting low-temperature
limit (dashed lines).

for low temperatures βEc � 1. Let us stress again that the
anomalous heat flux can be understood as a contribution from
the fermionic neutral mode and charge fluctuations created
by the Ohmic contact. Solving Eq. (6) numerically allows to
explore the intermediate values of J as a function of the chan-
nel number n and the dimensionless parameter h̄βωc ∼ Ec/T .
The graph in Fig. 2 shows the dependence of the heat flux for
different values of the dimensionless inverse temperature and
number of channels.

III. EDGE STATE THERMOMETRY—CAPACITIVE
COUPLING

A. Equilibrium operation

In Sec. II we found that a mesoscopic device depicted by
Fig. 1 shows a heat flux in the loop that is seemingly higher
than the base temperature of the device. In other words, if the
device is in global thermal equilibrium, i.e., the temperature
of the noise power of the incoming currents and sources are
all equal to the base temperature T0, the heat flux carried by
the looped channel is given by Eq. (11) and could also be
understood in terms of an effective temperature of the channel

Teff ∼
√

1 + 2
n T0 that is higher than the base temperature.

In a normal resonator a temperature difference would lead
to a net energy flux [36]; however here this enhancement is
due to charge fluctuations of the Ohmic reservoir. Neverthe-
less, we need to address this paradox, since it is impossible to
extract energy from the system in global equilibrium accord-
ing to the second law of thermodynamics.

Adding the capacitively coupled channel (see Fig. 3) as
a thermometer can be implemented by adding the following
equations to Eqs. (2) to (4),

(
jout
th

jin
n+1

)
=

(
rth tth
tth rth

)(
jin
th

jout
n+1

)
, (12)

FIG. 3. Capacitive resonator coupling the looped edge state to a
free edge state. The thermometer can be operated in equilibrium or
with a temperature difference between the edge states.

where the transmission and reflection amplitudes of the ther-
mometer are given by

tth = 1 − 2eiωtW + e2iωtW

2 − 2eiωtW − iω/ωth
, (13)

rth = 1 − eiωtW + ieiωtW ω/ωth

2 − 2eiωtW + iω/ωth
, (14)

where tW = W/vF is the time of flight through the resonator
and ω−1

th = RqCth is the RC time of the capacitive interaction
strength between the thermometer and the interacting mode;
see Appendix B.

In the next step we compute the heat flux in the outgoing
part of the thermometer to check if heat is carried over from
the hot channel to the cold channel; using the same protocol
described earlier we evaluate Eq. (6). Due to the unitarity of
the scattering matrix for the device and thermometer we find
the expected result

Sth(ω) = 2π
〈
δ jout

th (ω)δ jout
th (−ω)

〉 = Seq, (15)

which yields a heat flux quantum according to the equivalent
expression to Eq. (6). This resolves the paradox, since no
heat can be extracted if the system is in equilibrium and the
additional correlations adding to the heat flux exactly cancel in
the computation of the outgoing heat flux of the thermometer.
This is due to the fact that the capacitive thermometer is
invasive. The capacitive coupling is a dynamical, frequency-
dependent, coupling even if one considers it only to lowest
order in the coupling constant. The incoming state of the ther-
mometer changes the state of the Ohmic contact, and thus the
equation of motion of the outgoing thermometer state, such
that no heat can be extracted. This is why we consider a truly
noninvasive thermometer, modeled as a tunneling junction in
Sec. IV.

B. Nonequilibrium operation

Despite the fact that the correlations in the loop remain
elusive in an equilibrium setup it is possible to measure
signatures of these states in nonequilibrium scenarios. Let
us assume a temperature difference across the thermometer.
In experiments this would be realized by Joule-heating the
Ohmic contact which leads to different effective temperatures
for the noise powers of incident current fluctuations T0, the
Langevin sources of the contact Tc, and for generality we will
also consider a different temperature of fluctuations incident
from the attached thermometer edge state Tth. We define the

235405-3



FLORIAN STÄBLER AND EUGENE SUKHORUKOV PHYSICAL REVIEW B 108, 235405 (2023)

noise power of incoming current fluctuations to be of equi-
librium form but with a different temperature Sin

th = Seq(Tth),
Sin = Seq(T0), and Sc = Seq(Tc).

A thermometer measurement should be noninvasive, which
is why we consider the interacting distance W to be short
kBT tW

h̄ � 1. In this case we find the noise power of outgoing
current fluctuations of the thermometer Sth(ω) to be

Sth(ω) ≈ Sin
th (ω) + ω2ω2

tht4
W

ω2 + n2ω2
c

{
ω2

[
Sc(ω) − Sin

th (ω)
]

+ nω2
c

[
(1+n)Sc(ω) + Sin(ω) − (2+n)Sin

th (ω)
]}

.

(16)

Inserting this noise power into the heat integral in Eq. (6)
and subtracting the heat flux injected into the thermometer
gives the heat flux passed through the thermometer and can
be measured downstream of the thermometer edge state. In
the noninteracting limit ωc → 0 we find

δJ = k4
Bπ3t4

W ω2
th

30h̄3

(
T 4

c − T 4
th

)
, (17)

and in the strongly interacting limit ωc → ∞ we find

δJ = k4
Bπ3t4

W ω2
th

30nh̄3

[
T 4

0 +(1+n)T 4
c −(2+n)T 4

th

]
, (18)

which shows a dependence on the number of external edge
states attached to the Ohmic contact. Note that the correlated
state inside the loop can change the (nonuniversal) prefactor
of heat flux passed to the thermometer in contrast to the
noninteracting case, but not the overall scaling as a function
of temperature. Furthermore we note that the outgoing ther-
mometer noise power can be obtained also in other limits or
treated nonperturbatively, but this goes beyond the scope of
this paper and will be considered elsewhere.

IV. BREAKDOWN OF WIEDEMANN-FRANZ LAW

In the last section we showed that in an equilibrium system
it is impossible to see the special features of the looped chan-
nel. In nonequilibrium scenarios a capacitive coupling can
reveal nontrivial features of these states; however according
to Eqs. (13) and (14) this coupling is a dynamical (frequency-
dependent) effect.

In this chapter we consider another type of thermometer
which consists of a tunneling junction created for example
by a QPC. In contrast to the capacitive coupling we consider
the transmission amplitudes to be small and frequency inde-
pendent. In contrast to the capacitive thermometer we expect
the looped states to have an anomalous fermionic correlation
function which enters the electrical and thermal transport
quantities calculated in this chapter. We employ a tunneling
Hamiltonian approach and we explicitly consider nonequilib-
rium situations by studying the linear response current and
heat current to a small bias voltage δV and a small temperature
difference δT .

A. Lorenz number of tunneling current

Let us assume a coupling of a looped edge state to a free
edge state via a quantum point contact (QPC) to leading order

FIG. 4. We describe the QPC using the tunneling Hamiltonian
formalism. An electron is created in the “+” edge and annihilated
in the “−” edge, or vice versa with a perturbatively small interac-
tion constant γ . The tunneling is switched on adiabatically, which
allows us to treat it separately from the Coulomb interactions in the
Ohmic contact. We compute the electrical and thermal conductance
to leading order in the tunneling constant.

of tunneling; see Fig. 4. In this system we also expect no
energy transport in equilibrium, but additionally, we report the
violation of the Wiedemann-Franz law by a universal number
that depends only on the number of external channels, but
not on microscopic details of the Ohmic contact, the edge
states, or the QPC itself. To do this we employ the tunneling
Hamiltonian approach, which allows the computation of both
electrical conductance and thermal conductance.

Let us consider the Hamiltonian of the QPC H =∑
σ=± Hσ + HT , which consists of two counterpropagating

channels connected by a tunneling term with

Hσ = −iσ h̄vF

∫ ∞

−∞
dx ψ†

σ (x, t )∂xψσ (x, t ), (19)

HT = γψ
†
+(x0, t )ψ−(x0, t ) + H.c. (20)

This formalism treats tunneling separately from the in-
teractions at the Ohmic contact, which allows us to impose
fermionic boundary conditions for the free edge state ψ+ and
nontrivial interacting boundary conditions due to interactions
for ψ− at the Ohmic contact. For detailed calculations see
Appendix C. The average current and average heat flux are
defined by the rate of change of charge and energy of the
free system, respectively. This gives for the average tunneling
current

I = eγ 2

h̄2

∫ ∞

−∞
dt (〈ψ+(t )ψ†

+(0)〉〈ψ†
−(t )ψ−(0)〉

− 〈ψ†
+(0)ψ+(t )〉〈ψ−(0)ψ†

−(t )〉), (21)

and for the tunneling heat flux

J = γ 2

ih̄

∫ 0

−∞
dt (〈ψ†

−(0)ψ−(t )〉〈ψ̇+(0)ψ†
+(t )〉

− 〈ψ−(t )ψ†
−(0)〉〈ψ†

+(t )ψ̇+(0)〉), (22)

where ψ̇ (t ′) = lim
t→t ′

∂tψ (t ).
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We evaluate these expressions using the nonequilibrium
bosonization technique [37], which allows us to express
the vertex operators ψσ (t ) = 1√

2πa
exp[iφσ (t )] in terms of

bosonic fields φσ (t ), which can be found from the currents
Eq. (3). Every two-point function can be expressed due to the
Gaussian nature of the theory as

〈ψσ (t )ψ†
σ (t ′)〉 = e−iμσ (t−t ′ )Cσ (t − t ′), (23)

〈ψ†
σ (t )ψσ (t ′)〉 = eiμσ (t−t ′ )Cσ (t − t ′), (24)

where the first exponential function is the zero-mode contribu-
tion and the phase correlation function ln Cσ (t ) = 〈[φσ (0) −
φσ (t )]φσ (0)〉 is related to the noise power via

ln Cσ (t ) = −2π

e2

∫
dω

ω2
Sσ (ω)(1 − e−iωt ), (25)

where S+(ω) = Seq(ω) and S−(ω) = Sn+1(ω). The free
fermionic phase correlation function is given by the standard
expression

C+(t ) = − i

2h̄βvF

1

sinh
[

π
h̄β

(t − iη)
] , (26)

where the shift of the pole was introduced to find the correct
Fourier transformation in terms of the occupation number. For
the interacting phase correlation function we find it by relying
on a separation of energy scales. The correlation function is al-
tered by the interaction parameter ωc. For temperatures much
larger than the charging energy h̄ωc � kBT , we know that
our correlation function must have free fermionic character,
e.g., due to Eq. (10). For temperatures much smaller than the
charging energy, which is in turn much smaller than the UV
cutoff, we can find an asymptotic solution in the long-time
limit ωct � 1 of the form

C−(t ) =
(

πe−γEM

ωcn

) 2
n

2vF

(
1

ih̄β

1

sinh
[

π
h̄β

(t − t ′ − iη)
]
)1+ 2

n

; (27)

see Appendix D.
This allows us to compute Eqs. (22) and (21), which yield

very similar expressions, except for the time derivative in the
heat flux. Let us start from the average current. Details of
the calculations can be found in Appendix E; we will give
the results assuming a separation of energy scales given by
kBT, h̄t−1 � h̄ωc � h̄vF a−1.

1. Linear conductance

The linear conductance is given by

Gn = e2

2π h̄

γ 2

h̄2v2
F

(
πe−γEM

h̄βωcn

) 2
n
√

π�
(
1 + 1

n

)
2�

(
3
2 + 1

n

) , (28)

which in general depends on the number of channels n and
reproduces the free fermionic result

G∞ = e2

2π h̄

γ 2

h̄2v2
F

. (29)

2. Heat flux

It is easy to see that the heat flux is zero for equal tempera-
tures of the two terminals. For a small temperature difference
δT (linear response) the heat flux is given by

Jn = 4
1
n

[
(n − 1)�

(
2 + 1

n

)2 − �
(
1 + 1

n

)
�

(
3 + 1

n

)]
n�

(
4 + 2

n

)
× πkBδT

β h̄

(
πe−γEM

h̄βωcn

) 2
n γ 2

h̄2v2
F

. (30)

Especially the noninteracting case gives

J∞ = πkBδT

6β h̄

γ 2

h̄2v2
F

. (31)

The Lorenz number for a specific number of channels n is
given by

Ln = JnkBβ

δT Gn
= 2 + n

2 + 3n

π2k2
B

e2
= 3

2 + n

2 + 3n
L∞. (32)

Note that the same result may be obtained by considering
transport integrals [38,39].

B. Lorenz number for selective temperature bias

In real experiments, e.g., in the experiments where dy-
namical Coulomb blockade is studied with a temperature
bias [14,16], the Ohmic contact is heated by Joule heating.
This may lead to a nonuniform temperature in which the base
temperature of the device and the temperature of the sources
of the reservoir can be different. In that case the noise power
in the loop is not given by Eq. (9), but instead by

Sl (ω) = Sc(ω) + n[Sc(ω) + Sin(ω)]

n2 + (ω/ωc)2
, (33)

where the noise power is given by Eq. (5) with the respective
temperatures Tc of the Langevin sources and Tin for the current
fluctuations incident to the device.

In [14], it was stated that after the Joule heating the tem-
perature of the node is different from the temperature of the
electromagnetic environment. The best fit to the data was
given by the mean temperature of the (Tin + Tc)/2 with small
deviations. We can show with Eq. (33) that this conjecture
is valid to leading order in small temperature differences
between node and environment and corrections appear in
second order of Tin − Tc. This is a strong advantage of the
nonequilibrium bosonization approach [37], which allows us
to have a more intuitive physical picture, by describing the
voltage fluctuations in terms of boundary currents. This allows
us to derive the aforementioned temperature of the voltage
fluctuations rigorously.

The nontrivial temperature dependence of the noise power
translates directly to the phase correlation function and thus
the Lorenz number. Imagine only heating the Ohmic contact
and keeping the other channels at base temperature, i.e., Tin =
T+ = T , where T+ refers to the temperature of the Fermi dis-
tribution of the ψ+ fermions. This would alter the correlation
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function Eq. (27) to

C−(t ) =
(

πe−γEM

ωcn

) 2
n

2vF

(
kBT

ih̄

1

sinh
[

πkBT
h̄ (t − t ′ − iη)

]
) 1

n

×
(

kBTc

ih̄

1

sinh
[

πkBTc
h̄ (t − t ′ − iη)

]
)1+ 1

n

, (34)

where we assume Tc = T + δT in the linear response regime
and repeat the calculations leading to the heat flux Eq. (30).
This leads to a modified Lorenz number given by

Lsel.
n =

(
1 + 1

2 + 3n

)
L∞. (35)

The maximum Lorenz number is reduced from L1 = 9
5 to

Lsel.
1 = 6

5 .

C. Temperature dependence of the Lorenz number

If the separation of energy scales kBT, h̄t−1 � h̄ωc �
h̄vF a−1 is not fulfilled, it is possible to study the ex-
act solution for linear conductance and thermal conduc-
tance numerically [40]. In the following we plot the
Lorenz number for a device with Tin = Tc computed from
the numerical solutions of Eqs. (21) and (6) using the
exact correlation function, see [14], which after shifting
the poles similarly to before gives the following Lorenz
number,

Ln

L∞
=

∫ ∞
0 dx 3

2 [3 − cosh(2x)]sech4(x)e�(x)∫ ∞
0 dx sech2(x)e�(x)

, (36)

with the hyperbolic secant function sech(x) = [cosh(x)]−1,

�(x) = −2x

n
+ π

[
cos

( nh̄βωc

2

) − e− nxh̄βωc
π

]
n sin

( nh̄βωc

2

) − 2 ln(1 + e−2x )

n

− 1

n

∑
σ=±1

H σnh̄βωc
2π

+ e−i σnh̄βωc
2 + σnxh̄βωc

π B

(
−e−2x; 1 + σnh̄βωc

2π
, 0

)
, (37)

where Hα is a harmonic number and B(x; a, b) is the incom-
plete Beta function.

The ratio of the Lorenz number minus 1 is plotted in
Fig. 5. Note that a large number of channels suppresses the
magnitude of the Lorenz number, i.e., the effect of the voltage
fluctuations, but also leads to a faster convergence toward the
strongly interacting prediction indicated by the dashed lines
upon lowering the temperature. The Lorenz number for arbi-
trary temperatures can be studied in a more cumbersome but
similar way by deriving the equivalent expression of Eq. (36)
using Eq. (33).

FIG. 5. Numerical values of the Lorenz number for n ∈
{1, 2, 3, 4} (solid lines). The dashed lines indicate the theoretical
predictions for the low-temperature, strongly interacting regime.

D. Weak-backscattering limit

If the QPC is operated in the opposite regime of weak
tunneling, see Fig. 6, we expect a Lorenz number that is given
by the mapping n → −(n − 1); see Appendix C 3. This is in
full agreement with the duality in the Luttinger parameter dis-
cussed in [14]. The Lorenz number in the weak-backscattering
regime is given by

Ln = 3(1 − n)

2 − 3(1 + n)
L∞. (38)

E. Additional comments

The Lorenz number presented in this paper was calculated
in an experimentally established setup, where the external
resistance can only be changed by changing the series

FIG. 6. QPC in the weak-backscattering configuration. The
Lorenz number is expected to be dual to the weak-tunneling case.
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resistance of the Ohmic contact in discrete steps R = Rq/n;
however one can also imagine a circuit in series with a macro-
scopic resistor that can be freely tuned. The computations in
this paper do not rely on n being integer, which allows us
to immediately generalize our result for an arbitrary series
resistance R for the Lorenz number

Ln = 3
2 + Rq/R

2 + 3Rq/R
L∞. (39)

As was shown in [14,18,19,41] there is a direct mapping
between an electronic channel in series with a linear resistance
and a Tomonaga-Luttinger model (TLL) for an infinitely long
1D system of spinless electrons interacting with a single im-
purity. The interaction parameter of the TLL is given by

K =
(

1 + R

Rq

)−1

, (40)

which extends our results directly to the TLL case mentioned
above.

A violation of the Wiedemann-Franz law was also re-
ported in interacting Luttinger liquids by [42], but the reported
dependence of the prefactor on the interaction parameter is
different.

Furthermore we want to note that the Lorenz number given
by Eq. (32) for n → 1 appears also in the context of elec-
tron tunneling of ν = 1/3 fractional quantum Hall (FQH)
quasiparticles; see, e.g., [43]. Our device is similar to the
fractionalizer [22] that creates anyonic excitations. Many of
the interpretations of the nature of these states can also be
applied here.

V. CONCLUSION

In this paper, we provided insights into the previously
overlooked heat multiplication effect within Ohmic contacts.
The enhancement of locally measured heat flux appears in the
Coulomb blockade regime, which at first seems counterintu-
itive, but is due to the presence of an additional contribution
from the collective charge mode via the fluctuating potential
Q(t )/C of the Ohmic contact. We used a capacitive resonator
and a quantum point contact to perform thermometry on this
seemingly hotter edge state and ruled out any paradoxes in-
volving the violation of energy conservation.

One consequence of this is the violation of the tunnel-
ing Wiedemann-Franz law leading to a new set of universal
Lorenz numbers, the ratio of linear thermal response to volt-
age response, that depend only on the series resistance R of the
circuit. We at first assume a separation of energy scales and
study this Lorenz number in the Coulomb blockade regime
where the charging energy is much larger than the energy
scale set by temperature. We used a combination of Langevin
equation and scattering theory to study a uniformly heated
and, experimentally more relevant, selectively heated Ohmic
contact, leading to a larger than expected Lorenz ratio for both
cases. Our approach allows for a more intuitive picture of
the role of fluctuations compared to P(E ) theory, especially
in the context of nonlocal heat transport discussed in [31].
Namely it allows us to derive the experimental hypothesis of
the environmental temperature made in [14] rigorously.

We conducted numerical studies to investigate the tem-
perature dependence of the Lorenz number beyond Coulomb
blockade regime and discuss how our model can be mapped
to continuous resistances, a TLL model, and how it can be
applied for fractional fillings, where this approach could be
used to probe the edge structure of complicated filling factors.
Recently we became aware of Ref. [39] reporting on a similar
violation of the Wiedemann-Franz law.

In summary, our findings lay the foundation for further
studies on out-of-equilibrium situations involving Ohmic con-
tacts. As an outlook, our results open the way to study this new
universality in existing heat Coulomb blockade systems. It can
be generalized and adds to the understanding of thermoelec-
tric transport in fractional quantum Hall systems and Kondo
circuits.
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APPENDIX A: DEPENDENCE ON EXTERNAL
RESISTANCE AND NUMBER OF LOOPS

The heat flux transported inside the loop depends on many
parameters, namely, the external resistance, i.e., the number
of channels attached to the Ohmic contact that do not form
a loop, the length of the loop, and the number of loops. The
Langevin equations for n external channels and m loops of
length L are given by

−iωQ(ω) =
n+m∑
k=1

[
jin
k (ω) − jout

k (ω)
]
, (A1)

jout
k (ω) = 1

RqC
Q(ω) + jc

k (ω), (A2)

jin
l (ω) = eiωtfl jout

l (ω), l > n. (A3)

1. Noise power for multiple loops of length L
with uniform heating

Let us assume equal temperatures for the noise powers
of boundary currents and Langevin sources; we find the
noise power of one of the looped edge states to be Sl (ω) =
f (ω)Seq(ω), with

f (ω)=1 − 1

m + 2mn+n2+(ω/ωc )2

2[m−(m+n) cos(ωtfl )+ω/ωc sin(ωtfl )]

, (A4)

with tfl = L/vF . The heat flux carried by the looped edge state
can be found by performing the integral in Eq. (6). If we take
L → ∞ a separate averaging of f (ω) over the oscillations
shows that f (ω) → 1. From an experimental point of view
the assumption of neglecting potential retardation effect due
to a finite length of the loop is justified [17].
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FIG. 7. The labeling of currents of the thermometer.

2. Noise power for short loops with selective heating

In a nonequilibrium situation, where Sin = Sc, and under
the assumptions of short loops, we find

Sl (ω) = ScL(ω) + n[Sc(ω) + Sin(ω)]

n2 + (ω/ωc)2
, (A5)

which reproduces Eq. (9).

APPENDIX B: SCATTERING MATRIX
OF THE CAPACITIVE THERMOMETER

The equation of motion for the capacitive thermometer (see
Fig. 7) is derived. from a Hamiltonian of two counterprop-
agating edge states that interact within a region of size W
capacitively with coupling strength Cth,

∂tφσ (x, t ) + vF ∂xφσ (x, t ) = − e

h̄Cth
Qthθ (x)θ (W − x),

(B1)

where Qth = ∑
σ ′

∫ W
0 dx ρσ ′ (x) is the total charge inside of

the interaction region and σ = ± encodes the chirality of the
edge states.

The solution of the equations of motion for 0 < x < W in
terms of bosonic currents is given by

jσ (x, ω) = j̃σ (ω)e
iωσx

v + 1 − e
iωσx

v

iω/ωthσ

∑
σ ′

∫ W

0
dx ∂x jσ ′ (ω, x),

(B2)
to which we can assign the boundary currents

jin
th (ω)

!= j+(0, ω), (B3)

jout
th (ω)

!= j+(W, ω), (B4)

jin
n+1(ω)

!= − j−(0, ω), (B5)

jout
th (ω)

!= − j−(W, ω), (B6)

which allows us to solve for the S-matrix of the system, which
is given by (

jout
th

jin
n+1

)
=

(
rth tth
tth rth

)(
jin
th

jout
n+1

)
, (B7)

where the transmission and reflection amplitudes of the ther-
mometer are given by

tth = 1 − 2eiωtW + e2iωtW

2 − 2eiωtW − iω/ωth
, (B8)

rth = 1 − eiωtW + ieiωtW ω/ωth

2 − 2eiωtW + iω/ωth
, (B9)

where tW = W/vF is the time of flight inside the interaction
region and ω−1

th = RQCth is the RC time of the capacitive inter-
action strength between the thermometer and the interacting
mode.

APPENDIX C: TUNNELING HAMILTONIAN APPROACH

The Hamiltonian of the system is given by

H = H+ + H− + HT , (C1)

where

H± = ∓ih̄vF

∫ ∞

−∞
dx ψ

†
±(x, t )∂xψ±(x, t ) (C2)

and

HT = γψ
†
+(x0, t )ψ−(x0, t ) + H.c., (C3)

where we use {ψ+(x, t ), ψ†
+(y, t )} = δ(x − y).

1. Average heat flux

The heat flux operator is given by

Ĵ = −i

h̄
[H+,HT ] = −γ vF

∫ ∞

−∞
dx

× [ψ†
+(x, t )∂xψ+(x, t ), ψ†

+(x0, t )ψ−(x0, t ) + H.c.],

(C4)

where we use the equation of motion and find

[ψ†
+(x, t )∂tψ+(x, t ), ψ†

+(x0, t )ψ−(x0, t )]

= −∂tψ
†
+(x0, t )ψ−(x0, t )δ(x − x0) (C5)

and

[ψ†
+(x, t )∂tψ+(x, t ), ψ†

−(x0, t )ψ+(x0, t )]

= −ψ
†
−(x0, t )∂tψ+(x0, t )δ(x − x0), (C6)

which yields

Ĵ = γ [∂tψ
†
+(x0, t )ψ−(x0, t ) + H.c.]. (C7)

The average is given by

J = 〈Ĵ〉 = − i

h̄

∫ 0

−∞
dt〈[J (0),H(t )]〉

= −iγ 2

h̄

∫ 0

−∞
dt

× 〈[∂tψ
†
+(0)ψ−(0) + H.c., ψ†

+(t )ψ−(t ) + H.c.]〉

= −iγ 2

h̄

∫ 0

−∞
dt〈[∂tψ

†
+(0)ψ−(0), ψ†

−(t )ψ+(t )]〉

+ 〈[ψ†
−(0)∂tψ+(0), ψ†

+(t )ψ−(t )]〉

= −iγ 2

h̄

∫ ∞

−∞
dt〈[∂tψ

†
+(0)ψ−(0), ψ†

−(t )ψ+(t )]〉

= −iγ 2

h̄

∫ ∞

−∞
dt〈∂tψ

†
+(0)ψ+(t )〉〈ψ−(0)ψ†

−(t )〉

− 〈ψ+(t )∂tψ
†
+(0)〉〈ψ†

−(t )ψ−(0)〉. (C8)

235405-8



MESOSCOPIC HEAT MULTIPLIER AND FRACTIONALIZER PHYSICAL REVIEW B 108, 235405 (2023)

2. Average tunneling current

Î = −ie

h̄

∫ ∞

−∞
dx[ψ†

+(x, t )ψ+(x, t ),HT ]

= −iγ

h̄

∫ ∞

−∞
dx[ψ†

+(x, t )ψ+(x, t ), ψ†
+(x0, t )ψ−(x0, t )

+ H.c.]

= −ieγ

h̄

∫ ∞

−∞
dx[ψ†

+(x, t )ψ+(x, t ), ψ†
+(x0, t )ψ−(x0, t )]

+ [ψ†
+(x, t )ψ+(x, t ), ψ†

−(x0, t )ψ+(x0, t )], (C9)

[ψ†
+(x, t )ψ+(x, t ), ψ†

+(x0, t )ψ−(x0, t )]

= ψ
†
+(x, t )ψ−(x0, t )δ(x − x0), (C10)

[ψ†
+(x, t )ψ+(x, t ), ψ†

−(x0, t )ψ+(x0, t )]

= −ψ+(x, t )ψ†
−(x0, t )δ(x − x0), (C11)

Î = −ieγ

h̄
[ψ†

+(x0, t )ψ−(x0, t ) − ψ
†
−(x0, t )ψ+(x0, t )],

(C12)

I = 〈Î〉 = −i

h̄

∫ 0

−∞
dt〈[IT (0),HT ]〉

= −eγ 2

h̄2

∫ 0

−∞
dt〈[ψ†

+(0)ψ−(0), ψ†
−(t )ψ+(t )]〉

− 〈[ψ†
−(0)ψ+(0), ψ†

+(t )ψ−(t )]〉

= −eγ 2

h̄2

∫ ∞

−∞
dt〈ψ†

+(0)ψ+(t )〉〈ψ−(0)ψ†
−(t )〉

− 〈ψ+(t )ψ†
+(0)〉〈ψ†

−(t )ψ−(0)〉. (C13)

3. Weak-backscattering limit

In the weak-backscattering limit the correlation functions
of the + and − arm cannot be averaged separately. We thus
start from the equation for current

I = eγ 2

h̄2

∫ ∞

−∞
dt〈[ψ†

−(t )ψ+(t ), ψ†
+(0)ψ−(0)]〉, (C14)

where we resum the exponentials due to the Gaussian nature
of the theory. One of the terms in the tunneling current is given
by

K (t ) = 〈e−iφ−(t )eiφ+(t )e−iφ+(0)eiφ−(0)〉, (C15)

− ln K (t ) =
∫

dω

ω

(
1 − 2(n + 1)

(n + 1)2 + (ω/ωc)2

)

× 1 − e−iωt

1 − e−β h̄ω
, (C16)

which implies that the current, but also heat flux and Lorenz
number, can be obtained from the weak-backscattering case
by the mapping

n → −(n + 1), (C17)

which is a result of the duality of the weak backscattering and
tunneling case.

APPENDIX D: (NON)INTERACTING
CORRELATION FUNCTION

1. Free fermionic correlation function

Equation (25) can be manipulated, by rewriting the Bose
function as a geometric series, respecting the sign of ω, which
gives

− ln C+(t ) = 2π

e2

∫
dω

ω

1 − e−iωt

1 − e−β h̄ω

=
∫ ∞

0

dω

ω
(1 − e−iωt )e− aω

vF

+
∞∑

n=1

∫ ∞

0

dω

ω
[2 − 2 cos(ωt )]e−β h̄ωn

= ln

(
ivFt + a

a

)
+

∞∑
n=1

ln

(
1 + t2

n2β2±h̄2

)

= ln

[(
ivFt + a

a

) ∞∏
n=1

(
1 + t2

n2β2h̄2

)]

= ln

[(
ivFt + a

a

)
h̄β

πt
sinh

(
πt

β h̄

)]
, (D1)

where we introduced the real-space UV cutoff given by a−1,
which gives the correlation function

〈ψ†
+(t )ψ+(t ′)〉 = − i

2πvF

π

h̄β

eiμ+(t−t ′ )

sinh
[

π
β h̄ (t − t ′ − iη)

] ,

(D2)
where the shift of the pole is chosen such that we obtain the
correct Fermi distribution function if the expression is Fourier
transformed, and especially in the zero-temperature limit β →
∞ we find

〈ψ†
+(t )ψ+(t ′)〉 = − i

2πvF

eiμ+(t−t ′ )

t − t ′ − iη
. (D3)

The correlation function of the conjugated term can be found
according to Eqs. (23) and (24).

2. Interacting case

We would like to find the correlation function respecting
the energy following separation of energy scales kBT, h̄t−1 �
h̄ωc � h̄vF a−1, where the time t is supposed to be far from
the UV regime; i.e., we consider a long-time limit. This gives

− ln C−(t ) =
∫

dω

ω

(
1 + 2n

n2 + (ω/ωc)2

)
1 − e−iωt

1 − e−β h̄ω

= − ln C+(t ) +
∫ vF

a

1
it

dω

ω

2n

n2 + (ω/ωc)2

+ 2

n
lim

t→∞

∫ vF
a

0

dω

ω
(1 − e−iωt ) − ln

(
i
vF

a
t
)
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+ 2

n

∞∑
n=1

∫ ∞

0

dω

ω
[2 − 2 cos(ωt )]e−β h̄ωn

= − ln C+(t ) + 2

n

{
ln (inωct ) + γEM

+ ln

[
h̄β

πt
sinh

(
πt

β h̄

)]}
, (D4)

where γEM ≈ 0.577 . . . is the Euler-Mascheroni constant.
First note that the integral can be split into two parts: the free
fermionic part and one part that contains the interaction. From
now on we only consider the correction. We split the integral
into two parts as before. For the temperature-independent part,
we cut the integral at ω → 1

it , since the exponential function
is fast oscillating for large t . Since the integral is in principle
convergent for small frequencies, we have to take into account
the possibility to find a constant term that does not vanish
in the long-time limit. To do this we also cut the integral
at high frequencies only, subtract the logarithmic divergence,
which is already accounted for in the long-time limit, and take
t → ∞ in what remains. This gives an additional constant
factor. The upper limit is given by the UV cutoff. For the
temperature-dependent part of the integral, we set ωc → ∞,
since the charging energy is much larger than the energy scale
set by temperature and hence

〈ψ†
−(t )ψ−(t ′)〉 = − i

2πvF

π

h̄β

eiμ−(t−t ′ )

sinh
[

π
β h̄ (t − t ′ − iη)

]
︸ ︷︷ ︸

free fermionic

×
(

π

inh̄βωceγEM

1

sinh
[

π
β h̄ (t − t ′ − iη)

]
) 2

n

,

(D5)

and for β → ∞

〈ψ†
−(t )ψ−(t ′)〉 = − i

2πvF

eiμ−(t−t ′ )

t − t ′ − iη

×
(

1

inωceγEM

1

t − t ′ − iη

) 2
n

. (D6)

Note that the Euler constant appears only due to how the
integral has been regularized. In this case we choose to cut off
the integral. Regularization with an exponential decay does
not produce this constant as is shown for the free fermionic
correlation function, but in any case it remains unphysical
and should contribute to the normalization of the correlation
function.

APPENDIX E: AVERAGE CURRENT AND AVERAGE
HEAT FLUX

1. Average current

The average current is given by Eq. (21), where the corre-
lation functions are given by Eqs. (26) and (27), respectively.

This yields the following integral,

I = eγ 2

h̄2

∫ ∞

−∞
dt (〈ψ+(t )ψ†

+(0)〉〈ψ†
−(t )ψ−(0)〉

− 〈ψ†
+(0)ψ+(t )〉〈ψ−(0)ψ†

−(t )〉). (E1)

At zero temperature, we note that the operator ψ† applied
to the ground state creates an electron-like excitation above
the Fermi level (with the positive energy), while the operator
ψ creates a hole-like one below Fermi level (with the negative
energy). One consequence of this is that all singularities in the
first term are shifted to the upper half plane of the complex
variable t , whereas they are shifted to the lower half plane
in the second term. This means only one term contributes
depending on the sign of the bias, i.e., depending on whether
we close the contour in the upper and lower half plane. At
finite temperatures we also have occupied states above the
Fermi level, due to thermal activation processes. We thus have
to take into account both terms simultaneously,

I = −
(

πe−γEM

h̄βωcn

) 2
n eγ 2

4π h̄3βv2
F

∫ ∞

−∞
dt ei eV β

π
t

×
∑

σ=±1

σ[ − iσ sinh
(
t + iσ πη

h̄β

)]2+ 2
n

, (E2)

where we shift the contour t → t + iσ π
2 and use that sinh(t +

iσ π
2 ) = iσ cosh(t ) and set η → 0. This gives

I = −
(

πe−γEM

h̄βωcn

) 2
n eγ 2

4π h̄3βv2
F

∫ ∞

−∞
dt ei eV β

π
t

×
∑

σ=±1

σe− eV β

2

cosh2+ 2
n (t )

, (E3)

where we can perform the sum over σ , which gives

I =
(

πe−γEM

h̄βωcn

) 2
n eγ 2

2π h̄3βv2
F

sinh

(
eV β

2

)

×
∫ ∞

−∞
dt ei eV h̄β

π
t 1

cosh2+ 2
n (t )

, (E4)

where the last integral can be evaluated by taking t → ln(z),
and express the result in terms of Gamma functions. We find

I = eγ 2

2π h̄3βv2
F

(
πe−γEM

h̄βωcn

) 2
n

sinh

(
eV β

2

)

× 2
2+n

n �
(
1 + 1

n − ieV β h̄
2π

)
�

(
1 + 1

n + ieV β h̄
2π

)
�

(
2 + 2

n

) , (E5)

which gives the linear conductance

Gn = e2

2π h̄

γ 2

h̄2v2
F

(
πe−γEM

h̄βωcn

) 2
n
√

π�
(
1 + 1

n

)
2�

(
3
2 + 1

n

) , (E6)

which reproduces the free fermionic result

G∞ = e2

2π h̄

γ 2

h̄2v2
F

. (E7)
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2. Average heat flux

The average heat flux is given by a similar expression,

J = −iγ 2

h̄

∫ ∞

−∞
dt〈ψ̇†

+(0)ψ+(t )〉〈ψ−(0)ψ†
−(t )〉 − 〈ψ+(t )ψ̇†

+(0)〉〈ψ†
−(t )ψ−(0)

〉
, (E8)

in which the correlation functions depend on different temperatures and ψ̇ (t ) = limt ′→t ∂t ′ψ (t ′). For equal temperatures the
expression vanishes as expected from the second law of thermodynamics. We assume the temperature difference is small and
expand in small δT , which gives the following heat flux,

J = − i

16n

kBδT

β h̄

(
πe−γEM

h̄βωcn

) 2
n γ 2

h̄2v2
F

∫ ∞

−∞
dt

∑
σ=±1

(σ i)
2
n

2t
[
1 − n + cosh

(
2t + 2π iση

β h̄

)] − (2 − n) sinh
(
2t + 2π iση

β h̄

)
σ sinh4

(
t + π iση

β h̄

)
sinh

2
n
(
t + π iση

β h̄

) , (E9)

where we again shift the poles up and down similarly to before and take η → 0, which gives

Jn = 1

8n

πkBδT

β h̄

(
πe−γEM

h̄βωcn

) 2
n γ 2

h̄2v2
F

∫ ∞

−∞
dt

1 − n − cosh(2t )

cosh4+ 2
n (t )

= πkBδT

β h̄

(
πe−γEM

h̄βωcn

) 2
n γ 2

h̄2v2
F

4
1
n

[
(n − 1)�

(
2 + 1

n

)2 − �
(
1 + 1

n

)
�

(
3 + 1

n

)]
n�

(
4 + 2

n

) , (E10)

which can be evaluated as before by the transformation t → ln(z). Especially the noninteracting case gives

J∞ = πkBδT

6β h̄

γ 2

h̄2v2
F

. (E11)

The Lorenz number for a specific number of channels n is given by

Ln = JnkBβ

δT Gn
=

[
(n − 1)�

(
2 + 1

n

)2 − �
(
1 + 1

n

)
�

(
3 + 1

n

)]
�

(
3
2 + 1

n

)
n�

(
4 + 2

n

)
�

(
1 + 1

n

) 22+ 2
n π

3
2 k2

B

e2
= 2 + n

2 + 3n

π2k2
B

e2
= 3

2 + n

2 + 3n
L∞. (E12)
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