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An uncertainty in studying twisted bilayer graphene (TBG) is the minimum-energy geometry, which strongly
affects the electronic structure. The minimum-energy geometry is determined by the potential-energy surface,
which is dominated by van der Waals (vdW) interactions. In this paper, large-scale diffusion quantum Monte
Carlo (QMC) simulations are performed to evaluate the energy of bilayer graphene at various interlayer distances
for four stacking registries. An accurate registry-dependent potential is fit to the QMC data and is used to describe
interlayer interactions in the geometry of near-magic-angle TBG. The band structure for the optimized geometry
is evaluated using the accurate local-environment tight-binding model. We find that compared to QMC, DFT-
based vdW interactions can result in errors in the corrugation magnitude by a factor of 2 or more near the magic
angle. The error in corrugation then propagates to the flat bands in twisted bilayer graphene, where the error in
corrugation can affect the bandwidth by about 30% and can change the nature and degeneracy of the flat bands.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) exhibits a multitude of
correlated electronic phases and has emerged as a platform for
studying correlated electron physics [1-9]. These correlation-
driven phases are attributed to flattening of the band structure
near the Fermi level due to the superlattice interaction in moiré
patterns [10—15]. However, a complete model Hamiltonian for
these systems remains unknown. An important piece of the
puzzle of predicting flat bands is the van der Waals (vdW)
interactions, which lead to symmetry breaking, corrugation,
and other distortions in the layers. The lattice reconstruction
in the moiré superlattices in turn significantly affects the
electronic behavior of this system [16-22]. Therefore, the
interplay between lattice corrugation and electronic structure
provides strong impetus to accurately model vdW contribu-
tions in TBG.

Evaluating vdW interactions, however, is a challenging
task for two reasons. First, this type of interaction results from
long-range electron correlations, which means that local or
semilocal exchange-correlation functionals from density func-
tional theory (DFT) cannot describe them [23-25]. Although
a large set of computational methods has been developed in
the DFT regime to account for the long-range interactions
[26-28], they are empirical in nature. Within various iterations
of the so-called DFT-D scheme, which adds the dispersion
corrections to the standard Kohn—Sham DFT energy, the es-
timated binding energy errors can differ by up to 250% [29]
in bilayer graphene. Thus, the large uncertainty in this set of
techniques warrants a more accurate first-principles approach.
The second reason for the difficulty is that accurate treatment
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of vdW interactions becomes computationally intractable for
a large system, such as small-angle TBG, which consists
of ~10* atoms. A systematic potential training approach is
needed to model lattice and electronic degrees of freedom for
vdW systems, while maintaining first-principles accuracy.

Diffusion quantum Monte Carlo (QMC) has been shown to
closely reproduce experimental values for vdW materials due
to explicit treatment of electron interactions [30-33]. Specif-
ically, in AB-stacked bilayer graphene, the binding-energy
curve from QMC is able to predict the out-of-plane phonon
frequency and relaxed interlayer spacing in agreement with
available experimental results [29], which shows that QMC
is a promising technique for investigating bilayer graphene.
The interlayer-energy curve from QMC data for this system
is available for only a single registry: AB-stacked bilayer
graphene. To fit a registry-dependent potential, multiple reg-
istries are needed. Therefore, more QMC data is needed to
accurately parametrize the potential-energy surface of the en-
tire moiré superlattice.

In this paper, we use large-scale QMC simulations to
compute a reference quality Born—Oppenheimer ground-state
energy for bilayer graphene as a function of the displacement
for four stacking registries, which allows for an accurate
assessment of the stacking-fault energy. To make this high-
quality potential usable for large-scale molecular dynamics
calculation, we fit the QMC results to an interatomic potential.
We find that the QMC data is closer to the random-phase
approximation (RPA) [34] and a previous atomic potential
parametrization [35] than to DFT with dispersion corrections.
The data is well fit by the Kolmogorov—Crespi (KC) potential
model [36], whose refined parameters for the KC potential

©2023 American Physical Society
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FIG. 1. Workflow for training the KC potential and calculating the band structure. (a) First, the QMC energy for bilayer graphene is
calculated at various interlayer distances for four stacking registries. Stacking registries are labeled according to the rigid translation distance
s of the top graphene layer along the armchair direction in units of v/3a, where a = 2.46 A is the in-plane lattice constant. (b) In the second
step, the KC potential is fit to the QMC data. The error bars represent the single o statistical uncertainties associated with the QMC results,
which are explained in detail in the Appendix. (c) Next, using the fitted KC interlayer interaction, the TBG structure is relaxed. (d) Lastly, the

band structure is computed on the minimum-energy structure.

are made available in the Supplementary Information in
LAMMPS [37,38] format. We then assess the importance
of an accurate vdW energy calculation by investigating the
effect of corrugation computed by QMC, DFT-D2 [26,27],
DFT-D3 [28], and Ref. [35] (labeled as “KC-Ouyang”). For
each relaxed structure from different parametrizations of the
KC potential, the band structure is evaluated using the accu-
rate local-environment tight-binding (LETB) model [20]. The
DFT-D2 and DFT-D3 vdW interactions result in large errors in
the band structure due to the poor estimation of the structural
corrugation. We show that the difference in corrugation due
to QMC evaluation of the vdW interaction leads to significant
changes in the electronic band structure.

II. METHOD

The procedure for parametrizing the interlayer interaction
of TBG and evaluating the sensitivity of the minimum-energy
structure and electronic structure is outlined as follows.

(1) First, the energy of rigid bilayer graphene as a function
of the interlayer distance, is sampled using QMC for four
stacking registries, defined in Fig. 1.

(2) The sampled QMC energy data are used to fit the KC
potential.

(3) Using the fitted KC potential, the structure of TBG is
optimized by minimizing the total energy.

(4) The electronic structure is calculated on the relaxed
structure of TBG using the LETB model [20].

The steps are illustrated in Fig. 1 and are discussed in
further details in the following sections.

A. QMC calculations

We consider four stacking registries of bilayer graphene,
which are constructed by performing rigid translations of the
top layer of AB-stacked bilayer graphene along the armchair
direction by different distances. We label these registries ac-
cording to the translation distances s as listed in Fig. 1. The
sliding parameter s is defined such that starting from the AB
structure (s = 0), the translation of s = 1 brings the structure
back to AB. The nomenclature of these stacking orders is

described in Ref. [34], except for the “Mid” stacking type,
which is additionally defined here to be s = 1/2. For each of
the four registries, we perform QMC to sample the energy at
11 interlayer distances, ranging from d = 3 A to 7A, for a
total of 44 energy data points.

In the fixed-node QMC scheme as implemented in the
QMCPACK software package [39], the ground-state wave
function is projected out of the Slater—Jastrow trial wave func-
tion of the form

W(R) = Det[@] (r])Det[¢; (r})]exp(J), (1

where R = {ry, ..., ry} is the collection of electron coordi-
nates of the M-electron system, ¢ is the Kohn—Sham orbital, i
and j denote electron indices, 1 and | indicate spins, and J is
the Jastrow correlation factor as defined in Ref. [40].

The set of Kohn—Sham orbitals is produced by the Quan-
tum ESPRESSO plane-wave DFT code [41-43], using 200
Ry kinetic energy cutoff and the k-point mesh of 20 x 20 x
1. The core electrons are removed using Dirac—Fock pseu-
dopotentials described by Refs. [44,45]. We verify that the
orbitals generated by the Perdew—Burke—Ernzerhof approxi-
mation [46] and two vdW functionals, namely DFT-D2 [26]
and DFT-D3 [28], result in the same QMC energy within
error bars [47]. The QMC energy is twist averaged [48]
over 4 x 4 k-point mesh. The finite-size errors are eliminated
by extrapolating the twist-averaged QMC energies of 3 x 3,
4 x4,5 x5, and 6 x 6 bilayer graphene supercells to the
thermodynamic limit. The full analysis of the QMC errors is
provided in the Appendix.

B. Potential parametrization

The stacking-dependent KC potential [36] is fit using least
squares to the 44 calculated QMC data points to obtain a
smooth curve that can describe the energy at any registry and
interlayer distance. Since the KC potential does not provide
a good fit across the entire range of interlayer distances, we
weight the low-energy configurations higher than the large-
distance configurations. In this paper, we assume that this is
enough to estimate the interlayer interaction in the twisted
bilayer case; essentially we are assuming that the interaction
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energy only depends on the local stacking. We thus expect
the potential to be most accurate for small twist angles, where
the local alignment of the layers varies slowly. The detailed
procedure to select the most suitable model for a low-energy
structure is described in the Appendix.

The KC potential model fit to QMC data is labeled as
KC-QMC. We perform a similar procedure for DFT-D2 [26]
and DFT-D3 [28] but with many more samples of interlayer
distances (0.01 A apart) as these vdW correction schemes are
not computationally expensive. The KC potentials fitted to
DFT-D2 and DFT-D3 are labeled as KC-DFT-D2 and KC-
DFT-D3 respectively in order to make distinctions between
the computed training data and the fitted curves.

C. Stacking-fault energy calculation

The stacking-fault energy (SFE) is defined as the difference
between the energy of a displaced configuration (s # 0) and
the energy of the most stable configuration (s = 0), which
is the AB-stacked bilayer graphene in this case. Given a KC
potential, we find the minimum point of the energy curve for
each registry to obtain the relaxed interlayer spacing and its
corresponding minimum energy. We plot the SFE as a func-
tion of registry s along the armchair direction for our results
from KC-QMC, KC-DFT-D2, and KC-DFT-D3 in Fig. 2(a).
The KC parameters for KC-QMC (Table II), KC-DFT-D2,
and KC-DFT-D3 are obtained by the fitting procedure as
described in the Appendix, while the KC parameters for
KC-Ouyang are taken from Ref. [35]. The data points for
KC-QMC, KC-Ouyang, KC-DFT-D2, and KC-DFT-D3 are
obtained from a quadratic fit within the range of 0.05 A from
the minimum of the potential-energy surface for each stacking
registry. The data points for RPA are taken directly from
Ref. [34].

We fit the SFE as a function of registry using the formula
[34]

F(s) =co + ci1[2cos(2ms) + cos(4ms)]
+ c3[2 cos(6s) + 1]
+ c3[2 cos(4ms) + cos(8ms)]

+V3¢i[=2 sin(27s) + sin(47s)]
— VBe3[=2sin(47s) + sin(87s)], Q)

where F(s) is the SFE, s is the registry in the armchair direc-
tion in units of ~/3a, and a is the in-plane lattice constant. We
also fit the interlayer distance dy,;, for a given registry using
the same functional form as Eq. (2). The fitting constants c,
c1, ¢, ¢3 are reported in Table VI and VIIL.

D. Structural relaxation

The relaxed geometries of TBG are obtained using the con-
jugate gradient method with a stopping tolerance of 10~ eV
as implemented in the LAMMPS molecular dynamics
program. The intralayer interaction is given by the reac-
tive empirical bond order potential [49], while the interlayer
interaction is described by one of the four KC potentials
that we have parametrized, namely KC-QMC, KC-Ouyang,
KC-DFT-D2, and KC-DFT-D3. The initial structures are de-
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FIG. 2. (a) Stacking-fault energy given by different potential-
energy surfaces. Data points of KC-QMC, KC-Ouyang, KC-DFT-
D2, and KC-DFT-D3 are obtained from quadratic fits in the range
0.05 A around the potential-energy surface minimum. The RPA data
points are obtained from Ref. [34]. Lines are fits of Eq. (2) to the data
points. QMC errors from the bootstrapping technique are represented
by the light blue regions around the QMC fit. (b) Minimum interlayer
spacings. Data points are obtained from the same procedure as the
stacking-fault energy.

fined by two rigid sheets of graphene at 3.4 A interlayer
distance. The top layer is rotated at a twist angle 6 with
respect to the bottom layer. For this paper, we perform relax-
ation calculations for the commensurate twist angles of 6 =
0.84°,0.93°,0.99°, 1.05°, 1.08°, and 1.16°. Despite the large
number of atoms in a simulation cell, which is on the order
of 10%, the geometry optimizations remain computationally
tractable due to the low cost of the classical potentials.

E. Local-environment tight-binding model

To determine the band structure of the relaxed geometry,
the local-environment tight-binding model is employed due
to its high accuracy within twisted bilayer graphene [20].
This model accounts for the detailed local environment of the
nearby atoms and has the following form:

Hiers = Y "R, R, {Rj)clcjo + He,  (3)

ijo
where o denotes the spin index, R; and R; represent the
location of atoms i and j, {R;;} is a set of atomic positions
in the vicinity of atoms i and j. The functional form of the
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FIG. 3. Corrugation of twisted bilayer graphene at 0.99° from various sources and their respective flat bands. [(a)—(d)] Corrugation in
angle twisted bilayer graphene geometry, relaxed using KC potentials with parameter sets from difference sources: (a) QMC, (b) Ref. [35],
(c) DFT-D2, and (d) DFT-D3. Corrugation §z is defined as the deviation of the z coordinate of a carbon atom from the average of the smallest
and largest z coordinates within the layer. [(e)—(h)] Flat bands near the Fermi level for four twisted bilayer structures obtained from different

potentials as described in (a)—(d).

hopping parameters is classified into intralayer and in-
terlayer contributions based on the z projection of the distance
R; — R;. The detailed description of the functional form of
thTB is provided in Ref. [20].

LETB
t; i

III. RESULTS

The results of our calculations are discussed using QMC
as the reference. This decision is based on the ability to repro-
duce the experimental values of relaxed interlayer spacing in
the AB stacking and out-of-plane zone-center optical phonon
frequency in bilayer graphene [29].

A. Stacking-fault energy

Figure 2(a) shows the SFE as a function of registry. We
find a close agreement between KC-QMC, KC-Ouyang, and
RPA. Let us consider the AA stacking, shown by the vertical
dotted line at the registry of s = 2/3, where the differences
are the most notable. The difference between KC-QMC and
RPA is 0.2 meV in the stacking-fault energy. We consider the
agreement between KC-QMC and RPA to be an indication
that both might be accurate in this case. A similar agreement
between QMC and RPA was found for water on boron nitride
[50]. The difference between KC-QMC and KC-Ouyang is
approximately 0.3 meV in the stacking-fault energy. While the
agreement might appear to be fortuitous, a similar agreement
between QMC and the so-called DFT-MBD [51], on which
the KC-Ouyang potential was trained, was found in DNA-
ellipticine molecules [31].

Relative to the consensus SFE of KC-QMC, RPA, and
KC-Ouyang, KC-DFT-D2 overestimates SFE by 1.7 meV for
the AA stacking compared to KC-QMC, while KC-DFT-D3
underestimates the SFE by 1.5 meV. This result agrees with
previous comparisons to RPA only [34], so our results in-
crease confidence in the RPA results.

Figure 2(b) shows the relaxed interlayer distance dp, as a
function of registry. Similar to the case of SFE in Fig. 2(a),
there is an agreement between KC-QMC, KC-Ouyang, and
RPA. In this case, however, both RPA and KC-Ouyang under-
estimate the relaxed interlayer distance for the AA stacking by
a small amount of 0.03 and 0.04 A, respectively. Meanwhile,
the two dispersion-corrected DFT methods show the opposite
trend of SFE, as shown by the fact that KC-DFT-D2 has the
smallest relaxed interlayer distances overall. KC-DFT-D2 un-
derestimates the relaxed interlayer distance by 0.12 A, while
KC-DFT-D3 overestimates it by 0.07 A. This result is consis-
tent with the result of SFE shown in Fig. 2(a) in the sense that
a smaller interaction leads to larger interlayer distance, which
in turn results in smaller SFE.

B. Effects of the more accurate interlayer potential
on the minimum-energy structure of TBG

The corrugation §z, defined as the deviation of the z coor-
dinate of a carbon atom from the average of the smallest and
largest z coordinates within the layer, of both layers for each
interlayer potential is visualized in Figs. 3(a)-3(d). In the AA
regions, the relaxed structures manifest an upward bulge in
the top layer and a downward bulge in the bottom layer, which
are denoted by the most prominent red and blue regions in the
visualization. Around these AA peaks, the sixfold symmetric
structure is observed. The formation of small-amplitude struc-
ture around the AA regions results in the threefold symmetry
around the AB/BA regions, which can be identified by the
centroid of three adjacent AA nodes as labeled in Fig. 3(a).
This result is in qualitative agreement with previous studies
of breathing mode structure [17,21,52]. The heights of these
peaks depend on the potential being used to describe the
interlayer interactions. In the case of KC-QMC [Fig. 3(a)], the
maximum out-of-plane corrugation is ézkc.omc = 0.075 A
The maximum corrugation of KC-Ouyang is §zkc-ouyang =
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TABLE 1. Flat bandwidths in meV of the structures from differ-
ent potentials at various commensurate twist angles.

Potential 0.84° 093> 099° 1.05° 1.08° 1.16°

KC-QMC 45.680 18.627 6.294 16.098 26.350 49.134
KC-Ouyang 44.998 18.075 5.848 16.901 27.108 49.933
KC-DFT-D2 44.218 16.938 5.880 18.974 29.404 52.534
KC-DFT-D3 42936 17.744 4.740 16.352 26.175 48.243

0.071 A, or 5% smaller than dzkc-qmc- This similarity is ex-
pected from the agreement in SFE (Fig. 2). For KC-DFT-D2,
the chiral relaxations are also observed between layers, where
the top layer has the opposite chirality to the bottom layer,
in agreement with KC-QMC and KC-Ouyang. However, the
difference in maximum out-of-plane corrugation from KC-
QMC is more pronounced as dzkc.prrp2 is 0.112 A, which
is 50% larger than dzkc.qmc. A small difference from KC-
QMC is also observed in around AA nodes, in which an
inner sixfold symmetric structure is observed, while in the
case of KC-QMC and KC-Ouyang, the AA regions have
smooth round-shaped bulges. On the other hand, the struc-
ture from KC-DFT-D3 has much smaller overall corrugation,
with the maximum of only §zxc.prrps = 0.045 A. As a re-
sult, the chiral symmetry between both layers and sixfold
symmetric structure around AA nodes are not observed in
KC-DFT-D3.

C. Effects of the more accurate minimum-energy structure
on the band structure of TBG

To investigate the effects of the more accurate minimum-
energy structure on the band structure, the LETB model is
employed [20]. In Figs. 3(e)-3(h), the LETB band structures
are plotted for four twisted bilayer structures at 0.99°, relaxed
using KC parameters from four different sources, namely
KC-QMC, KC-Ouyang, KC-DFT-D2, and KC-DFT-D3. The
band structures from KC-QMC, KC-Ouyang, and KC-DFT-
D3 show similar features, in which the four bands exhibit two
degenerate energy states at the gamma point, as reported in
previous studies [20,53,54]. The band structure from a KC-
DFT-D2 geometry shows a slightly different feature from the
other three structures, where in this case, all the four bands
seem to form a single degenerate energy state at the gamma
point.

The flat bandwidths, defined as the difference between the
maximum energy and the minimum energy of the flat bands,
for different potentials and twist angles are reported in Table 1.
At the twist angle of 0.99°, the bandwidth for KC-QMC is
7% larger than KC-Ouyang and KC-DFT-D2, and 33% larger
than KC-DFT-D3. In Fig. 4(a), the flat bandwidth is plotted as
a function of the twist angle. Reducing the twist angle from
1.16° to 0.99°, all four potentials show a similar downward
trend, where the inflection points occurs, which defines the
first magic twist angle. The identification of the magic angle
at 0.99° agrees with the previous result [20].

The electron and hole gaps are defined by the separation
of the flat bands from the remote bands, and have been noted
[6,55] to be particularly sensitive to the corrugation. For our
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FIG. 4. (a) Flat bandwidth, (b) electron band gap, and (c) hole
band gap as a function of twist angle. The four sets of band structure
are computed using the same LETB model [20] but with geometries
relaxed under different interlayer KC potentials: KC-QMC, KC-
Ouyang, KC-DFT-D2, and KC-DFT-D3.

geometries, these gaps are presented in Figs. 4(b) and 4(c).
The treatment of the vdW interaction can change the estimated
hole and electron gaps by a significant amount. For example,
near the magic angle of 0.99°, the gaps can vary by almost a
factor of two. Corrugation tends to increase the electron and
hole gaps, so the underestimation of corrugation in DFT-D3
results in gaps that are too small, while the reverse in DFT-D2
results in gaps that are too large.

IV. CONCLUSIONS

As has been noted previously in the literature, the careful
treatment of the van der Waals interaction appears to be very
important to obtain accurate corrugation in twisted bilayer
graphene [19,34], and small changes in the corrugation can
affect the electronic structure significantly [16,21]. In this
paper, we provided a state-of-the-art benchmark of the van
der Waals interaction in bilayer graphene and found that while
a commonly used atomic potential [35] is fairly accurate,
DFT-based methods may not improve the description, and in
fact may lead to worse results. Models of the electronic struc-
ture, which depend on van Hove singularities [56] and other
features of the flat bands should take this into consideration.
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For the accuracy of the interlayer interaction in graphene,
we found that the commonly used Kolmogorov—Crespi [36]
model as parametrized in Ref. [35] was surprisingly accurate
compared to QMC results, as well as the RPA estimation.
On the other hand, commonly used corrections to DFT, the
DFT-D2 and DFT-D3 functionals, resulted in large errors in
the interlayer potential and stacking-fault energy, which leads
to an over (DFT-D2) or under (DFT-D3) estimation of the
degree of corrugation.

We found that the electronic band structure varied signif-
icantly depending on the treatment of the corrugation. While
structures relaxed from different potentials result in the same
prediction of the magic twist angle at 0.99°, the error in
the electronic structure due to using DFT geometries near
the magic angle (here found to be roughly 0.99°) results in
rearrangements of bands up to around 50% (3 meV) in the
two lower flat bands for the DFT-D2 structure. While the
separation of the flat bands from the other bands as quantified
by electron and hole gaps shows the same inflection point at
0.99°, at the magic twist angle, the relaxed structures from
DFT-D2 and DFT-D3 result in a similar error of roughly
10 meV, which is an error of about 50%.

This study has focused on freestanding bilayer graphene
and has employed fixed-node QMC as a reference method due
to its established reliability. We believe this technique is the
most accurate available that can treat the required system size.
Comparison between QMC and less accurate approximation
techniques serves as a benchmark for testing and improving
numerical schemes, and it would be interesting to see whether
other high-accuracy first-principles techniques obtain similar
results. We only considered freestanding bilayer graphene in
this study, while most experiments are performed on a sub-
strate and encapsulated with materials such as boron nitride.
It would be a fruitful future direction to use this model to
explore the effects of encapsulation on the structure of bilayer
graphene.

Alongside this paper, we provide the interlayer energy of
bilayer graphene from QMC and a potential fit to the QMC
data suitable for use in LAMMPS, which is available online
[57]. This data is suitable for use to perform atomic scale
simulations of bilayer graphene, and has the level of accuracy
comparable to the underlying quantum Monte Carlo calcula-
tions in the binding region.
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FIG. 5. QMC energy vs interlayer distance for AB-stacked bi-
layer graphene with the supercell size of N = 4 x 4, where N is the
number of primitive cells in a simulation cell. Energies are referenced
to the minimum-energy point at 3.5 A. The energies for the time step
of 0.02Ha™! are roughly 0.01 meV away from the energies for the
time step of 0.01 Ha™!.

APPENDIX

1. Errors in diffusion quantum Monte Carlo data

Figure 5 shows that the results for the time step of
0.02Ha~! have roughly 0.01 to 0.02 meV errors from the
energies for the time step of 0.01 Ha™!. Since the discrepancy
is small at small interlayer distances, we consider the time
step of 0.02Ha~! a good approximation for describing the
potential energy near equilibrium distances.

The diffusion quantum Monte Carlo (QMC) calculations
are performed using a constant 4 x 4 twist grid on each of the

AB,d=335A
—154.60
154.65 .\'
gt AN
45 [}
=
2 —154.70 +
>
20 o,
L
E —154.75 \
—154.80

0.00 0.02 0.04 0.06 0.08
N—5/4

FIG. 6. QMC energy vs N~>/* for AB-stacked bilayer graphene
at 3.35 A interlayer distance, where N is the number of primitive cells
in a simulation cell. The statistical error bars from QMC range from
0.2 to 0.8 meV /atom, which are much smaller than the y-axis scale
and are therefore not displayed in the figure. The line is fitted through
the energy data points using Eq. (A1) for the purpose of extrapolating
the energy to the thermodynamic limit.
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TABLE II. List of KC parameter values for the carbon-carbon interaction. The energy within the parentheses after KC-QMC indicate the
value of kg7, which is used to tune the fitting weights described by Eq. (AS). The model KC-QMC (4 meV) are used to describe interlayer
interactions to obtain relaxed structures shown in Figs. 3(a)-3(d). The value of R, is fixed to 16 A.

Potential 20 (A) Cy (meV) C, (meV) C, (meV) C (meV) §(A) LAY A (meV)
KC-QMC (2 meV) 3.44323 14.33525 12.56000 0.41916 7.40186 0.65357 3.25395 13.91535
KC-QMC (3 meV) 3.40756 16.29563 13.09544 0.01848 6.65729 0.68934 3.28558 13.74788
KC-QMC (4 meV) 3.37942 18.18467 13.39421 0.00356 6.07494 0.71935 3.29308 13.90678
KC-QMC (5 meV) 3.37042 19.26299 12.89983 0.00524 5.07182 0.75587 3.29479 13.84456
KC-QMC (6 meV) 3.35062 21.22680 13.17347 0.20199 4.18306 0.78726 3.29340 14.17078
KC-QMC (7 meV) 3.35104 22.97568 12.37219 0.31184 1.46736 0.86239 3.28298 14.03609
KC-QMC (8 meV) 3.33406 25.26089 14.07200 2.20093 0.01279 0.84472 3.27746 14.38600
KC-QMC (9 meV) 3.34121 24.58252 13.29192 1.28582 0.00060 0.86790 3.27689 14.15974
KC-QMC (10 meV) 3.30334 27.74635 15.07551 1.53471 0.00001 0.86547 3.27683 15.12378
KC-QMC (11 meV) 3.31271 26.85873 15.25734 3.13552 0.00087 0.82689 3.27726 14.83406
KC-QMC (12 meV) 3.31412 26.68834 15.26599 3.70204 0.00005 0.81525 3.27729 14.77050
KC-QMC (13 meV) 3.33134 25.18924 14.44755 421503 0.00008 0.80145 3.27754 14.29565
KC-QMC (14 meV) 3.33377 24.96005 14.28375 475430 0.00000 0.79129 3.27772 14.21445
KC-QMC (15 meV) 3.36987 22.14523 12.65076 4.42759 0.00341 0.78733 3.27777 13.31070
KC-QMC (16 meV) 3.37850 21.51294 12.19151 4.82753 0.00005 0.77777 3.27803 13.09407
KC-QMC (17 meV) 3.40957 19.41387 10.93804 4.61657 0.00002 0.77283 3.27814 12.38366
KC-QMC (18 meV) 3.37184 21.95300 12.29456 5.48004 0.00011 0.76864 3.27827 13.22834
KC-QMC (19 meV) 3.38030 21.33727 11.89459 5.50172 0.00005 0.76582 3.27834 13.02214
KC-QMC (20 meV) 3.38045 21.31321 11.82651 5.65686 0.00002 0.76330 3.27840 13.01085
KC-QMC (unweighted) 3.37006 21.78334 10.46939 8.86496 0.00001 0.72395 3.28315 13.09016
KC-Ouyang [35] 3.41608 20.02158 10.90551 4.27564 0.01001 0.84471 2.93606 14.31326

supercells N =3 x 3,4 x 4,5 x 5,and 6 x 6, where N is the number of primitive cells in a simulation cell. The error bars
number of unit cells in a simulation cell. The grid of twists of the extrapolated energies are calculated using the bootstrap-
is offset from the I point by 0.076923 in reciprocal lattice =~ ping technique. The linear model fits our energy data well, as
units in order to avoid the Dirac point, which would otherwise shown in Fig. 6 for AB-stacked bilayer graphene with 3.35 A
result in slower convergence. The largest cell size results in an interlayer distance. The time step is chosen to be 0.02 Ha™".
equivalent 24 x 24 k mesh, which we confirmed is converged

in DFT. The energy is extrapolated to the infinite system size

by fitting the following linear equation [58]: 2. Fitting procedure
E(N)=E NS4, Al We sampled 44 energy data points using QMC and fit
@) S (A them to the KC potential [36]. The KC model is a registry-
where E(00) is a fitting parameter, which represents the en- dependent potential designed to improve on the classical

ergy extrapolated to the thermodynamic limit, and N is the  potential by taking into account the anisotropy of the w

AB b) SP Mid d) AA

—154.59 (a) /4 l ( ) —d <C> /1/‘ ‘ ( ) = 0.36 (e) pg»u
. /e s 7 /./ ’ s 7 0.34 49 o
g = .'.
2 —154.60 4 1 .// i 7 1 \ .// E 0.32 1 o
% / / .\ / i -/ 2 0.30 - o
= ¢ 1r L7 o |kl (mev)| Z J

~1546141 ¢ 117 1 . 2 0284 o: /./

h i : 0.26 \5"
i 16 i6 N ‘ 10 20
d (A) d (A) d (A) d (A) kT (meV)

FIG. 7. Potential-energy surface of bilayer graphene at registry (a) AB, (b) SP, (c) Mid, and (d) AA. Data points (black) are calculated using
QMC. Lines are fits using the KC model from Eq. (A2) with the fitting weights controlled by the parameter kg7 as given by Eq. (AS). Red
highlighted regions cover the range of interlayer distances near the equilibrium spacing, chosen to be d € [3.2, 3.8] A. (¢) RMS as a function
of kg T for the data points within the range of interlayer distances d € [3.2, 3.8] A. For the region near the equilibrium spacing, kg7 = 4 meV
minimizes RMS (shown as the dotted vertical line). The KC model associated with this value of kg7 is therefore chosen to represent the QMC
data (labeled as KC-QMC) and is used in the subsequent relaxation calculations of the twisted bilayer graphene.
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TABLE III. Binding energy in meV/atom at different registries.
The chosen KC-QMC model corresponds to KC fitting with no
weights. The error bars from KC-QMC are obtained from the boot-
strap method.

Method AB SP Mid AA
KC-QMC 21.96(9)  21.17(8)  19.52(9)  17.41(9)
KC-Ouyang 24.82 24.11 2228 19.92
KC-DFT-D2 23.99 22.93 20.65 17.82
KC-DFT-D3 19.52 19.02 17.95 16.36
RPA [59] 25

QMC [29] 17.7(9) 11.5(9)

overlap between layers. The full model is given by

1
EXC = 3 Z ZTaP(Vij)Vij,
i j#i
Vij = e T0NC + f(pij) + f )] = A(Zf) ’
Pl = — (X m)’, (A2)

2 _ 2 2
Py =ri; — (X -m;)7,

2 2n
) =e—<ﬂ/‘”2202n<§) ,
n=0

where r;; is the distance vector pointing from atom i to atom
Jj from different layers, ny is the surface normal at atom k, and
p0ij is the transverse distance from atom i to atom j. The taper
function given by

Tap(x;j) = 20x]; — 70x]; + 84x, — 35x7, + 1, (A3)
X = L (A4)
v Rcut '

provides a continuous long-range cutoff, and R is fixed to
16 A throughout all the calculations.
The weighted fit is determined by optimizing the function

Na

X2 = Z w;(El - EIKC)Z,
l

where E; is the computed energy for the /th configuration of
bilayer graphene, EXC is the calculated energy from Eq. (A2),
and Ny is the number of data points, which is 44 for the
QMC method and 268 for DFT-D2 and DFT-D3. The fitting
weight w; depends on the energy and a tunable parameter kg T’
according to the formula

El - Emin
w; = exp —T .
B

Here, E i, is the smallest data point, which in our case is the
equilibrium point of the AB stacking potential-energy surface,
kg is the Boltzmann constant, and T is the temperature, which
serves as a parameter that controls the relative weight of the
low- and high-energy data points.

The weights are introduced so that we can tune how much
the fitting model favors the data points near equilibrium by ad-
justing the value of kgT'. A smaller value of kg7 corresponds

(AS5)

TABLE IV. The minimum interlayer spacing dyy;, in A. The cho-
sen KC-QMC model corresponds to kg7 = 4 meV. The error bars
from KC-QMC are obtained from the bootstrap method.

Method AB SP Mid AA
KC-QMC 3.442(4)  3.460(4)  3.548(5)  3.650(6)
KC-Ouyang  3.395 3.420 3.499 3.611
KC-DFT-D2  3.260 3.290 3.389 3.531
KC-DFT-D3  3.542 3.566 3.626 3.720
RPA [59] 3.39

Exp. [60] 3.48(10)

to a model that highly favors the points near equilibrium,
while giving up the goodness of fit at very small or large
interlayer distances. Thus, the model is selected according
to the goodness of fit in the region of interest, which can
be quantified by the root-mean-square (RMS) error as de-
scribed in the next section. The values of fitting parameters
for different values of kg7 are reported in Table II along with
the KC parameters from Ref. [35] labeled as KC-Ouyang. In
Figs. 7(a)-7(d), the computed QMC energies for four stacking
types are displayed as black data points along with the fitted
curves for three different sets of weights, i.e., kg7 = 2, 4, and
oomeV (unweighted).

We find that while the KC potential fits well to the energy
data from the DFT-D scheme because they both have the func-
tional form of =, the QMC potential energy is not exactly
proportional to ¢, which is why the KC potential struggles to
describe the entire potential-energy surface as shown in Fig. 7.
Modifications to the model might be needed to describe the
potential-energy surface at any interlayer separation range.

3. Choosing the KC parameter set

In order to decide which KC parameter set to use, we
investigate the RMS errors between the QMC data and the
fitting within the region of interest. The RMS errors for the
data within d = 3.2 to 3.8 A as illustrated by the highlighted
regions in Figs. 7(a)-7(d) are plotted as a function of kgT
in Fig. 7(e). This range of interlayer distances is chosen
based upon the fact that the relaxed interlayer distances of
all the methods we explore fall within this range as shown
in Fig. 2(b). Figure 7(e) suggests that the most preferable
model is corresponding to kg7 = 4 meV due to having the
smallest RMS. Therefore, all the subsequent calculations of
relaxed structures in this work are performed using this set of
KC parameters to describe the interlayer interactions. In the

TABLE V. Comparison of key factors that could lead to discrep-
ancy between the QMC results of this study and Ref. [29].

Factor Present paper Reference [29]
Data points 44 5

Fitting potential KC [36] “16-12-8-4” [29]
dmin for AA 3.650(6) A 3.495A [61]
dpin for AB 3.442(4) A 3.384 A [61]
Method to obtain d;, QMC vdW-DF [62—-64]
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TABLE VI. Fitting constants in meV for the stacking-fault en-
ergy as a function of registry as given by Eq. (2). The error bars from
KC-QMC are obtained from the bootstrap method.

TABLE VII. Fitting constants in A for the relaxed interlayer
spacing as a function of registry as given by Eq. (2). The error bars
from KC-QMC are obtained from the bootstrap method.

Method Co 1 ) 3 Method Co 1 c) 3
KC-DFT-D2  2.46701 -0.71409 -0.13147 0.02322 KC-DFT-D2  3.35457 -0.03093 -0.00147 0.00073
KC-Ouyang 1.85743 -0.56041 -0.07521 0.01648 KC-Ouyang 3.47106 —-0.02458 -0.00149 0.00056
KC-QMC 1.815(38)  -0.546(9) -0.098(19)  0.039(8) KC-QMC 3.5171(21)  -0.0245(5) -0.0021(9) 0.0015(4)
RPA [34] 1.74278 -0.49974 -0.09179 0.01101 RPA [34] 3.47805 -0.02632 -0.00363 0.00039
KC-DFT-D3 1.15472 -0.34776 —-0.03980 0.00266 KC-DFT-D3  3.60477 -0.01990 -0.00122 0.00007

case of KC-QMC, the chosen parameters are the third row of
Table II. The minimum interlayer spacing dmin for different
stacking registries and potentials is reported in Table IV.

On the other hand, the binding energy (BE) is defined
as the energy required to separate the two graphene sheets
in equilibrium to the infinite interlayer distance. Therefore,
the BE is a property at a large interlayer distance and is
evaluated using KC parameters that are fitted with no weights
because data points at large interlayer distances now deserve
the same weights as data points near equilibrium. The BEs
for different stacking registries and potentials are reported in
Table III. Our BEs from QMC for AB-stacked and AA-

stacked bilayer graphene are 21.96(9) meV and 17.41(9) meV,
while the BEs for these two stacking configurations are re-
ported to be 17.7(9) and 11.5(9) meV in the previous QMC
study [29], which are slightly smaller than our BE results.
The small discrepancy between the QMC BEs may arise from
various factors, including differences in QMC data points,
fitting functions, and equilibrium spacing dpi, being used to
estimate the BEs between the two studies (Table V). We also
observed that precise optimization of the Jastrow factor is
crucial for obtaining consistent results, with errors similar
to the observed discrepancies when the Jastrow factor is not
optimized extremely carefully.
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