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Gate voltage induced injection and shift currents in AA- and AB-stacked bilayer graphene
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Generating photogalvanic effects in centrosymmetric materials can provide new opportunities for developing
passive photodetectors and energy-harvesting devices. In this work, we investigate the photogalvanic effects in
centrosymmetric two-dimensional materials, AA- and AB-stacked bilayer graphene, by applying an external
gate voltage to break the inversion symmetry. Using a tight-binding model to describe the electronic states, the
injection coefficients for circular photogalvanic effects and shift conductivities for linear photogalvanic effects
are calculated for both materials with light wavelengths ranging from terahertz to visible. We find that gate
voltage induced photogalvanic effects can be very significant for AB-stacked bilayer graphene, generating a
maximal dc current on the order of milliamperes for a 1 µm wide sample illuminated by a light intensity of
0.1 GW/cm2, which is determined by the optical transition around the band gap and van Hove singularity points.
Although such effects in AA-stacked bilayer graphene are about two orders of magnitude smaller than those
in AB-stacked bilayer graphene, the spectrum is interestingly limited in a very narrow photon energy window,
which is associated with the interlayer coupling strength. A detailed analysis of the light polarization dependence
is also performed. The gate voltage and chemical potential can be used to effectively control the photogalvanic
effects.
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I. INTRODUCTION

Photogalvanic effects are nonlinear optical responses that
generate direct currents in homogeneous materials, and such
a passive process is considered a direct and powerful pho-
toelectric conversion method [1–3]. The widely discussed
photogalvanic effects can be induced by one-color injec-
tion current and shift current, which can be excited by light
with one wavelength and are second order nonlinear op-
tical processes occurring in noncentrosymmetric materials,
or two-color coherent current injection, which is excited by
light with two different wavelengths [4–6] and can be third
(for “1+2” process) [7] or fifth (for “2+3” process) [8]
order nonlinear optical processes insensitive to the inver-
sion symmetry of materials. According to the response to
the light polarization, second order photogalvanic effects are
also phenomenologically divided into the circularly polarized
photogalvanic effect and the linearly polarized photogalvanic
effect; the latter is light phase insensitive and can be used
for solar energy harvesting without forming p−n junctions
to surpass the Shockley-Queisser limit [9–11]. One of the
research topics in this field is to find materials with signifi-
cant photogalvanic effects in a specific frequency range, and
several studies have been conducted on various new materials,
including two-dimensional (2D) materials [12–16], Dirac or
Weyl semimetals [1,17,18], ferroelectric materials [19–22],
and so on.
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As the first two-dimensional material, graphene is a poten-
tial candidate for realizing new functionality in optoelectronic
devices because its superior optical and electronic properties
exceed those of many traditional bulk materials. However,
because of its centrosymmetric crystal structure, one-color
injection and shift currents vanish in many types of few-layer
graphene as well as their nanostructures, whereas two-color
coherent control has been well studied in both theories
[7,23–25] and experiments [26,27]. It is still meaningful
to generate one-color injection and shift currents in cen-
trosymmetric graphene based structures in order to utilize its
extraordinary physical properties. The generation of second
order response can be realized by forming an asymmetric
interface or edge [28], applying an external electric field
[29], forming surface curvature [30], considering the spa-
tial variation of the light field [31], and stacking graphene
layers into an asymmetric structure [32]. Wei et al. [12]
studied the gate field induced injection and shift currents
in zigzag graphene nanoribbons and found that the sub-
band and edge states determine the generated currents with
an effective modulation of their amplitudes by the ribbon
width and the static field strength. Xiong et al. [33] inves-
tigated the light polarization dependence of in-plane shift
current in an AB-stacked bilayer graphene (AB-BG) by ap-
plying a gate voltage, and their results clearly illustrated a
sizable photocurrent at a given light frequency; however, nei-
ther the spectra of the shift conductivity nor the injection
current was present. By stacking two layers of monolayer
graphene with a relative rotation to form twisted bilayer
graphene, a large shift current can be produced due to the
huge density of states when the flat band is formed at magic
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FIG. 1. Crystal structures and tight-binding hopping parameters for (a) AA-BG and (b) AB-BG.

angles [15,16,34]. Surprisingly, whether the gate voltage can
generate a photogalvanic effect in AA-stacked bilayer
graphene (AA-BG) is still not clear.

In this paper, we systematically study the spectra of the
injection coefficients and shift conductivities of AA-BG and
AB-BG after applying a gate voltage to break the inversion
symmetry, as well as their dependence on the gate voltage and
chemical potential. Their electronic states are described by
a widely adopted tight-binding model formed by the carbon
2pz orbitals [29,35], and the expressions for the injection
coefficient and shift conductivity are taken from Ref. [36].
After confirming the results from Xiong et al. [33], for AB-BG
we also provide detailed spectra for all tensor components
of injection coefficients and shift conductivities and analyze
the contributions from different optical transitions. A maxi-
mal current on the order of milliamperes can be generated
in AB-BG for a 1 µm wide sample at a light intensity of
0.1 GW/cm2. These details will be helpful in the experimental
design. For comparison, the photogalvanic effects in AA-BG
are also presented with analytic expressions under the linear
dispersion approximation, and the response can occur only
in a very narrow photon energy range. Our results show the
stacking order can induce huge differences in the photogal-
vanic coefficients and confirm the feasibility of generating
photogalvanic effects in AA-BG and AB-BG.

This paper is organized as follows. In Sec. II we introduce
the tight-binding models for AA-BG and AB-BG after apply-
ing a gate voltage and give the expressions for the injection
coefficient and shift conductivity. In Sec. III we present the
spectra of the injection coefficient and shift conductivity for
AA-BG and AB-BG and discuss the effects of the gate voltage
and chemical potential. We conclude in Sec. IV.

II. MODELS

A. Hamiltonian

We consider the tight-binding Hamiltonian for AA-BG
and AB-BG, whose crystal structures are illustrated in
Figs. 1(a) and 1(b), respectively. These two structures have
the same primitive lattice vectors a1 = a0( 1

2 x̂ +
√

3
2 ŷ) and

a2 = a0(− 1
2 x̂ +

√
3

2 ŷ), with the lattice constant a0 = 2.46 Å.
The atomic positions in the unit cell are taken as τA =
0, τB = (a1 + a2)/3, τA′ = cẑ, and τB′ = τB + cẑ for AA-
BG and τA = 0, τB = (a1 + a2)/3, τA′ = τB + cẑ, and
τB′ = 2τB + cẑ for AB-BG, where c = 3.35 Å is the inter-
layer distance. The primitive reciprocal lattice vectors are

b1 = 2π
a0

(x̂ + 1√
3
ŷ) and b2 = 2π

a0
(−x̂ + 1√

3
ŷ). The electronic

states are described by a tight-binding model employing
carbon 2pz orbitals. The unperturbed Hamiltonian [35] for
AA-BG is

HAA
k =

⎛⎜⎜⎜⎝
−� γ0gk γ1 γ3gk

γ0g∗
k −� γ3g∗

k γ1

γ1 γ3gk � γ0gk

γ3g∗
k γ1 γ0g∗

k �

⎞⎟⎟⎟⎠. (1)

Here k is the electron wave vector, and gk = 1 + e−ik·a1 +
e−ik·a2 . The hopping parameters are illustrated in Fig. 1(a),
with γ0 = 2.569 eV, γ1 = 0.361 eV, and γ3 = −0.032 eV.
The on-site energies ±� can be experimentally induced either
by a gate voltage by using the electrostatic gating method
and choosing the electrode to be an electrolyte [37] or a 2D
material [38] or by adjusting the carrier concentration of each
layer from charge doping [39]. The Hamiltonian for AB-BG
is taken from Ref. [29] as

HAB
k =

⎛⎜⎜⎜⎜⎜⎝
−� − �′

2 γ ′
0gk γ ′

4gk γ ′
3g∗

k

γ ′
0g∗

k −� + �′
2 γ ′

1 γ ′
4gk

γ ′
4g∗

k γ ′
1 � + �′

2 γ ′
0gk

γ ′
3gk γ ′

4g∗
k γ ′

0g∗
k � − �′

2

⎞⎟⎟⎟⎟⎟⎠, (2)

where the hopping parameters [see Fig. 1(b)] are γ ′
0 =

−3.16 eV, γ ′
1 = 0.381 eV, γ ′

3 = −0.38 eV, and γ ′
4 = 0.14 eV.

The on-site potential difference �′ = 0.022 eV is induced by
the asymmetric environment of the A and B atoms in the
crystal structure.

The eigenstates Cnk and eigenenergies εnk at the nth band
are obtained by diagonalizing the Hamiltonian through

HkCnk = εnkCnk. (3)

The calculation of the optical responses involves the position
operator r̃k and velocity operator ṽk, which are

r̃k = i∇k +

⎛⎜⎜⎝
τA 0 0 0
0 τB 0 0
0 0 τA′ 0
0 0 0 τB′

⎞⎟⎟⎠, ṽk = 1

ih̄
[̃rk, Hk],

(4)

respectively. The matrix elements of the position operator give
the Berry connections ξnmk as

ξnmk = C†
nk̃rkCmk, (5)
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and those of the velocity operator are calculated as vnmk =
C†

nkṽkCmk. Due to the derivative with respect to the wave
vector k, a direct calculation of ξnmk from Eq. (5) requires that
the wave function Cnk is a smooth function of k. However, this
becomes quite difficult in numerical calculation because the
phase is arbitrary for a numerical wave function. Practically,
the off-diagonal terms of ξnmk can be also calculated from the
velocity operator as

rnmk =
{
ξnmk = vnmk

iωnmk
(n �= m),

0 (n = m),
(6)

with h̄ωnmk = εnk − εmk. The diagonal terms ξ a
nnk usually

appear in the generalized derivative of (rc
k );nmka = ∂rc

nmk
∂ka −

i(ξ a
nnk − ξ a

mmk)rc
nmk, which is alternatively calculated [12] as

(
rc

k

)
;nmka = −irc

nmkVa
mnk + h̄Mca

nmk + i
[
ra

k , v
c
k

]
nm

iωnmk
, (7)

with Va
mnk = va

mmk − va
nnk = ∂ωmnk

∂ka and

Mca
nmk = C†

nk

1

ih̄

[̃
ra

k , ṽ
c
k

]
Cmk, (8)

where the Roman letters a and c indicate the Cartesian direc-
tions x, y, and z. Note that the electron wave vector has only
in-plane components x and y, and the derivative ∂

∂kz thus gives
zero and (ra

k );nmkz = −i(ξ z
nnk − ξ z

mmk)ra
nmk.

B. Injection and shift currents

We focus on the injection and shift currents induced by a
laser pulse centered at frequency ω, for which the electric field
is E(t ) = E0(t )e−iωt + c.c. and E0(t ) is a slowly varying en-
velope function. The response static currents can be written as

J0(t ) = Jinj(t ) + Jsh(t ). (9)

Here the first term Jinj(t ) is a one-color injection current
satisfying

dJa
inj(t )

dt
= 2iηabc(ω)Eb

0 (t )
[
Ec

0 (t )
]∗

, (10)

with the injection coefficient ηabc(ω) given by

ηabc(ω) = 2e3π

h̄2

∫
dk

4π2

∑
nm

Va
mnk fnmk

× Im
[
rc

mnkrb
nmk

]
δ(ωmnk − ω). (11)

Here fnmk = fnk − fmk is the population difference, with
the Fermi-Dirac distribution fnk = [1 − e(εnk−μ)/kBT ]−1 for a
given chemical potential μ and temperature T . The second
term, Jsh(t ), in Eq. (9) is a shift current, written as

Ja
sh(t ) = 2σ abc(ω)Eb

0 (t )
[
Ec

0 (t )
]∗

, (12)

with the shift conductivity σ abc(ω) given by

σ abc(ω) = − iπe3

h̄2

∫
dk

4π2

∑
nm

fnmk
[
rb

mnk

(
rc

k

)
;nmka

+ rc
mnk

(
rb

k

)
;nmka

]
δ(ωmnk − ω). (13)

Further discussion of photocurrents starts with a symmetry
analysis of the tensors of ηabc(ω) and σ abc(ω). The presence

of time-reversal symmetry gives rnmk = rmn(−k) = [rnm(−k)]∗,
vnmk = −vmn(−k) = −[vnm(−k)]∗, εnk = εn(−k), and (rb

k );nmka =
−(rb

−k);mnka = −[(rb
k );nmka ]∗. Thus, from Eqs. (11) and (13),

we obtain ηabc = [ηabc]∗ and σ abc = [σ abc]∗, which are both
real numbers. At finite gate voltage, the crystal point group of
AB-BG is C3v , whose symmetry is lower than that of AA-BG
with crystal point group C6v . Thus, we can check the symme-
try properties of AB-BG first and then refine them to AA-BG.
Combining the point group and the time reversal symmetry,
the nonzero tensor components satisfy ηxzx = ηyzy = ηxxz =
ηyyz, σ xzx = σ yzy = σ xxz = σ yyz, σ zxx = σ zyy, σ zzz, and σ yyy =
−σ yxx = −σ xxy = −σ xyx. Then the injection current becomes

dJa
inj(t )

dt
= 4ηxzx(ω)Im

{
Ea

0 (t )
[
Ez

0 (t )
]∗}

(1 − δa,z ), (14)

and the shift current is

Jx
sh(t ) = 4σ xzx(ω)Re

{
Ez

0 (t )
[
Ex

0 (t )
]∗}

− 4σ yyy(ω)Re
{
Ex

0 (t )
[
Ey

0 (t )
]∗}

, (15a)

Jy
sh(t ) = 4σ xzx(ω)Re

{
Ez

0 (t )
[
Ey

0 (t )
]∗}

+ 2σ yyy(ω)
[∣∣Ey

0 (t )
∣∣2 − ∣∣Ex

0 (t )
∣∣2], (15b)

Jz
sh(t ) = 2σ zxx(ω)

[∣∣Ex
0 (t )
∣∣2 + ∣∣Ey

0 (t )
∣∣2]

+ 2σ zzz(ω)
∣∣Ez

0 (t )
∣∣2. (15c)

For AA-BG, the results are similar, except that the σ yyy com-
ponent disappears due to the extra crystal symmetry.

The injection current in AA-BG or AB-BG requires an
elliptically polarized obliquely incident light, and its z com-
ponent vanishes due to the lack of freely moving electrons
along this quantum confined direction. The z component of
the shift current in AA-BG or AB-BG, induced by the charge
shift between the two layers under light excitation, can al-
ways be generated. Such a shift current can lead to charge
accumulation between these two layers, which can further
induce a gate voltage in this system, as discussed by Gao
et al. [40]. The in-plane components of the shift current in
AA-BG can be generated only for an elliptically polarized
light that is obliquely incident, while those in AB-BG have no
such limit. In doped systems, although Eq. (13) includes the
Pauli blocking effect, the Fermi surface can have an additional
contribution to the shift conductivity, as shown in the works by
de Juan et al. [41] and Gao et al. [42]. Our numerical results
indicate that this contribution is negligible compared to those
in Eq. (13), and thus, it is ignored in this work.

III. RESULTS

A. Analytical results for AA-BG

The Hamiltonian for AA-BG can be analytically diagonal-
ized. The eigenstates are

Cnk =
√

1 − αnNβnk

2
√

2

⎛⎜⎜⎝
−ĝk

−βn

βnĝk

1

⎞⎟⎟⎠+ αn
√

1 + αnNβnk

2
√

2

⎛⎜⎜⎝
ĝk

βn

βnĝk

1

⎞⎟⎟⎠,

(16)
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FIG. 2. (a) Band structure and (b) JDOS for AA-BG at � = 0 (dashed curves) and � = 0.4 eV (solid curves).

with ĝk = gk/|gk| and

Nβnk = γ3|gk| + βnγ1√
�2 + (γ3|gk| + βnγ1)2

. (17)

Here n = 1, 2, 3, 4 denotes the band index, with αn =
−1,−1,+1,+1 and βn = −1,+1,−1,+1, respectively. The
associated eigenenergies are

εnk = βnγ0|gk| + αn

√
�2 + (γ3|gk| + βnγ1)2. (18)

With the analytic wave functions in Eq. (16), Berry
connections ξnmk can be calculated directly from Eq. (5),
as listed in Appendix A, where the relations between
all components are also presented. The selection rules
for rz

nmk are

rz
13k = rz

31k = cN−1k

2
, rz

24k = rz
42k = cN+1k

2
. (19)

Therefore, rz
nmk is nonzero only for the band pair (n, m) =

(1, 3) or (2,4). The injection coefficient becomes

ηxzx(ω) = e3

2π h̄2

∫
dk
{

f13kVx
31kIm

[
rx

31krz
13k

]
δ(ω31k − ω)

+ f24kVx
42kIm

[
rx

42krz
24k

]
δ(ω42k − ω)

}
. (20)

The intraband Berry connections are obtained as

ξnnk = 1

2

[
g∗

k(i∇k)gk + a0√
3

ŷ
]

+ 1

2
cẑ
(
1 + αn

√
1 − N 2

βnk

)
.

(21)

The matrix elements for ξ
x/y
nnk are independent of the band

index n; thus, (ra
k );nmkb = ∂ra

nmk
∂kb for b = x, y, and (ra

k );nmkz =
−i(ξ z

nnk − ξ z
mmk)ra

nmk. The shift conductivities become

σ xzx(ω) = −i
e3

4π h̄2

∫
dk
[

f13k

(
rz

31k

∂rx
13k

∂kx

+ rx
31k

∂rz
13k

∂kx

)
δ(ω31k − ω)

+ f24k

(
rz

42k

∂rx
24k

∂kx
+ rx

42k

∂rz
24k

∂kx

)
δ(ω42k − ω)

]
,

(22a)

σ zzz(ω) = e3

2π h̄2

∫
dk
[

f12k

∣∣rz
31k

∣∣2(ξ z
33k − ξ z

11k

)
δ(ω31k − ω)

+ f24k

∣∣rz
42k

∣∣2(ξ z
44k − ξ z

22k

)
δ(ω42k − ω)

]
, (22b)

σ zxx(ω) = e3

2π h̄2

∫
dk
∑
nm

fnmk

∣∣rx
mnk

∣∣2
×(ξ z

mmk − ξ z
nnk

)
δ(ωmnk − ω). (22c)

It can be seen that the coefficients ηxzx, σ xzx, and σ zzz are
induced by the transitions only from band 1 to 3 or from
band 2 to 4, while σ zxx has no such limit. These coefficients
can be further simplified with the analytical expressions for
all these quantities, which can be obtained under the linear
dispersion approximation around the Dirac points, as shown
in Appendix B.

Figure 2(a) shows the band structure of AA-BG for � = 0
and 0.4 eV. With the application of a gate voltage, the in-
terlayer coupling shifts the energies of the Dirac cones of
each layer, while the electronic states at zero energy are still
degenerate. Bands 1 and 3 (or 2 and 4) are approximately
parallel to each other, and their energy differences are in
the range of 2

√
�2 + (γ1 + 3γ3)2 � h̄ω42k � 2

√
�2 + γ 2

1 �
h̄ω31k � 2

√
�2 + (γ1 − 3γ3)2 because 0 � |gk| � 3, where

the middle value is obtained at the Dirac points and the other
two values are obtained at the M points. Figure 2(b) gives the
joint densities of states (JDOSs) J31(ω) and J42(ω) for two
related pairs of bands, which are defined as

Jnm(ω) =
∫

dkδ(h̄ωnmk − h̄ω). (23)

These two JDOSs are strongly localized in energy, regardless
of whether there is a gate voltage. For � = 0.4 eV, J42(ω) is
nonzero in the energy range of [0.95, 1.08] eV, and J31(ω) is
nonzero in the energy range of [1.08, 1.21] eV.

B. Band structure of AB-BG

The Hamiltonian in Eq. (2) for AB-BG can also be
analytically diagonalized, as shown in Appendix C, but
the expressions for the eigenenergies are too complicated
to provide meaningful physical insight; thus, we discuss
the band structure based on numerical calculation. This
work focuses on the electronic transitions around the Dirac
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FIG. 3. (a) Band structure and (b) JDOS for AB-BG at � = 0 (dashed curves) and � = 0.4 eV (solid curves). The energetic locations of
the band gap Eg and the maximal values of J32, J42, and J31 (E1, E2, E3) are indicated. The inset shows the k-resolved energy difference h̄ω32k

for � = 0.4 eV. (c) � dependence of the k location for the minimum of h̄ωnmk along the K−M and K-� directions. (d) � dependence of Eg,
E1, E2, and E3.

points; for convenience, the wave vectors are expressed
as k = k̄ 2π

a0
(x̂ cos θ + ŷ sin θ ) + K, with θ = 2nπ/3 along

the K-M directions and θ = (2n + 1)π/3 along the K-�
directions. Figure 3(a) gives the band structure for AB-BG
at gate voltages � = 0 and 0.4 eV. At � = 0, in each Dirac
cone, the two middle bands are degenerate at the Dirac points
with k̄ = 0 and the other three k points on the K-M paths with
k̄ = − γ ′

1γ
′
3√

3πγ ′
0

2 ∼ 0.003 (see details in Appendix C). Mean-

while, the energy differences, h̄ω31k and h̄ω42k, have minima
at the Dirac points. For nonzero gate voltage, the degeneracy
at these points is lifted. The eigenenergies at the Dirac points
are ±� − �′

2 and ±
√

�2 + γ 2
1 + �′

2 , and the middle two
bands around the Dirac points have a Mexican hat shape [43].
At � = 0.4 eV, the energy difference h̄ω32k shows a minimum
with increasing k̄ for each θ , as shown in the k-resolved
energy difference in the inset, where the threefold rotational
symmetry can clearly be seen around this Dirac point. Along
the K-M directions, the minima of h̄ω32k appear around
k̄ = 0.027 to give a band gap of Eg = 0.28 eV, and along the
K-� directions, the minima appear around k̄ = 0.023, which
have an energy E1 = 0.4 eV higher than the band gap and give
a van Hove singularity (VHS). Similar results can be found for
h̄ω42k, and another VHS appears with energy E2 = 0.97 eV;
however, h̄ω31k shows a minimum at the Dirac points, but no
VHS appears. Figure 3(b) gives JDOSs of J31(ω), J32(ω),
J41(ω), and J42(ω) at � = 0 and 0.4 eV. The gate voltage
changes these JDOSs significantly around the band edge.

J32(ω) and J42(ω) have divergences at the VHS points with
energies E1 and E2, respectively; J31(ω) has a peak located at
E3 ∼ 0.97 eV around the band edge, which is induced by the
nearly parallel bands (1, 3) around the Dirac points.

The VHS points do not appear for all gate voltages.
Figure 3(c) exhibits � dependence of the k̄ value for the
minimal energy of h̄ω32k and h̄ω42k for θ along the K-M
and K-� directions, respectively. Along the K-M directions,
h̄ω32k has a minimum value at nonzero k̄ for all �, which
gives the band gap Eg of the system; however, along the K-�
directions, the minimum energy E1 moves to a nonzero k̄ only
for � � 0.023 eV, where a VHS appears as well. Note that
the JDOS J32k shows a maximum at the band edge when
there is no VHS for � < 0.023 eV. However, the minima of
h̄ω42k along the K-M and K-� directions do not locate at the
Dirac points only for � � 0.174 eV, where a VHS appears
as well. For � < 0.174 eV, J42(ω) also shows a maximum at
the band edge between bands 4 and 2, where this energy is
still denoted E2; the maximum of J31(ω) also locates at the
band edge between bands 3 and 1, where this energy is still
denoted E3. The gate voltage dependences of these energies
Eg, E1, E2, and E3 are shown in Fig. 3(d).

C. Injection coefficients and shift conductivities at � = 0.4 eV

In this section we present the numerical results for the
injection coefficient ηxzx(ω) and shift conductivities σ yyy(ω),
σ xzx(ω), σ zxx(ω), and σ zzz(ω). The parameters are chosen to

235401-5
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FIG. 4. Injection coefficients and shift conductivities for AA-BG and AB-BG at � = 0.4 eV. (a) ηxzx for AA-BG and AB-BG, (b) σ yyy for
AB-BG, (c) σ xzx , σ zxx , and σ zzz for AA-BG, and (d) σ xzx , σ zxx , and σ zzz for AB-BG.

be T = 300 K, μ = 0, and � = 0.4 eV. During the numer-
ical calculation, the Brillouin zone is divided into a 3000 ×
3000 homogeneous grid. The δ functions in Eqs. (11) and
(13) are approximated by a Gaussian function as δ(ω) =

h̄√
π�

e−(h̄ω)2/�2
, with Gaussian broadening � = 10 meV.

Figure 4(a) shows the injection coefficient spectra for
AA-BG and AB-BG. For the injection in AA-BG, the
spectrum is just a peak located in a very narrow energy
range, 1.069 < h̄ω < 1.087 eV, with an absolute value of
about 0.067 A s−1 m V−2. From the analytic results shown in
Eq. (B16), the spectra include two contributions in different
photon energy regions: one is from the optical transition be-
tween bands 1 and 3 for photon energy h̄ω > 2

√
�2 + γ 2

1 ,
or 1.078 < h̄ω < 1.087 eV, and the other is between bands
2 and 4 for h̄ω < 2

√
�2 + γ 2

1 , or 1.069 < h̄ω < 1.078 eV;
both magnitudes are nearly proportional to h̄ω − 2

√
�2 + γ 2

1 .
These two contributions merge as a single peak just because
the δ function is numerically broadened with � = 10 meV,
which is even larger than each energy region. The injection
coefficient ηxzx in AB-BG starts with photon energy higher
than the gap, i.e., h̄ω > 0.28 eV, and reaches its maximum
value of 25 A s−1 m V−2 in amplitude at h̄ω = 0.45 eV, which
is slightly larger than the first VHS energy of JDOS E1; the
energy difference arises from the zero electron velocity at
this VHS. Considering the thickness of a bilayer graphene
to be 2c = 6.7 Å, the effective bulk injection coefficient is
3.7 × 1010 µA s−1 V−2, which is nearly 50 times larger than
that in bulk GaAs [44]. After this peak, the amplitude of the
injection coefficient decreases as the photon energy increases,
except for a small peak located around the JDOS peak at

higher energy E2 or E3. It can be seen that the injection
coefficient for AB-BG is about two orders of magnitude larger
than that for AA-BG. This magnitude difference arises from
three aspects: (1) Because the optical transition of AA-BG
can occur only between the nearly parallel bands, the ve-
locities of the conduction bands and the valence bands have
the same signs and similar amplitudes, which leads to very
small velocity differences Vx

13 and Vx
24k. However, for AB-BG,

they are opposite, and the value of Vx
23 is about two orders

of magnitude larger than that in AA-BG. (2) The JDOSs in
AA-BG are about two orders of magnitude larger than those
in AB-BG [see Figs. 2(b) and 3(b)]. (3) The optical transition
amplitudes Im[rx

mnkrz
nmk] for AB-BG are about two orders of

magnitude larger than those for AA-BG, and the difference
mostly arises from the values of rx

13k and rx
24k for AA-BG and

rx
23k for AB-BG. This difference may arise from the fact that

the gate voltage opens the gap in AB-BG, which induces a
larger Berry connection, while it just shifts the Dirac cones in
AA-BG, which makes rx

13k and rx
24k nearly proportional to the

gate voltage [see Eqs. (A2a) and (A2b)]. Overall, the injection
coefficients in AA-BG are about two orders of magnitude
smaller than those in AB-BG. To have a direct effect on
these values, we give an estimation of how large the injection
current can be in AB-BG. Based on Eq. (14), when the laser is
a 45◦ obliquely incident p-polarized light with photon energy
of 0.45 eV, light intensity of I = 0.1 GW/cm2, and pulse
duration of τ = 1 ps, the generated injection current is the
difference of 2ηxzx I

2cε0
W τ ∼ 9 mA for an electrode with a

width W = 1 µm.
Then we turn to the shift conductivities, as shown in

Figs. 4(b)–4(d). Figure 4(c) gives the shift conductivity for
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FIG. 5. Gate voltage dependence of injection coefficients and shift conductivities at zero chemical potential. (a) ηxzx (ω) and (b) σ zzz(ω) for
AA-BG and (c) ηxzx (ω), (d) σ xzx (ω), (e) σ yyy(ω), and (f) σ zxx (ω) for AB-BG. In (c)–(f), dashed curves indicate the characteristic energies Eg,
E1, E2, and E3 for AB-BG.

AA-BG. It can be seen that the component σ zzz is about one
order of magnitude larger than σ xzx or is at least two orders of
magnitude larger than σ zxx. Both σ zzz and σ xzx have nonzero
values only in the very narrow energy regions, similar to
the injection coefficient. These results are consistent with the
analytic results shown in Eqs. (B17) and (B18). Interestingly,
σ xzx includes the contributions from band 1 to 3 and from
band 2 to 4, but with opposite signs. For AB-BG shown in
Figs. 4(b) and 4(d), all nonzero components start from the
band edge h̄ω � Eg. Different from the injection coefficients,
the shift conductivities at the band edge are nonzero and
show prominent peaks. Especially, σ yyy shows a large value
of about 6 × 10−13 A m V−2 at the band edge, and it drops
quickly with increasing photon energy. The effective bulk shift
conductivity is 896 µA/V2, which is several times larger than
in GeSe (200 µA/V2) [44]. In addition, the component σ zzz

is at least one order of magnitude smaller than other nonzero
components, totally different from the case of AA-BG, where
it is the largest one. The spectra of σ xzx and σ zxx have sim-
ilar amplitudes around 2 × 10−14 A m V−2, which is tens of
times smaller than the peak of σ yyy; they also show some
fine structures around the characteristic energies E1, E2, and
E3. For these common components of shift conductivities for
two types of bilayer graphene, the values of σ xzx and σ zxx

for AB-BG are about 10 and 100 times larger than those of
AA-BG, respectively, while the value of σ zzz for AB-BG is
smaller. We repeat the above estimation for the shift current
using the same parameters but h̄ω = 0.3 eV and then obtain
the generated shift current of 2σ yyy I

2cε0
W ∼ 0.23 mA.

D. Effects of gate voltage

Figure 5 gives the gate voltage dependence of the injection
coefficients and shift conductivities for AA-BG and AB-BG
at zero chemical potential. Note that the negative gate voltage
leads to opposite coefficients, which are consistent with the
results by Xiong et al. [33]; thus, only positive gate voltages
are shown here.

Figures 5(a) and 5(b) show the spectra of ηxzx and σ zzz

for AA-BG, respectively. As indicated in the previous section,
both spectra for different gate voltages are nonzero in a very
narrow photon energy region. With an increase in the gate
voltage, the region moves to larger energy, and the values
of both spectra increase, as indicated by ∝� in Eqs. (B20)
and (B22). Figure 5(c) gives the injection coefficient ηxzx for
AB-BG. At each gate voltage, the injection coefficient shows
two peaks located at photon energies slightly larger than E1

and E2, which were discussed in the previous section. As the
gate voltage � varies, the peak amplitude reaches a maximum
at � ∼ 0.2 eV. The shift conductivities σ xzx, σ yyy, and σ zxx

for AB-BG are plotted in Figs. 5(d)–5(f). They show some
similar characteristics: (1) The spectra are located at about the
band gap, similar to what happens in the case of � = 0.4 eV,
and their amplitudes increase with the decrease of �; σ xzx and
σ zxx increase much faster than σ yyy. (2) Sign changes of shift
conductivities exist.

E. Effects of the chemical potential

The chemical potential μ dependence of the injection co-
efficients and shift conductivities at � = 0.4 eV are depicted
in Fig. 6 using the same layout as in Fig. 5. For AA-BG
in Figs. 6(a) and 6(b), they show very similar asymmetric
dependence on the chemical potential: with the increase of
the chemical potential, the values of all coefficients increase,
and the locations shift to higher or lower photon energies
depending on the sign of the chemical potential. For posi-
tive chemical potential, the transitions between bands 1 and
3 are suppressed according to the Pauli blocking effects,
while new extra transitions between bands 2 and 4 appear
due to the additional free electrons in band 2. The extra
transitions require lower photon energy and redshift the spec-
tra, and they also correspond to larger JDOSs, leading to
larger coefficients. Similar results can be found for negative
chemical potential, but with the band pairs (1, 2) and (3, 4)
switched.
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FIG. 6. Chemical potential dependence of injection coefficients and shift conductivities at � = 0.4 eV. (a) ηxzx (ω) and (b) σ zzz(ω) for
AA-BG and (c) ηxzx (ω), (d) σ xzx (ω), (e) σ yyy(ω), and (f) σ zxx (ω) for AB-BG. The dashed lines in (c)–(f) indicate the position of the conduction
and valence band edges for AB-BG.

In AB-BG, the chemical potential μ has different effects,
as shown in Figs. 6(c)–6(f). Due to the existence of the band
gap, the spectra barely change when the chemical potential
lies in the gap. When μ is above the conduction band edge
or below the valence band edge, the main peak of ηxzx around
0.5 eV is reduced gradually due to the Pauli blocking, and
new transitions appear between bands 1 and 2 or 3 and 4 to
give additional injections with opposite signs. Similar results
are obtained for the shift conductivities.

IV. CONCLUSION

In this paper we have studied gate voltage induced injec-
tion current and shift current in AA- and AB-stacked bilayer
graphene. The gate voltage plays a crucial role in breaking the
inversion symmetry of bilayer graphene to induce photogal-
vanic effects. In AA-BG, the injection and shift currents are
mainly induced by optical transitions between two pairs of
nearly parallel bands; the coefficient spectra locate in a very
narrow photon energy region of about 20 meV. In AB-BG,
the gate voltage effectively changes the band structure for
AB-BG with gap openings located in the K-M directions and
additional VHSs located in the K-� directions. The optical
transition can occur between any possible band pairs, and the
structures of spectra are strongly determined by the band gap
and the VHS energies. For both stacking orders, the injection

and shift currents can be generated by the existence of an
oblique p-polarized light component, while the in-plane shift
currents in AB-BG can also be generated by normal incident
light. The out-of-plane shift current finally results in a static
electric polarization between layers. The stacking order has
significant effects on both currents. The injection coefficient
for AA-BG is about two orders of magnitude smaller than that
for AB-BG; for the shift conductivities, besides the additional
components σ yyy that appear in AB-BG that are one order of
magnitude larger than other components, the components σ xzx

and σ zxx of AB-BG are one or two orders of magnitude larger
than those of AA-BG, while σ zzz is one order of magnitude
smaller. This significant difference can be used to distinguish
the stacking order by accurately measuring the tensor com-
ponents in experiment, especially the component σ yyy. All
these coefficients can be effectively modulated by the gate
voltage and the chemical potential. Our results suggest that
gate voltage controlled bilayer graphene can be used to realize
tunable optoelectronic detectors working in the midinfrared.
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APPENDIX A: BERRY CONNECTIONS OF AA-BG

The general expression for the Berry connection of AA-BG is

ξnmk = (
√

1 − αnNβnk

√
1 − αmNβmk + αnαm

√
1 + αnNβnk

√
1 + αmNβmk)

1 + βnβm

8
[ĝ∗

k(i∇kĝk) + ŷd]

+ (αm

√
1 − αnNβnk

√
1 + αmNβmk + αn

√
1 + αnNβnk

√
1 − αmNβmk)

× βnβm − 1

8
[ĝ∗

k(i∇kĝk) − ŷd]
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+ iδβnβm

2
(
√

1 − αnNβnk∇k

√
1 − αmNβmk + αnαm

√
1 + αnNβnk∇k

√
1 + αmNβmk)

+ (
√

1 − αnNβnk + αn

√
1 + αnNβnk)(

√
1 − αmNβmk + αm

√
1 + αmNβmk)

1 + βnβm

8
cẑ, (A1)

with d = √
3/3a0. Here we give the x component between different bands as

rx
13k = −rx

31k = − i

2

∂N−1k

∂kx√
1 − N 2

−1k

= − i

2

γ3

|�|
(
1 − N 2

−1k

)∂|gk|
∂kx

, (A2a)

rx
24k = −rx

42k = − i

2

∂N+1k

∂kx√
1 − N 2

+1k

= − i

2

γ3

|�|
(
1 − N 2

+1k

)∂|gk|
∂kx

, (A2b)

rx
12k = rx

21k = −rx
34k = −rx

43k = 1

4
[
√

1 + N−1k

√
1 − N+1k +

√
1 − N−1k

√
1 + N+1k]

[
ĝ∗

k

(
i
∂ ĝk

∂kx

)]
, (A2c)

rx
32k = −rx

23k = rx
14k = −rx

41k = 1

4
[
√

1 + N−1k

√
1 − N+1k −

√
1 − N−1k

√
1 + N+1k]

[
ĝ∗

k

(
i
∂ ĝk

∂kx

)]
. (A2d)

Combined with other quantities in Eqs. (19) and (21), the injection coefficients and the shift conductivities can be evaluated. For
the latter use, we also need

V21k = 2γ3

h̄
N−1k

∂|gk|
∂kx

, (A3)

V43k = 2γ3

h̄
N+1k

∂|gk|
∂kx

. (A4)

APPENDIX B: ANALYTICAL EXPRESSIONS FOR ηxzx, σxzx, AND σzzz IN AA-BG UNDER
THE LINEAR DISPERSION APPROXIMATION

Here we give the analytic results for ηxzx in Eq. (20), σ xzx in Eq. (22a), and σ zzz in Eq. (22b) under the linear dispersion
approximation around the Dirac points. The term σ zxx is not discussed due to its very small magnitude, as shown in Fig. 4(c).

The integrands of ηxzx, σ xzx, and σ zzz are functions of |gk|, ∂|gk|
∂kx

, and ∂2|gk|
∂k2

x
, where all terms involving |gk| can be simplified by

using the properties of the δ function. The function δ(h̄ωnmk − h̄ω) is nonzero only for |gk| = Gnm, with

γ3G31 = γ1 −
√(

h̄ω

2

)2

− �2, h̄ω � 2
√

�2 + γ 2
1 , (B1)

γ3G42 =
√(

h̄ω

2

)2

− �2 − γ1, h̄ω � 2
√

�2 + γ 2
1 . (B2)

Further, we get

(N−1k)||gk|=G31
= − (N+1k)||gk|=G42

= −
√

1 −
(

2�

h̄ω

)2

. (B3)

(1) By substituting the expressions for Vx
nmk, rx

31k, rz
13k, rx

42k, and rz
24k, ηxzx becomes

ηxzx = e3

2π h̄2

∫
dk
(

cγ 2
3

2h̄|�|
){

f12kN 2
−1k

(
1 − N 2

−1k

)(∂|gk|
∂kx

)2

δ(ω31k − ω) + f34kN 2
+1k

(
1 − N 2

+1k

)(∂|gk|
∂kx

)2

δ(ω42k − ω)

}

= e3c|�|
π h̄2(h̄ω)2

[
1 −

(
2�

h̄ω

)2
]
{ f13k||gk|=G31F31(ω) + f24k||gk|=G42F42(ω)}, (B4)

with

Fnm(ω) =
∫

dk
(

γ3
∂|gk|
∂kx

)2

δ(h̄ωnmk − h̄ω). (B5)
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(2) To get the result for σ xzx, we use

∂N−1k

∂kx
= (1 − N 2

−1k

)3/2 γ3

|�|
∂|gk|
∂kx

(B6)

to get

rz
31k

∂rx
13k

∂kx
+ rx

31k

∂rz
13k

∂kx
= ic

4

(
1 + N 2

−1k

)(
1 − N 2

−1k

)3/2
(

γ3

|�|
∂|gk|
∂kx

)2

− ic

4
N−1k

(
1 − N 2

−1k

) γ3

|�|
∂2|gk|
∂k2

x

. (B7)

Similar expressions can be obtained for terms involving r32k. Then we get

σ xzx = e3c

4π h̄(h̄ω)2

{[
2 −

(
2�

h̄ω

)2
]

2|�|
h̄ω

[ f13k||gk|=G31F31(ω) + f24k||gk|=G42F42(ω)]

− |�|
√

1 −
(

2�

h̄ω

)2

[ f13k||gk|=G31Q31(ω) − f24k||gk|=G42Q42(ω)]

⎫⎬⎭, (B8)

with

Qnm(ω) =
∫

dkγ3
∂2|gk|
∂k2

x

δ(h̄ωnmk − h̄ω). (B9)

(3) The term σ zzz(ω) becomes

σ zzz(ω) = e3

2π h̄2

∫
dk
{

f13k
c2

4
N 2

−1kc
√

1 − N 2
−1kδ(ω31k − ω) + f24k

c2

4
N 2

+1kc
√

1 − N 2
+1kδ(ω42k − ω)

}

= e3c3

4π h̄

|�|
h̄ω

[
1 −

(
2�

h̄ω

)2
]

[ f13k||gk|=G31J31(ω) + f24k||gk|=G42J42(ω)]. (B10)

When the optical transition occurs just around the Dirac points K, we can approximate |gk+K | = √
3a0k/2; then the δ functions

can be worked out as

δ[2
√

�2 + (γ3|gk| − γ1)2 − h̄ω] = δ[k − 2G31/(
√

3a0)]
√

3a0|γ3|
√

1 − ( 2�
h̄ω

)2 θ
(
h̄ω − 2

√
�2 + γ 2

1

)
, (B11)

δ[2
√

�2 + (γ3|gk| + γ1)2 − h̄ω] = δ[k − 2G42/(
√

3a0)]
√

3a0|γ3|
√

1 − ( 2�
h̄ω

)2 θ
(
2
√

�2 + γ 2
1 − h̄ω

)
. (B12)

Then we get

(
J31(ω)
J42(ω)

)
= 8π

3a2
0γ

2
3

√
1 − ( 2�

h̄ω

)2
∣∣∣∣∣∣γ1 −

√(
h̄ω

2

)2

− �2

∣∣∣∣∣∣
⎛⎝θ (h̄ω − 2

√
�2 + γ 2

1 )

θ (2
√

�2 + γ 2
1 − h̄ω)

⎞⎠, (B13)

(
F31(ω)
F42(ω)

)
= 3a2

0γ
2
3

8

(
J31(ω)
J42(ω)

)
, (B14)

(
Q31(ω)
Q42(ω)

)
= − π√

1 − ( 2�
h̄ω

)2
⎛⎝θ (h̄ω − 2

√
�2 + γ 2

1 )

θ (2
√

�2 + γ 2
1 − h̄ω)

⎞⎠, (B15)

where two Dirac points have been counted in the integration. In this approximation, the expressions for ηxzx, σ xzx, and σ zzz are

ηxzx(ω) =
e3c|�|

√
1 − ( 2�

h̄ω

)2
h̄2(h̄ω)2

∣∣∣∣∣∣γ1 −
√(

h̄ω

2

)2

− �2

∣∣∣∣∣∣[M31(ω) + M42(ω)], (B16)

σ xzx(ω) =e3c|�|(h̄2ω2 − 2�2)

2h̄(h̄ω)4
√

1 − ( 2�
h̄ω

)2
∣∣∣∣∣∣
√

1 −
(

2�

h̄ω

)2

− 2γ1

h̄ω

∣∣∣∣∣∣[M31(ω) + M42(ω)] − ce3|�|
4h̄(h̄ω)2

(M31(ω) − M42(ω)), (B17)
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σ zzz(ω) =
e3c3|�|

√
1 − ( 2�

h̄ω

)2
3h̄(a0γ3)2

∣∣∣∣∣∣
√

1 −
(

2�

h̄ω

)2

− 2γ1

h̄ω

∣∣∣∣∣∣[M31(ω) + M42(ω)], (B18)

respectively, with (
M31(ω)
M42(ω)

)
=

⎛⎜⎝ f13k||gk|=G31θ
(
h̄ω − 2

√
�2 + γ 2

1

)
f24k||gk|=G42θ

(
2
√

�2 + γ 2
1 − h̄ω

)
⎞⎟⎠. (B19)

Through the Taylor expansion, the above expressions around frequency 2
√

�2 + γ 2
1 can be approximated as

ηxzx(ω) ≈
ce3|�||2

√
γ 2

1 + �2 − h̄ω|
8h̄2
(
γ 2

1 + �2
) [M31(ω) + M42(ω)], (B20)

σ xzx(ω) ≈
ce3|�|(2γ 2

1 + �2
)∣∣2√γ 2

1 + �2 − h̄ω
∣∣

32h̄γ 2
1

√
γ 2

1 + �2
3 [M31(ω) + M42(ω)] − ce3|�|

16h̄
(
γ 2

1 + �2
) [M31(ω) − M42(ω)], (B21)

σ zzz(ω) ≈
ce3|�|∣∣2√γ 2

1 + �2 − h̄ω
∣∣

6h̄a2
0γ

2
3

(
γ 2

1 + �2
) [M31(ω) + M42(ω)]. (B22)

APPENDIX C: EIGENENERGIES OF AB-BG

The eigenenergies ε satisfy the equation ∣∣HAB
k − ε

∣∣ = 0, (C1)

or

ε4 + x2ε
2 + x1ε + x0 = 0, (C2)

with

x2 = − γ ′
1

2 − (2γ ′
0

2 + γ ′
3

2 + 2γ ′
4

2)|gk|2 − 2

[
�2 +

(
�′

2

)2
]
, (C3)

x1 = − 4γ ′
0γ

′
4

(
γ ′

1|gk|2 + γ ′
3Re
[
g3

k

])+ �′(γ ′
3

2|gk|2 − γ ′
1

2)
, (C4)

x0 = (γ ′
0

2 − γ ′
4

2)2|gk|4 − 2γ ′
3

[
γ ′

1

(
γ ′

0
2 + γ ′

4
2)− γ ′

0γ
′
4�

′]Re
[
g3

k

]
+
{

γ ′
3

2

[
γ ′

1
2 + �2 −

(
�′

2

)2
]

− (2γ ′
0

2 − γ ′
3

2)[
�2 −

(
�′

2

)2
]

− 2γ ′
0γ

′
1γ

′
4�

′
}

|gk|2

+
[
�2 −

(
�′

2

)2
][

γ ′
1

2 + �2 −
(

�′

2

)2
]
. (C5)

Then the analytic expressions for the eigenenergies are

εnk = 1

2

[
αn

√
−2x2 − βn

2x1√
y

− y + βn
√

y

]
, n = 1, 2, 3, 4, (C6)

with

y = 1

6

⎡⎢⎣4
1
3
(
y1 +

√
y2

1 − 4y3
2

) 1
3 + 4

2
3 y2(

y1 +
√

y2
1 − 4y3

2

) 1
3

− 4x2

⎤⎥⎦, (C7)

y1 = 2x3
2 + 27x2

1 − 72x2x0, (C8)

y2 = x2
2 + 12x0. (C9)

At the Dirac points with gk = 0, the four eigenenergies are ±� − �′
2 , ±

√
�2 + γ 2

1 + �′
2 .
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In general the electron-hole symmetry for AB-BG is broken due to the nonzero values of γ ′
4 and �′. However, we find that

γ ′
4 and �′ have negligible effects on the optical transition between bands 2 and 3. By setting γ ′

4 = 0 and �′ = 0, the eigenvalues
become

εnk = αn
1√
2

√
z1 + αnβn

√
z2, (C10)

with

z1 = γ ′
1

2 + 2�2 + (2γ ′
0

2 + γ ′
3

2)|gk|2, (C11)

z2 = 4γ ′
0

2{
γ ′

3
2|gk|4 + 2γ ′

1γ
′
3Re
[
g3

k

]+ (γ ′
1

2 + 4�2
)|gk|2

}+ (γ ′
3

2|gk|2 − γ ′
1

2)2
. (C12)

Obviously, the electronic states become electron-hole sym-
metric. Using Eq. (C10), we can have an analytic discussion of
the band gap Eg and the VHS for J32. Around the Dirac point
K, the approximation gk+K = −reiθ can be adopted for k =

2r√
3a0

(cos θ x̂ + sin θ ŷ). For zero �, the zero energy of ε3k can

be directly found from Eq. (C10) at r = 0 or r = r0 = − γ ′
1γ

′
3

γ ′
0

2

and θ = (2n + 1)π/3. Therefore, in total four degenerate zero
energy points exist in one Dirac cone at � = 0; one is at
this Dirac point, and the other three locate along the K-M
directions. Furthermore, for small r, ε3k can be approximated
by

ε2
3k = �2 + c2r2 + c3 cos(3θ )r3 + c4r4, (C13)

with

c2 = γ ′
3

2 − 4γ ′
0

2
�2

γ ′
1

2 , (C14)

c3 = −2γ ′
0

2
γ ′

3

γ ′
1

, (C15)

c4 = γ ′
0

2

γ ′
1

2

[
γ ′

0
2 − 2γ ′

3
2 + 4�2

(
2γ ′

0
2 − γ ′

3
2)

γ ′
1

2 + 16γ ′
0

2
�4

γ ′
1

4

]
.

(C16)

From Eq. (C13) the band structure around the Dirac points has
following features:

(1) For nonzero �, the energy ε3k at the Dirac point K is
an extreme, and it is a local minimum (maximum) as c2 >

0 (c2 < 0), which corresponds to |�| < �c (|�| > �c), with
�c = |γ ′

3γ
′
1/(2γ ′

0)| = 0.0229 eV.
(2) We first look at the case |�| > �c (c2 < 0). For a fixed

θ , ε3k around the Dirac point K has one more local minimum
located at r = re(cos 3θ ), with

re(cos 3θ ) =
−3c3 cos 3θ +

√
9c2

3 cos2 3θ − 32c2c4

8c4
. (C17)

When r is fixed and θ varies, ε3k has the local maxima
cos 3θ = 1 and local minima cos 3θ = −1. When both r and
θ are considered, a minimum exists at r = re(−1) and θ =
(2n + 1)π/3 (along the K-� directions for integer n), and a
VHS point exists at r = re(1) and θ = 2nπ/3 (along the K-M
directions).

(3) For the case |�| < �c (c2 > 0), ε3k has no VHS point
around the Dirac points, but the minimum along the K-�
directions still exists.

(4) A similar analysis can be applied to study the JDOS
J42 = J31. After ignoring γ ′

4 and �′, ε4k − ε2k has a local
minimum at the K point, and there is no VHS in J42. There-
fore, γ ′

4 and �′ play a key role in forming a VHS in J42.
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