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Cubic anisotropy of hole Zeeman splitting in semiconductor nanocrystals
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We study theoretically cubic anisotropy of Zeeman splitting of a hole confined in a semiconductor nanocrystal.
This anisotropy originates from three contributions: crystallographic cubically symmetric spin and kinetic energy
terms in the bulk Luttinger Hamiltonian and the spatial wave function distribution in a cube-shaped nanocrystal.
From symmetry considerations, an effective Zeeman Hamiltonian for the hole’s lowest even state is introduced,
containing a spherically symmetric and a cubically symmetric term. The values of these terms are calculated
numerically for spherical and cube-shaped nanocrystals as functions of the Luttinger Hamiltonian parameters.
We demonstrate that the cubic shape of the nanocrystal and the cubic anisotropy of hole kinetic energy (so-called
valence band warping) significantly affect effective g factors of hole states. In both cases, the effect comes from
the cubic symmetry of the hole wave functions in a zero magnetic field. Estimations for the effective g factor
values in several semiconductors with zinc-blende crystal lattices are made. Possible experimental manifestations
and potential methods for measuring of the cubic anisotropy of the hole Zeeman splitting are suggested.
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I. INTRODUCTION

Today state-of-the-art methods of chemical synthesis make
it possible to grow semiconductor colloidal quantum dots
or nanocrystals (NCs) with desired shapes on demand. For
example, typical II-VI semiconductor (CdS, CdSe, and CdTe)
NCs tend to have a shape close to spherical [1] and lead-halide
perovskite NCs naturally grow in the form of cubes [2]. How-
ever, by choosing special synthesis conditions, it is possible to
control the shape of NCs. It is known that CdSe NCs can be
obtained in the form of nanorods, nanoplatelets, tetrapods [1].
Recently, cube-shaped CdSe and CdS NCs with zinc-blende
crystal structure have been synthesized [3,4]. This diversity
of NC shapes is interesting not only from the point of view
of the capabilities of modern methods of colloidal synthesis,
but also because it opens the possibility of studying the effect
of the NC shape on the physical properties of charge carriers
confined in NCs.

The dependence of size quantization energy on NC shape
is known from textbooks, but there are more subtle effects,
for example, the strong dependence of the spin properties
of localized charge carriers on NC size and symmetry. The
enduring interest in the spin properties of charge carriers
localized in NCs is associated with the possibility of their
application in spintronics and quantum computing, as it was
proposed in the Loss-DiVincenzo paper [5] for electrons and
was further generalized for holes [6,7]. The main searches
in this direction are based on the use of direct band gap
semiconductors of type III-V (GaAs) or II-VI (CdSe, CdTe),
which have zinc-blende crystal structure.

These semiconductor materials are characterized by a
strong spin-orbit interaction. For electrons in the S-type con-
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duction band, the spin-orbit interaction results in deviation
of the electron g factor from the free electron g factor, as it
was shown in the Roth-Lax-Zwerdling paper for bulk semi-
conductors [8]. In small NCs, spatial localization of electrons
decreases the spin-orbit interaction effect on electron g factor,
so that its value tends to the free electron g factor [9–11]. In
spherically and cubically symmetric confining potentials, the
splitting of electron spin sublevels is described by an isotropic
g factor.

The topmost valence band in these materials has a P-type
symmetry. Due to the strong spin-orbit interaction, the valence
band splits into two subbands with the total angular momen-
tum of a hole J = 3/2 and 1/2. The splitting between these
subbands reaches hundreds of meVs. The ground hole state in
these materials corresponds to the fourfold degenerate valence
subband with J = 3/2. The calculation of the hole g factor
in this case within the kp-method for bulk semiconductors
was first performed by Luttinger [12]. He showed that the
cubic symmetry of the crystal lattice leads to two additional
contributions to the splitting of hole states in a magnetic field.
The first contribution is due to the valence band warping,
and the second to the cubic-symmetric invariant ∝ J3B. These
contributions results in dependence of the hole spin splitting in
an external magnetic field on the angle between crystal axes
and magnetic field. The influence of these contributions on
a hole localized at different types of acceptors in GaAs was
studied in Ref. [13]. It was found that the contribution to the
hole spin splitting from the cubically symmetric term of the
Luttinger Hamiltonian can be comparable to the spherically
symmetric contribution [13].

However, often the contribution originating from the cubic
symmetry of the crystal lattice is neglected, and the hole g
factor is calculated in the spherical approximation of the Lut-
tinger Hamiltonian [14,15]. This approach was widely used
for interpretation of magneto-optical experiments on colloidal
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NCs [16–21]. To the best of our knowledge, the applicability
of such an approach has not been assessed yet. Since the
cubically symmetric contribution to the effective g factor of
a hole localized on an acceptor [13] is not negligible, one can
expect the similar result for a hole localized in a NC.

For instance, accounting for the cubic symmetry of a
crystal lattice becomes crucial for understanding the spin
properties of holes in thin quantum wells. Due to a large
energy splitting of the localized states of the light and heavy
holes in thin quantum wells, the transverse g factor of the
heavy hole turns out to be identically equal to zero if one
neglects the cubic symmetry of the crystal lattice. As a result,
no spin precession of a heavy hole should be observed, which
is not the case [22–24]. It was shown in [22] that accounting
for the crystal lattice cubic symmetry in the form of the Hamil-
tonian term ∝ J3B results in the heavy hole having a nonzero
transverse g factor, which explains experimental findings.

The effect of cubic symmetry on the spin splitting of a
localized hole originates not only from the crystal lattice,
but also from the confining potential symmetry [11]. Such a
potential does not exist naturally in bulk semiconductors, but
has been realized recently in cube-shaped CdSe NCs [3,4].
Thus it is interesting to reveal the effect of NC shape on hole
spin splitting by comparing it in spherical and cube-shaped
NCs.

In this paper, we study theoretically the spin splitting of
holes in NCs of spherical and cubic shape in an applied
magnetic field. We analyze and compare contributions of both
the cubic symmetry of a semiconductor crystal structure and a
NC’s shape to hole spin splitting in an external magnetic field.
It is found that in cube-shaped NCs, both contributions to the
effective hole g factor are comparable with each other, and,
although smaller, not negligible as compared to the isotropic
contribution. We propose possible experimental manifesta-
tions of the cubically symmetric contribution to the hole spin
splitting.

The paper is organized as follows. In Sec. II, we intro-
duce the form of the hole effective Zeeman Hamiltonian in
an external magnetic field from symmetry consideration. In
Secs. III A and III B, we present results of calculations of
hole Zeeman splitting without accounting for valence band
warping in spherical and cube-shaped NCs. In Sec. III C, we
analyze the contribution from valence band warping on NC
of both shapes. In Sec. IV, we discuss possible experimen-
tal manifestations of the cubic anisotropy of hole Zeeman
splitting.

II. SYMMETRY CONSIDERATION

We consider a hole from the top of the valence band in NCs
based on semiconductors with a zinc-blende crystal lattice
and a strong spin-orbit interaction. For a hole localized in an
external potential Vext(r), and in the presence of an applied
magnetic field, the Hamiltonian takes form:

Ĥ = ĤL + ĤZ + ĤB + Vext(r). (1)

The dispersion of hole states from the top of the valence
band is described by the four-band Luttinger Hamiltonian ĤL

[12,25]:

ĤL = h̄2

2m0

[(
γ1 + 5

2
γ2

)
k2 − 2γ2

∑
α

J2
αk2

α

− 2γ3

∑
α �=β

{JαJβ}{kαkβ}
]
, α, β = x, y, z. (2)

Here, the operator J is the hole internal angular momentum
operator, for the �8 valence subband J = 3/2, γ1, γ2, γ3 are
Luttinger parameters, kα are the hole wave vector components,
and {ab} = (ab + ba)/2. The components of the wave vector
kα and pseudovector Jα transform according to the irreducible
representation �8 of the point group Oh or Td . The Luttinger
Hamiltonian (2) comprising three cubically symmetric invari-
ants is written for semiconductors with cubic symmetry of
the crystal lattice with an inversion center. The effects of odd
linear and cubic in kα terms, which are allowed if the inversion
center is lacking, for example, in the Td point group corre-
sponding to a zinc-blende crystal lattice, are not discussed in
this work. It can be easily shown by analogy to Ref. [26],
where it was done for electrons from conduction band, that
in potentials with inversion symmetry the linear and cubic in
wave vector terms in Hamiltonian do not contribute in the first
order to hole effective g factor. The linear and cubic in wave
vector terms in studied structures do not contribute also in first
order to hole spin splitting in zero magnetic field.

The external magnetic field gives two contributions to the
hole Hamiltonian (1). The first one is the Zeeman contribu-
tion, ĤZ [12,27]:

ĤZ = −2μBκ(JB) − 2μBq
(
J3

x Bx + J3
y By + J3

z Bz
)
, (3)

with κ and q being magnetic Luttinger parameters [12]. The
first term in (3) ∝ κ is spherically symmetric and the value of
the parameter κ can be estimated by perturbation theory using
results of Refs. [8,28] as

κ ≈ −2/3 + (2γ2 + 3γ3)/3 − γ1/3. (4)

The second term in (3) ∝ q has cubic symmetry, with axes
naturally coinciding with the crystal lattice axes. It is often
neglected as the value of q is small in typical semiconduc-
tors being two orders of magnitude less than κ [22,27]. The
matrix form of ĤZ (3), calculated in the standard basis of the
topmost �8 valence subband [29,30] is shown in Appendix A,
Eq. (A3).

The second contribution from the magnetic field is the
orbital contribution, ĤB. It comes from the hole wave vector k
in the Luttinger Hamiltonian ĤL (2) being replaced by k − e

c A,
where A is the vector potential of the electro-magnetic field.
We consider an arbitrary directed magnetic field and use the
symmetric gauge

A = 1
2 [B × r] = 1

2 (Byz − Bzy, Bzx − Bxz, Bxy − Byx). (5)

The given selection of A is necessary for studying of the hole g
factor anisotropy. This task can not be solved if one considers
B||z and A = (0, Bx, 0) [11,15,31].

The explicit form of the orbital contribution ĤB for the
gauge (5), neglecting the quadratic on magnetic field terms
is shown in Appendix A, Eqs. (A4) and (A6). Note, that
the Luttinger Hamiltonian ĤL has cubic symmetry due to
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valence band warping, γ2 �= γ3. As a result, the magnetic field
orbital contribution ĤB also inherits cubic symmetry in the
case γ2 �= γ3. Both ĤL and ĤB can be separated into isotropic
and cubically symmetric parts, see Eqs. (A1), (A2), (A4), and
(A6).

In a weak magnetic field, the effect of the magnetic field
on hole states can be calculated using first order perturba-
tion theory by considering ĤZ and ĤB as perturbations. In
the framework of the four-band Luttinger Hamiltonian (2)
neglecting the admixing of hole states from spin-orbit split-off
valence subband, hole effective g factors would not depend on
an NC size, but only on its shape and the type of confining
potential [11,15]. As the value of the hole effective g factor is
very sensitive to the wave function structure, one first has to
find proper zero field wave functions for the zero-filed Hamil-
tonian ĤL + Vext(r). For our calculations, we use numerical
methods developed in Refs. [11,15] and evolved here to take
into account γ2 �= γ3 and an arbitrary direction of external
magnetic field. We also have developed a numerical method
for calculation of hole states in spherical NC with boxlike
confining potential.

In zero magnetic field, and in bulk semiconductors for
Vext(r) ≡ 0, the hole states at the top of the valence band
(k = 0) are fourfold degenerate. The perturbation ĤZ lifts
this degeneracy completely in a weak external magnetic field.
Without accounting for the cubically symmetric contribution
(q = 0), this splitting is isotropic and equidistant. The four
spin states are characterized by the projection of J on the
magnetic field, and the splitting between neighboring states
is equal to 2κμBB. The nonzero cubically symmetric contri-
bution ∝ q �= 0 makes the hole Zeeman splitting anisotropic
(dependent on the angle between the magnetic field direction
and crystallographic axes) and nonequidistant. If the mag-
netic field is directed along one of the crystal axes denoted
as z, the splitting becomes E−3/2 − E+3/2 = 3gh,3/2μBB and
E−1/2 − E+1/2 = gh,1/2μBB, where g factors of heavy (Jz =
±3/2) and light (Jz = ±1/2) holes are

gh,3/2 = 2κ + 9
2 q, gh,1/2 = 2κ + 1

2 q. (6)

Note that values of gh,3/2 and gh,1/2 are different, although
this difference is small due to a small value of q [22]. In
bulk semiconductors, the contribution ĤB becomes important
at high magnetic fields, when hole Landau levels are formed
[12]. In weak magnetic fields, ĤB does not affect the hole g
factor.

The situation changes for localized holes, both in zero and
external magnetic fields. The symmetry of the localized hole
states depends additionally on the symmetry of the external
confining potential Vext(r), which can, in general, be arbitrary.
In this work, we consider Vext(r) with the spherical or cubic
symmetry. In the case of a cubically symmetric Vext, it is
assumed that the cubic axes of the confining potential coincide
with the crystal lattice axes. As a result, the symmetry of the
whole system is spherical or cubic.

In spherically symmetric systems, when cubically symmet-
ric corrections can be neglected, the hole states are classified
by their total angular momentum j = J + l (l is the orbital an-
gular momentum) and its projection jz = M on some marked
out axis [25,32]. Due to inversion symmetry, the states with
even and odd values of l are separated and the ground states

is in most cases even. In cubic crystals, hole states have to be
classified by irreducible representations of the corresponding
point group, in our case Oh. Therefore, both the internal angu-
lar momentum and the total angular momentum of the hole, as
well as their projections, are no longer good quantum numbers
[33]. However, the hole ground state in zero magnetic field re-
mains fourfold degenerate and can be traced to the spherically
symmetric state with total angular momentum j = 3/2. It can
be described by cubic invariants constructed from the pseu-
dovector components jα = Jα + lα (α = x, z, y) transforming
like Jα according to the �8 representation. Pseudospin j can
be considered as a generalized hole angular momentum. As
we neglect the odd in wave vector contributions to the hole
Hamiltonian, all results presented below are valid both for Oh

and Td point groups, so for brevity, we omit the parity indices.
We further consider even hole states with j = 3/2 and pro-
jections M = jz = ±3/2,±1/2 on the crystallographic axis
z. Importantly, for this state, the matrices jα in the basis of
the eigenstates �M of the zero-field Hamiltonian ĤL + Vext

have the same form as the matrices Jα in the basis of four
Bloch functions uμ, μ = ±3/2,±1/2 of �8 valence band with
Jz = μ [34].

For Vext(r) �= 0 the orbital contribution from the magnetic
field, ĤB, becomes nonzero. In contrast to bulk, for a localized
hole two more factors may result in the cubically symmetric
corrections to the Zeeman splitting: the cubic shape of the
NC coming from Vext(r) �= 0 itself, and valence band warping.
Both these factors lead to a hole wave function of cubic
symmetry in zero magnetic field. We study the effect of these
factors in addition to the ∝ q cubic term in the Zeeman split-
ting of the hole states in an external magnetic field.

In an external magnetic field, the effective Zeeman Hamil-
tonian of a localized hole with j = 3/2 can be written as [13]

Ĥ eff
Z = −μeffB

= −μBgh( jB) − 2μBQeff
(

j3
x Bx + j3

y By + j3
z Bz

)
, (7)

where gh and Qeff are responsible for the isotropic and cubi-
cally symmetric parts of the hole effective magnetic moment
μeff , correspondingly. In the general case, μeff is not co-linear
to j and their relation is

μeff
α = μBgh jα + 2μBQeff j3

α. (8)

The first term linear in j in (8) should be written with the help
of a second rank tensor as gh

βα jβ , and the second one, cubic in
j, with the help of a fourth rank tensor Qβγ δα jβ jγ jδ . In Oh and
Td symmetry, a second rank tensor is diagonal and described
by one scalar gsph

h = gh
xx = gh

yy = gh
zz, while the fourth rank

tensor Qβγ δα is described by two nonzero constants Q1 =
Qeff

αααα , α = x, y, z and Q2 = Qeff
ααββ = Qeff

αββα = Qeff
αβαβ with

α �= β, α, β = x, y, z. However, as the j2
x + j2

y + j2
z trans-

forms as a scalar in Oh and Td , the two cubically symmetric
contributions can be reduced to one isotropic contribution
∝ Q2 added to the gsph

h term and one cubically symmetric
contribution, so that

gh = gsph
h + 41Q2/2, Qeff = Q1 − 3Q2. (9)

Deriving Eqs. (8) and (9), we took into account j2
x +

j2
y + j2

z = j( j + 1) = 15/4 for j = 3/2 and computational
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FIG. 1. Schematic of the relative orientation of a NC, applied magnetic field B, and the laboratory frame xyz for an oblate NC (a), prolate
NC (b), and cube-shaped NC (c). The schematic shows the splitting of hole states in the presence of uniaxaial anisotropy �an and applied
magnetic field for the shown NC shapes; [(d)–(f)] dependencies of the effective g factors g3/2 = �E3/2/3μBB and g1/2 = �E1/2/μBB of the
hole ground state on the angle θ between magnetic field direction and z. Calculations are done for ϕ = 0, gh = −0.8, and Qeff = −0.04.
Dashed line corresponds to gh = gsph

h = −0.98 and Qeff = 0.

relations for jβ jγ − jγ jβ = ieβγ δ jδ , where eγ βδ is a third rank
antisymmetric unit tensor.

If the symmetry of Vext is additionally lowered to include
some uniaxial perturbation V an

ext along crystal axis z with cor-
responding point symmetry group D4h, the hole states with
|M| = 3/2 (heavy holes) and |M| = 1/2 (light holes) are split
in zero magnetic field, as shown in Figs. 1(a) and 1(b). Then,
the axes z and x, y become nonequivalent, and the hole ef-
fective Hamiltonian in an external magnetic field should be
written as

Ĥ eff
Z = −μB[g⊥( jxBx + jyBy) + g‖ jzBz] −

− 2μB
[
Qeff

⊥
(

j3
x Bx + j3

y By
) + Qeff

‖ j3
z Bz

]
. (10)

Instead of four parameters g⊥, g‖, Qeff
⊥ , and Qeff

‖ , it is instruc-
tive to introduce the following four parameters

g||
3/2 = g‖ + 9

2 Qeff
‖ , g||

1/2 = g‖ + 1
2 Qeff

‖ ,

g⊥
3/2 = Qeff

⊥ , g⊥
1/2 = 2g⊥ + 10Qeff

⊥ . (11)

If the splitting energy �an between the heavy (|M| = 3/2) and
light (|M| = 1/2) hole states is large as compared with the
magnetic field induced splitting, �an � μBB, in the magnetic
field they can be considered separately. In this case, param-
eters of (11) have the meaning of the effective longitudinal
(transverse) g factors describing the splitting of heavy and
light hole states in a magnetic field directed parallel (perpen-
dicular) to the anisotropy axis. For an arbitrary field direction,
the Zeeman splitting of heavy and light holes, in this case,
would be described by the matrices Eq. (A9) given in Ap-
pendix A. It is isotropic in xy plane and highly anisotropic

with respect to the angle θ between the magnetic field and z
axis:

�E|M| = 2|M|μB

√(
g||

|M|Bz
)2 + (

g⊥
|M|B⊥

)2
. (12)

where B⊥ =
√

B2
x + B2

y = B sin θ .

Importantly, for Bz = 0, the Zeeman splitting of holes with
|M| = 3/2 is not zero only due to a nonzero g⊥

3/2 = Qeff
⊥ ,

while the difference between g||
3/2 and g||

1/2 arises only due to
a nonzero Qeff

|| . If the cubically symmetric terms are absent
in the Luttinger Hamiltonian and external potential, Qeff

⊥ = 0,
the transverse heavy hole g factor vanishes. At the same time,
the uniaxial symmetry of V an

ext , for example, for spheroidal
NCs, contributes to g⊥ �= g‖ �= gsph

h and induce Qeff
‖ �= 0. This

results in g||
3/2 �= g||

1/2 in spheroidal NCs, as shown in [11].
As we study NCs with shape close to spherical or cubic in

what follows, we focus on effects stemming from a nonzero
cubically symmetric contribution to the effective Zeeman
Hamiltonian (7). We neglect the effect of V an

ext on the uniaxial
anisotropy of hole Zeeman splitting and assume in Eqs. (10)
and (11) that

g⊥ ≡ g‖ ≡ gh, Qeff
⊥ ≡ Qeff

‖ ≡ Qeff. (13)

The effective g factors dependencies on the angle θ , for hole
states with |M| = 3/2 and |M| = 1/2, calculated accounting
for the cubic symmetry of the crystal lattice for parameters of
CdSe, gh = −0.8 and Qeff = −0.04 are shown in Figs. 1(d)
and 1(e), respectively. Dashed lines in Figs. 1(d) and 1(e)
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show the effective g factor calculated neglecting lattice sym-
metry with gh = −0.98 and Qeff = 0.

If the hole states with |M| = 3/2 and |M| = 1/2 are degen-
erate in zero magnetic field, the matrix form of the effective
Zemman Hamiltonian is given in Eq. (A8), Appendix A. In
this case, a simple expression like Eq. (12) for the hole Zee-
man splitting in an arbitrary directed magnetic field cannot be
written. For the magnetic field directed along a crystal axis,
the four hole states in the magnetic field are characterized
by the projection MB = ±3/2,±1/2 of j on B, MB = M if
B ‖ z. For an arbitrary field direction, the ∝ Qeff term mixes
the states with different MB = ( jB)/B as well as with different
M = jz. However, we continue to notate the four eigenstates
and their respective Zeeman splitting obtained by the diago-
nalizaion of the matrix Eq. (A3) with MB = ±3/2,±1/2 and

�E3/2 = 3
2 g3/2μBB, �E1/2 = 1

2 g1/2μBB.

In that case, the hole Zeeman splittings are anisotropic with
all cubic axes being equal. In Fig. 1(f), we show dependence
of the effective g factor on the angle θ with the same set of
parameters as in Figs. 1(d) and 1(e).

As stated above, the hole Hamiltonian (1) contains three
sources of the cubically symmetric contribution to the hole g
factor: a crystallographic contribution to the Zeeman Hamil-
tonian ∝ q, the shape of the NC coming in form of Vext(r),
and valence band warping, γ2 �= γ3. Below we show how
these three factors contribute to gh and Qeff. It is important
to note that the values of gh and Qeff can be determined from
calculations performed for the magnetic field along one of the
cubic axes, as they are equal. However, we verify the resulting
g factors and Zeeman splittings by direct numeric calculations
for an arbitrary direction of magnetic field.

We start from the first two effects and consider in
Secs. III A and III B the Hamiltonian (2) in the spherical
approximation neglecting valence band warping:

ĤL = h̄2

2m0

[(
γ1 + 5

2
γ

)
k2 − 2γ {JαJβ}{kαkβ}

]
, (14)

where γ = (2γ2 + 3γ3)/5 and the bulk light-hole and heavy-
hole effective masses are: mlh = m0/(γ1 + 2γ ) and mhh =
m0/(γ1 − 2γ ), respectively. In Sec. III C we consider ad-
ditionally the effect of the γ2 �= γ3. We demonstrate that
the Zeeman crystallographic cubically symmetric contribution
∝ q contributes only to the Q1 constant and, thus, to Qeff, but
does not change the isotropic part of hole effective g factor.
The cubic shape of NCs as well as the cubic terms in the hole
kinetic energy, on the contrary, contribute to both Q1 and Q2,
hereby changing isotropic part of hole g factor, gh, as well as
inducing the Qeff term even for q = 0.

III. RESULTS AND DISCUSSION

A. Spherically symmetric nanocrystals

For spherically symmetric NCs considered in the spherical
approximation of the Luttinger Hamiltonian (14), the cubi-
cally symmetric contribution to the hole g factor may originate
only from the term ∝ q in ĤZ . In a spherically symmetric
external potential Vext(r) with isotropic kinetic energy, hole
states can be classified by their total angular momentum j

[25,32,35,36] and their wave functions are [25]

� jM =
√

2 j + 1
∑

l

(−1)l−3/2+M (i)lR jl (r)

×
∑

m+μ=M

(
l 3/2 j
m μ −M

)
Yl,muμ. (15)

Here, Ylm are spherical harmonics [37] being the eigenfunc-
tions of the hole orbital momentum l , (i k l

m n p ) are 3 j Wigner
symbols. The ground hole state is a fourfold degenerate SD-
like state and consists of functions with l = 0 and l = 2. For
simplicity, we denote the respective radial functions as R0(r)
and R2(r).

For q ≡ 0, the hole g factor was calculated in Ref. [14] and
can be written as (see Eq. (12) of Ref. [11] in the limit of
strong spin-orbit interaction)

gsph
h = 2κS(β ) + 4

5
γ1I (β ),

S(β ) =
(

1 − 4

5
Ig
2

)
, I (β ) = 1 − β

1 + β
Ig
1 + 2β

1 + β
Ig
2 , (16)

where β is the light to heavy hole effective mass ratio β =
(γ1 − 2γ )/(γ1 + 2γ ). Function S(β ) describes the renormal-
ization of the isotropic part of the Zeeman contribution ĤZ ,
function I (β ) describes the orbital contribution to the g factor
stemming from ĤB. Integrals Ig

1 and Ig
2 were introduced in Ref.

[14]:

Ig
1 =

∫ ∞

0
r3R2(r)

dR0(r)

dr
dr, Ig

2 =
∫ ∞

0
r2R2

2(r)dr. (17)

The dependencies I (β ) and S(β ) for a spherically symmetric
NC with parabolic and boxlike potentials are shown in Fig. 2.

If q �= 0, the corresponding contribution to the hole g factor
can be calculated using first order perturbation theory. It can
be easily shown, that for a hole wave function in the form
of Eq. (15), Q2 = 0, gh = gsph

h and Qeff = Q1 = Qq, where
function Qq(β ) can be written as

Qq(β ) = (
1 − 4

5 Ig
2

) = S(β ). (18)

One can see in Fig. 2 that Qq(β ) = S(β ) does not exceed unity
in the whole range of β. Thus, in spherical NCs, the contribu-
tion to the hole g factor from the cubically symmetric part of
the Zeeman Hamiltonian is comparable to the corresponding
contribution in bulk.

B. Cube-shaped nanocrystalls

In cube-shaped NCs there is an additional source of the
cubic symmetry arising from the shape of the NC. As an
example, we consider cube-shaped NCs with a rectangular
infinite confining potential. It was shown that the hole ground
state is an even S-like state for the majority values of β,
although, for 0.1425 � β � 0.0775 the ground state for cube-
shaped NCs with boxlike infinite potential is a P-like odd
state [11]. Both states are fourfold degenerate, as the cubically
symmetric terms in the Luttinger Hamiltonian do not split
states with total angular momentum less than 5/2 [33]. Here
we consider only the lowest even hole state, which can be
traced to the S3/2 state in spherical NCs.
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FIG. 2. Dependencies of the functions (a) I (β ) and (b) S(β ) on
the light to heavy hole effective mass ratio β for spherical NCs with
parabolic and boxlike potentials and cube-shaped NCs.

As we have shown in Ref. [11], even if we neglect the cubic
contribution to the Zeeman Hamiltonian (3), and consider
the Luttinger Hamiltonian in the spherical approximation, g
factors of “heavy” (| jz| = 3/2) and “light” (| jz| = 1/2) holes
are different in cube-shaped NCs. In Ref. [11] we qualitatively
explained this result by an effective cubically symmetric con-
tribution to the hole g factor coming from the NC shape. In
this work, we study the effect of the cubic shape of the NC in
more detail.

Unlike the wave functions of the hole confined in a spher-
ical NC, those for a cube-shaped NC can not be written in a
simple analytical form. We find the hole energy spectrum and
wave functions numerically using our previously developed
method (see Ref. [11]). The wave functions are found as the
expansion on the basis of hole eigenfunctions in the parabolic
band model in the same NC. Then the matrix elements for the
kinetic energy, as well as the magnetic field contributions, are
found and the eigenstates and eigenenergies are obtained by
diagonalizing the resulting matrix-form Hamiltonian. Here,
we also expand our method for an arbitrary oriented magnetic
field.

The cubic shape of the NC leads to additional contributions
to gh and Qeff as compared with spherical NCs, Eqs. (16) and
(18). Phenomenologicaly, one can write

gh = I (β )γ1 + 2S(β )κ + Gq(β )q, (19)

Qeff = Qγ (β )γ1 + QZ (β )κ + Qq(β )q. (20)

Here, functions I (β ), S(β ), Gq(β ), Qγ (β ), QZ (β ), and Qq(β )
depend only on the light to heavy hole effective mass ratio
β, and on the type and shape of the NC potential. Function
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FIG. 3. Dependencies of functions (a) Gq(β ) and Qq(β );
(b) Qγ (β ) and QZ (β ) on the light to heavy hole effective mass ratio
β for cube-shaped NCs, calculated numerically.

Gq(β ) ∝ Q2 describes the contribution of the cubically sym-
metric term in the Zeeman Hamiltonian (3) to the isotropic
part of the effective Zeeman Hamiltonian (7). Importantly,
here Q2 �= 0 only due to the cubic symmetry of the hole
wave functions inside a NC. In addition, the cubic symmetry
of the wave functions induces two absent in spherical NCs
contributions into Qeff term proportional to the parameters
of the isotropic Luttinger Hamiltonian and described by the
functions Qγ (β ) and QZ (β ). Expressions (19) and (20) are
reduced to Eqs. (16) and (18) for spherical NCs, if one take
Gq(β ) ≡ Qγ (β ) ≡ QZ (β ) ≡ 0.

For cube-shaped NCs, all functions from Eqs. (19) and
(20) are nonzero and have to be calculated numerically. The
dependencies I (β ) and S(β ) are shown in Fig. 2, Gq(β ),
Qq(β ), Qγ (β ) QZ (β ) are sown in Fig. 3. Interestingly, for
cube-shaped NCs, unlike spherical ones, Qq(β ) �= S(β ). This
fact is the consequence of difference between the structure of
hole wave function in spherical and cube-shaped NCs. From
Fig. 3(b), one can see that in cube-shaped NCs contributions
to Qeff from the orbital magnetic field contribution ĤB and
from the isotropic part of the Zeeman Hamiltonian can be
quite large for typical β ≈ 0.2 in the semiconductors we are
interested in (see Table I). It results in substantial hole Zeeman
splitting anisotropy, even in the absence of valence band warp-
ing. The parameter Qq(β ) in cube-shaped NCs, as in spherical
NCs, is less than unity and leads to only a small contribution
from the crystallographic Zeeman Hamiltonian ∝ q to Qeff. A
larger value of Gq(β ) also leads to small renormalization of
the isotropic gh part of the hole g factor due to a small value
of q.
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TABLE I. Valence band parameters used for the calculation of the hole Zeeman splitting.

No. Material γ1 γ2 γ3 β κ α q Refs.a

1 zb-CdSe 2.52 0.65 0.95 0.2 −0.12 0.36 − [43]
2 zb-ZnSe 3.94 1.00 1.52 0.2 0.21 0.4 − [44]
3 CdTe 4.14 1.09 1.62 0.19 0.3 0.38 − [45]
4 GaAs 6.79 1.92 2.68 0.18 1.03 0.32 0.017 [22,46]

aReferences are given for the γ1, γ2, γ3 and q Luttinger parameters, and we use relations β = (γ1 − 2γ )/(γ1 + 2γ ) and κ ≈ 2/3 + 5γ /3 −
γ1/3 with γ = (2γ2 + 3γ3)/5 and α = (γ3 − γ2)/γ .

C. The effect of valence band warping

The spherical approximation for the Luttinger Hamilto-
nian, Eq. (14), is widely used and has proved itself effective
in calculating the energy of the hole ground state. This ap-
proximation gives a correct hole ground state energy in any
spherically symmetric potential in first order perturbation the-
ory, while the second order corrections are also usually small
as in typical semiconductors γ3 − γ2 
 γ3 + γ2 [38]. On the
other hand, the effect of the valence band warping, γ2 �= γ3,
on the hole g factor is expected to be stronger due to nonzero
first order corrections to the hole wave functions. Indeed,
the renormalization of the hole g factor in nanostructures is
controlled to a large extent by the mixing of hole states with
different momentum projections on the magnetic field [11].
This mixing is modified strongly by the kinetic energy term
∝ α, Eq. (A2), with α = (γ3 − γ2)/γ being the parameter
characterizing valence band warping. This effect is qualita-
tively similar to the effect of the cubic shape of NCs in the
case γ2 = γ3, considered in previous section.

Here, we discuss the effect of valence band warping on the
hole Zeeman splitting in an external magnetic field. Unlike
the cubically symmetric contribution to the Zeeman Hamilto-
nian (3), valence band warping cannot be taken into account
by first order perturbation theory with wave functions from
Eq. (15) as good zero order approximation functions. The
correct functions must account for valence band warping even
in zero magnetic field [39–42], and these functions cannot be
found analytically. The full analysis of the effect of valence
band warping on the hole effective g factor for arbitrarily β

is beyond the scope of this work. Here, we confine ourselves
to the numerical analysis of the warping effect in a number of
semiconductors.

To obtain the Zeeman splitting of the hole ground state
in spherical parabolic potential and cube-shaped NCs, we
calculate first hole wave functions in zero magnetic field using
our numerical methods developed for spherical approximation
of the Luttinger Hamiltonian and modified appropriately to
take valence band warping into account [11,31]. As we use
the full basis (accurate within its finite size in real calculation),
obtained results are valid also when the nonspherical kinetic
energy term of the hole Hamiltonian is included. We develop
additionally the numerical method for calculating hole wave
functions in spherical NCs with boxlike potential accounting
for the valence band warping as described in Appendix B.
Importantly, even in spherical NCs the account of the va-
lence band warping results into cubical anisotropy of the hole
spatial distribution. Then, the Zeeman splitting in magnetic
field is found treating ĤZ + ĤB as the perturbation, where ĤB

includes both isotropic and cubically symmetric terms ∝ α

(see Appendix A).
The valence band warping leads to nonspherical hole

constant-energy surfaces in bulk semiconductor. As an ex-
ample in Fig. 4(a), we show the constant-energy curves of

FIG. 4. (a) Constant-energy curves of bulk heavy, Jz = 3/2 (blue
color), and light holes, Jz = 1/2 (red color), in xy plane, (b) and
(c) Constant-Zeeman-splitting curves for hole states with |MB| = 3/2
blue color and |MB| = 1/2 red color calculated for spherical and
cube-shaped NCs with boxlike potential, correspondingly. Calcula-
tions were made for CdSe parameters γ1 = 2.52, γ2 = 0.65, γ3 =
0.95 [43], solid lines correspond to accounting for valence band
warping, dashed lines correspond to spherical approximation of the
Luttinger Hamiltonian with γ2 = γ3 = γ = 0.83.

235310-7



SEMINA, GOLOVATENKO, AND RODINA PHYSICAL REVIEW B 108, 235310 (2023)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

spherical parabolic
spherical box
cube

α = (γ3−γ2)/γ

G
w
(α
)

(a)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
q w
(α
)

α = (γ3−γ2)/γ

(b)

0.0 0.1 0.2 0.3 0.4 0.5

-0.15

-0.10

-0.05

0.00

Q
q w
(α
)

α = (γ3−γ2)/γ

(d)

0.0 0.1 0.2 0.3 0.4 0.5
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

Q
w
(α
)

α = (γ3−γ2)/γ

(c)

FIG. 5. Functions (a) Gw(α), (b) Gq
w(α), (c) Qw(α), and (d) Qq

w(α) calculated numerically for CdSe valence parameters [43].

bulk heavy and light holes in xy plane in zero magnetic
field, calculated for CdSe parameters γ1 = 2.52, γ2 = 0.65,
γ3 = 0.95 (corresponding to γ = 0.83) [43], solid lines cor-
respond to accounting for the valence band warping, dashed
lines correspond to the spherical approximation of the Lut-
tinger Hamiltonian. In Fig. 4(a), one can clearly see cubic
symmetry of constant-energy curves and more pronounced
anisotropy for heavy holes if γ2 �= γ3. In Figs. 4(b) and 4(c),
we show the constant-Zeeman-splitting curves in external
magnetic field B = (Bx, By, 0) for states with |MB| = 3/2 and
|MB| = 1/2 calculated for spherical and cube-shaped NCs,
respectively, with the same Luttinger parameters. In contrast
to the Fig. 4(a), the anisotropy is more pronounced for holes
with |MB| = 1/2. Due to the equivalence of all cubic axes,
the picture would be the same for any plane containing two
cubic axes. It is noteworthy, that in the presence of the uniaxial
splitting �an of the localized hole states with |M| = 3/2 and
1/2 [see Figs. 1(a) and 1(b)], which allows one to neglect their
mixing, the transverse g factor in the plane perpendicular to
the anisotropy axis becomes isotropic, even with accounting
for valence band warping. The only anisotropy in that case
would be with respect to the angle with the z axis (transverse
or longitudinal g factor).

Let us proceed to a quantitative analysis of the hole g
factor anisotropy. The g factor components gh (19) and Qeff

(20) now also depend on the valence band warping parameter
α. For illustrative purposes, we numerically calculated those
dependencies with valence band parameters for zinc-blende
CdSe: γ1 = 2.52, γ = 0.83 [43], changing γ2 and γ3 in such
a way, that value of γ = (2γ2 + 3γ3)/5 = 0.83 and β = 0.2

remain constant. Simultaneously, the value of κ = −0.12,
determined from Eq. (4) is also constant. As we are interested
now only in dependencies of gh and Qeff on α, it is convenient
to write them as

gh(α) = G0 + Gw(α) + (
Gq

0 + Gq
w(α)

)
q, (21)

Qeff(α) = Q0 + Qw(α) + (
Qq

0 + Qq
w(α)

)
q. (22)

Here G0, Gq
0, Q0, and Qq

0 describe gh and Qeff calculated after
Eqs. (19) and (20) for α = 0 and fixed values of β and κ.
Accounting for α �= 0 leads to cubically symmetric shape of
hole wave function in zero magnetic field, and, consequently,
to additional contributions to Q2 tensor component even in
spherical NCs. This results in new contributions to both gh,
described by the functions Gw(α) and Gq

w(α), and Qeff , de-
scribed by the functions Qw(α) and Qq

w(α), respectively.
The numerically calculated dependencies of Gw(α),

Gq
w(α), Qw(α), and Qq

w(α) for chosen CdSe parameters for
spherical NCs with parabolic and boxlike potentials, and
cube-shaped NCs are shown in Fig. 5. For γ2 = 0.65 and γ3 =
0.95 [43] (parametrization “1” in Table I), we get α ≈ 0.36.
Corrections Gw(α) and Qw(α) are quite large at α ≈ 0.36,
leading to noticeable renormalization of gh and Qeff due to
valence band warping. The dependence of hole g factors on
the magnetic field direction in spherical NCs with parabolic
confining potentials corresponding to parameters of CdSe,
parametrization “1” in Table I, is shown in Fig. 1(f). One
can see a strong difference to the spherical approximation for
light holes and a rather small difference for heavy holes. In
Figs. 1(d) and 1(e), the dependencies of hole g factors on the
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TABLE II. Parameters g||
3/2, g||

1/2, g⊥
3/2, g⊥

1/2, gh, and Qeff calculated for semiconductor NCs with different shape and type of confining
potential, numbers brackets corresponds to spherical approximation of Luttinger Hamiltonian. Material parameters used for calculations are
given in Table I.

Spherical NCs with parabolic potential

No Material g||
3/2 g||

1/2 g⊥
3/2 g⊥

1/2 gh (gsph
h ) Qeff

1 zb-CdSe −0.97 (−0.98) −0.8(−0.98) −0.04(0) −1.99 (−1.96) −0.777(−0.98) −0.04(0)
2 zb-ZnSe −0.85(−0.86) −0.49(−0.86) −0.09(0) −1.79(−1.72) −0.444(−0.86) −0.09(0)
3 CdTe −0.8(−0.82) −0.45(−0.82) −0.09 (0) −1.7(−1.64) −0.4(−0.82) −0.09(0)
4 GaAs, q = 0 −0.58 (−0.61) −0.006 (−0.61) −0.14 (0) −1.3 (−1.22) 0.067(−0.61) −0.14(0)
5 GaAs, q = 0.017 −0.52 (−0.61) 0.007 (−0.61) −0.13 (0) −1.16 (−1.22) 0.07(−0.61) −0.13(0)

Spherical NCs with boxlike potential

No. Material g||
3/2 g||

1/2 g⊥
3/2 g⊥

1/2 gh (gsph
h ) Qeff

1 zb-CdSe −1.08(−1.06) −0.82(−1.06) −0.064 (0) −2.21 (−2.12) −0.78 (−1.06) −0.064 (0)
2 zb-ZnSe −1.02 (−1) −0.55 (−1) −0.12(0) −2.17 (−2) −0.5(−1.03) −0.12(0)
3 CdTe −1.01 (−1.03) −0.54 (−1.01) −0.12 (0) −2.16 (−2.2) −0.48(−1.01) −0.12(0)
4 GaAs, q = 0 −1.08 (−1.06) −0.36 (−1.06) −0.18(0) −2.34 (−2.12) −0.27(−1.06) −0.18(0)
5 GaAs, q = 0.017 −1.05 (−1.06) −0.355 (−1.06) −0.173(0) −2.26 (−2.12) −0.26(−1.06) −0.17(0)

Cube-Shaped NCs

No. Material g||
3/2 g||

1/2 g⊥
3/2 g⊥

1/2 gh Qeff

1 zb-CdSe −0.87 (−0.96) −0.47 (−0.73) −0.1 (−0.058) −1.84 (−1.98) −0.42(−0.7) −0.1(−0.058)
2 zb-ZnSe −0.76 (−0.87) −0.17 (−0.3) −0.15 (−0.14) −1.68 (−1.88) −0.09(−0.24) −0.15(−0.14)
3 CdTe −0.75 (−0.86) 0.24 (−0.26) −0.25 (−0.15) −1.76 (−1.86) 0.37(−0.19) −0.25(−0.148)
4 GaAs, q = 0 0.58 (−0.72) 1.3 (0.42) −0.18(−0.29) 1 (−1.8) 1.4(0.58) −0.18(−0.295)
5 GaAs, q = 0.017 0.5 (−0.72) 1.33 (0.42) −0.2(−0.29) 0.8 (−1.8) 1.44(0.58) −0.2(−0.295)

magnetic field direction are shown for the case of split states
of heavy and light holes. Here the difference is smaller than in
the spherical case.

Parameters g||
3/2, g||

1/2, g⊥
3/2, and g⊥

1/2 in spherical NCs with
parabolic and boxlike infinite potentials and cube-shaped NCs
with boxlike infinite potential, calculated for several semicon-
ductors (for parameters see Table I) are shown in Table II.
Numbers in brackets correspond to the spherical approxima-
tion of the Luttiger Hamiltonian. As we know the value of q
only for GaAs, all calculations were made for q ≡ 0. Corre-
sponding values of gh and Qeff are also shown in Table II.

The contribution to Qeff induced by valence band warping
is quite substantial and comparable to the contribution from
the cubic shape of NC. A similar effect was reported for
acceptors [13] and disklike quantum dots [47], where the
quite large cubically symmetric contribution to hole Zeeman
splitting coming from valence band warping was reported.
The mixing of hole states with momentum projections +3/2
and −3/2 in tranvers magnetic field in trigonal quantum dots
allowed due to reduction of symmetry to C3v point group
had been reported in Refs. [48,49]. Note that depending on
semiconductor, contributions to Qeff from cubic shape of NC
and valence band warping in cube-shaped NCs could be of the
same or opposite signs. As one can see comparing Figs. 4(b)
and 4(c), the cubic anisotropy of the light hole Zeeman split-
ting is pronounced already in spherical NCs made of zb-CdSe
and is enhanced by factor of 2 in cube-shaped NCs. Although,
corrections to gh and Qeff are noticeable, for heavy hole they
numerically almost compensate each other resulting in much

weaker anisotropy, see corresponding curves in Figs. 4(b) and
4(c).

As mentioned above, we made all our estimations of the
effect of valence band warping on hole g factors for q ≡ 0
because only the value for GaAs is known from the literature.
Here, we demonstrate the smallness of the q �= 0 effect. We
made a calculation taking into account q �= 0 for GaAs. The
results are also shown in Table II in lines with label 5. One
can see a small difference, as compared to lines with label
4, corresponding to the same set of Luttinger parameters and
q = 0.

IV. POSSIBLE EXPERIMENTAL MANIFESTATIONS
OF THE HOLE g FACTOR CUBIC ANISOTROPY

In this section, we discuss possible experimental conse-
quences of the nonzero value of Qeff . Let us firstly discuss
manifestations of the hole g factor anisotropy in the case of
colloidal nanostructures with split states of light and heavy
holes [see Fig. 1(a)], such as spheroidal or cuboidal nanocrys-
tals, where splitting can reach tens of meV, or nanoplatelets
with a splitting up to 300 meV [50]. In such structures, the
value of the transverse g factor of the heavy hole, g⊥

3/2, is
determined only by the cubically symmetric contribution Qeff

to the effective Zeeman Hamiltonian. Due to a large splitting
of the light and heavy hole states in these structures, a fast
hole spin relaxation, usually observed in bulk semiconductors,
should be suppressed. It opens the possibility for detection
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of the Qeff related contribution from studies of the hole spin
precession, as was done for epitaxial quantum wells [22–24].

Another possible manifestation concerns the degree of
circular polarization (DCP) of photoluminescence in a mag-
netic field for ensembles of neutral colloidal nanocrystals or
nanoplatelets. At low temperatures, the photoluminescence
properties of these nanostructures are determined by emission
of dark excitons with the projection of the total angular mo-
mentum of an electron and a hole Fz = 2 on the anisotropy
axis [16]. It was shown theoretically in Ref. [17] that DCP
should reach 75% for an ensemble of randomly oriented NCs
in high magnetic fields. However, this upper limit was never
observed experimentally. It was proposed previously that a
low saturation value of DCP is caused by nonradiative re-
combination of dark excitons [17], or by linearly polarized
phonon-assisted emission of dark excitons [51].

Our analysis shows that a nonzero transverse g factor of the
heavy hole, g⊥

3/2 ∝ Qeff , also can affect the saturation value
of DCP. In Ref. [17], it was assumed that dark exciton states
with Fz = ±2 gain oscillator strength in a transverse magnetic
field due to mixing of electron spin states ±1/2. Under this
condition, the bright exciton state with Fz = +1(−1) admixes
to the state Fz = +2(−2), respectively. The dark exciton states
Fz = ±2 inherit optical properties of the bright exciton states
and emit σ± polarized light along the anisotropy axis of a
nanocrystal, respectively [see Fig. 6(a)]. The nonzero com-
ponent g⊥

3/2 allows admixture of the bright exciton state Fz =
+1(−1) to the dark exciton state Fz = −2(+2). It results in
opposite circular polarization of photons emitted by the dark
exciton states and in a decrease of the DCP saturation value.
The decreasing factor depends on the angle θ between the
anisotropy axis of a NC and magnetic field direction. For
a given angle θ , this factor equals (a2

−1 − a2
+1)/(a2

−1 + a2
+1),

where a+1/−1 are amplitudes of the Fz = ±1 exciton states in
the wavefunction of the Fz = −2 dark exciton state, which is
usually the lowest in energy (i.e. predominantly populated)
exciton state. Amplitudes a−1 and a+1 are proportional to
electron g factor, ge, and parameter Qeff , respectively. It means
that depending on the ratio ge/Qeff , the value of the dark
exciton DCP can vary in a wide range.

Now, let us consider cube-shaped NCs, where a large
anisotropy of the hole g factor is expected. In these NCs,
the ground hole state is fourfold degenerate in the absence
of a magnetic field. Thus one cannot expect experimental
observation of Qeff related effects using time-resolved spec-
troscopy due to a fast hole spin decoherence. We suppose
that observation of these effects can be realised by photolu-
minescence spectroscopy of single cube-shaped NCs in an
applied magnetic field. For this purpose, the best candidate
is the negatively charged trion (a hole plus two electrons in a
singlet state), since its spin splitting is determined solely by
the hole g factor and there is no exchange interaction due to
the singlet electrons configuration.

In our considerations, we assume that a cube-shaped NC
stands on a substrate, and its edges are directed along the axes
of the laboratory coordinate system, as shown in Fig. 1(c). A
magnetic field is applied in the xz plane at an arbitrary angle
θ . The photoluminescence signal is determined by photons
emitted along the z axis. The excited state of the system is the

FIG. 6. (a) Schematic of the Zeeman splitting of the dark Fz =
±2 and bright Fz = ±1 exciton states in NCs with a large anisotropic
splitting �an. Arrows show admixture of bright exciton states to the
lowest dark state Fz = −2 resulting in its emission with σ+ or σ−

polarization. (b) Optical transitions for a negatively charged trion
with magnetic field applied at angle θ = 0 with respect to the crystal
z axis. Blue, red, and green arrows show transitions with σ−, σ+, and
π polarization, respectively. Black and white arrows show spin of the
electron and hole, respectively.

negative trion. Its spin splitting in an applied magnetic field
is determined by the spin splitting of hole spin states. After
the radiative recombination of the trion, there remains one
electron with the spin projection up or down in the magnetic
field direction. For a tilted magnetic field, the excited and
ground eigenstates of the system are superpositions of the
hole and electron basis states along the z axis, respectively. It
results in an angular dependence of the energy and oscillator
strength of trion emission lines. A schematic of the energy
states of the system and possible allowed transition for mag-
netic field directed in the Faraday geometry (along the z axis
of the laboratory frame) is shown in Fig. 6(b). Details of the
calculation can be found in Appendix C.

We performed calculations for cube-shaped NCs made
of CdSe, CdTe, GaAs and ZnSe with edge size of 15 nm,
according to a typical size from [3]. In our model, the
only size-dependent parameter is the electron g factor. Its
size dependence can be found within the k · p method [11].
For the NC size of 15 nm, the calculated electron g fac-
tor equals: ge(CdSe) = 0.5, ge(CdTe) = −1, ge(GaAs) =
0.3, and ge(ZnSe) = 1.2. The upper row in Fig. 7 cor-
responds to the spherical approximation of the Luttinger
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FIG. 7. Calculated spectra of the negative trion at T = 4 K and B = 10 T in cube-shaped NCs of 15 nm size for [(a) and (b)] CdSe, [(c) and
(d)] CdTe, [(e) and (f)] GaAs, and [(g) and (h)] ZnSe. The upper row is calculated for the spherical approximation of the Luttinger Hamiltonian
with γ2 = γ3. The bottom row is calculated for the full Luttinger Hamiltonian with γ2 �= γ3.

Hamiltonian with γ2 = γ3. The bottom row in Fig. 7 corre-
sponds to the full Luttinger Hamiltonian with γ2 �= γ3. One
can see that even in the spherical approximation of the Lut-
tinger Hamiltonian, the NC cubic shape affects the angular
dependence of the energies of the trion emission lines. Ac-
counting for valence band warping changes the values of the
trion lines splitting but does not strongly modify their angular
dependencies. We note, that in the absence of valence band
warping and the NC cubic shape, the energies of the trion
emission lines do not depend on the direction of the applied
magnetic field. Thus experimental observation of the angular
dependencies shown in Fig. 7 should give evidence of the hole
g factor anisotropy.

It is worth noting that the cubic symmetry contribution
to the Zeeman splitting cannot arise in perovskites or CuCl
nanocrystals even of cubic shape. In these materials, the
conduction and valence bands are characterized by a total
angular momentum j of electron or hole equal to 1/2. In
perovskites, the anisotropy of charge carriers g factors appears
only if the symmetry of the structure, of crystal lattice or of
NCs shape is lower than cubic [52]. Experimental techniques,
suitable for observation nonequidistant hole spin-splitting of
the hole bound to acceptor were discussed in Ref. [53].

V. CONCLUSION

We demonstrated that the Zeeman splitting of hole states
inherits both the shape and lattice symmetry of nanocrys-
tals made of zinc-blende semiconductors. We show that the
cubic shape of a nanocrystal and cubic symmetry of the

zinc-blende crystal lattice make comparable contributions to
the hole Zeeman splitting. In both cases, effects arise due
to the cubically symmetric instead of spherically symmetric
spatial distribution of the hole wave functions and, conse-
quently, renormalized light hole to heavy hole mixing. The
resulting hole Zeeman splitting is nonequidistant and depends
on the direction of the magnetic field with respect to the
cubic axes. We show that both cubically symmetric contri-
butions are large enough and should be taken into account in
analysis of magneto-optical studies of spin splitting of hole
states. Possible experimental manifestations of the predicted
cubic anisotropy of hole Zeeman splitting in semiconductor
nanocrystals are discussed.
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APPENDIX A: MATRIX FORM OF HOLE HAMILTONIANS

We present the Luttinger Hamltonian describing hole ki-
netic energy in two terms: HL = H sph

L + αHα
L , where the fist

one represents the spherically symmetric part and the second
describes the valence band warping with its cheracterizing
parameter α = (γ2 − γ3)/γ . In the standard basis of the top-
most �8 valence subband uμ (μ = +3/2,+1/2,−1/2,−3/2)
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[29,30] Hamiltonians H sph
L and Hα

L in matrix form are

Ĥ sph
L = h̄2

2m0

⎛⎜⎜⎝
P + Q H I 0

H† P − Q 0 I
I† 0 P − Q −H
0 I† −H† P + Q

⎞⎟⎟⎠, P = γ1
(
k2

x + k2
y + k2

z

)
, Q = γ

(
k2

x + k2
y − 2k2

z

)
,

H = −2
√

3γ kz(kx − iky), I = −
√

3γ (kx − iky)2. (A1)

Ĥα
L = h̄2

2m0

⎛⎜⎜⎝
Qα Hα Iα 0

(Hα )† −Qα 0 Iα

(Iα )† 0 −Qα −Hα

0 (Iα )† −(Hα )† Qα

⎞⎟⎟⎠, Qα = −3

5
γ
(
k2

x + k2
y − 2k2

z

)
, Hα = −4

√
3

5
γ kz(kx − iky),

Iα =
√

3γ

5

(
3k2

x + 4ikxky − 3k2
y

)
. (A2)

It can be easily shown, that the first order correction to the hole ground state (S3/2) energy in spherical NCs coming from Ĥα
L

calculated on the wave functions (15) is zero. The first order correction for cube-shaped NCs is already nonzero due to wave
function structure. The Zeeman Hamiltonian (3) in matrix form is

Ĥz = μB

⎛⎜⎜⎜⎜⎜⎝
−(

3κ + 27
4 q

)
Bz −(√

3κ + 7
√

3
4 q

)
B− 0 − 3

2 qB+

−(√
3κ + 7

√
3

4 q
) −(

κ + 1
4 q

)
Bz −(2κ + 5q)B− 0

0 −(2κ + 5q)B+
(
κ + 1

4 q
)
Bz −(√

3κ + 7
√

3
4 q

)
B−

− 3
2 qB− 0 −(√

3κ + 7
√

3
4 q

)
B+

(
3κ + 27

4 q
)
Bz

⎞⎟⎟⎟⎟⎟⎠, (A3)

where B± = Bx ± iBy. The explicit form of orbital contribu-
tion HB = H sph

B + αHα
B neglecting quadratic on magnetic field

terms of the isotropic part, H sph
B , is

Ĥ sph
B = μB

⎛⎜⎜⎝
PB + QB −SB RB 0
−(SB)† PB − QB 0 RB

(RB)† 0 PB − QB SB

0 (RB)† (SB)† PB + QB

⎞⎟⎟⎠,

PB = γ1((zky − ykz )Bx + (xkz − zkx )By + (ykx − xky)Bz ),

QB = γ ((zky + 2ykz )Bx + (2xkz + zkx )By + (ykx − xky)Bz ),

RB = −
√

3γ2(zkyBx − zkxBy + (ykx − xky)Bz )

+ i
√

3γ2(zkxBx − zkyBy + (yky − xkx )Bz ),

SB =
√

3γ ((xBy − yBx )(kx − iky)

+ i(x − iy)kzBz − izkz(Bx − iBy)). (A4)

As we have shown, that to determine hole g fac-
tor components it is sufficient to calculate hole Zee-
man splitting for B||z. Here we show Ĥ sph

B components
for B = (0, 0, Bz ):

PB = γ1(ykx − xky)Bz, QB = γ (ykx − xky)Bz,

RB = −
√

3γ (ix(kx + iky) + y(kx − iky))Bz. (A5)

Note, that even H sph
B can contribute to the anisotropic part

of the hole effective g factor if the hole wave functions have

cubic symmetry in zero magnetic field.

Ĥα
B = μB

⎛⎜⎜⎜⎝
Qα

B −Sα
B Rα

B 0

−(
Sα

B

)† −Qα
B 0 Rα

B(
Rα

B

)†
0 −Qα

B Sα
B

0
(
Rα

B

)† (
Sα

B

)†
Qα

B

⎞⎟⎟⎟⎠,

Qα
B = −3γ

5
((zky + 2ykz )Bx

+ (2xkz + zkx )By + (ykx − xky)Bz ),

Rα
B = −

√
3γ

5
(−2iBxzkx − 3Bxzky + 3Byzkx + 2iByzky

+ 2iBzxkx − 3Bzykx + 3Bzxky − 2iBzyky),

Sα
B = −2

√
3γ

5
((xBy − yBx )(kx − iky)

+ i(x − iy)kzBz − izkz(Bx − iBy)). (A6)

If B = (0, 0, Bz ), we have

Qα
B = −3γ

5
((ykx − xky)Bz ),

Rα
B = −

√
3γ

5
(2ixkx − 3ykx + 3xky − 2iyky)Bz,

Sα
B = −2i

√
3γ

5
((x − iy)kzBz ). (A7)

235310-12



CUBIC ANISOTROPY OF HOLE ZEEMAN SPLITTING IN … PHYSICAL REVIEW B 108, 235310 (2023)

The matrix form of hole Zeeman effective Hamiltonian:

Ĥ eff
Z = μB

⎛⎜⎜⎜⎜⎝
− 3

2 g||
3/2Bz

√
3

4

(
3g⊥

3/2 − g⊥
1/2

)
B− 0 − 3

2 g⊥
3/2B+√

3
4

(
3g⊥

3/2 − g⊥
1/2

)
B+ − 1

2 g||
1/2Bz − 1

2 g⊥
1/2B− 0

0 − 1
2 g⊥

1/2B+ 1
2 g||

1/2Bz

√
3

4

(
3g⊥

3/2 − g⊥
1/2

)
B−

− 3
2 g⊥

3/2B− 0
√

3
4

(
3g⊥

3/2 − g⊥
1/2

)
B+ 3

2 g||
3/2Bz

⎞⎟⎟⎟⎟⎠, (A8)

g||
3/2 = gh + 9

2 Qeff, g||
1/2 = gh + 1

2 Qeff, g⊥
3/2 = Qeff, g⊥

1/2 =
2gh + 10Qeff. If the states with |M| = 3/2 and 1/2 are split,
the matrix elements of Hamiltonian (A8) mixing them with
each other are zero and matrix Eq. (A8) can be separated into
two independent matrices written in the basis of Bloch states
uμ with μ = +3/2,−3/2 and μ = +1/2,−1/2, correspond-
ingly:

Ĥ eff,3/2
Z = μB

(− 3
2 g3/2

|| Bz − 3
2 g⊥

3/2B+

− 3
2 g⊥

3/2B− 3
2 g||

3/2Bz

)
, (A9)

Ĥ eff,1/2
Z = μB

(− 1
2 g||

1/2Bz − 1
2 g⊥

1/2B−

− 1
2 g⊥

1/2B+ 1
2 g||

1/2Bz

)
. (A10)

In that case, each pair of states corresponding to the fixed M
can be described by pseudospin 1/2. In a spherically symmet-
ric system, g⊥

3/2 = Qeff = 0 and g||
3/2 = g||

1/2 = g⊥
1/2/2 = gh.

APPENDIX B: NUMERICAL CALCULATION OF HOLE
ENERGIES, WAVE FUNCTIONS AND g FACTORS IN

SPHERICAL NCs WITH INFINITE BOXLIKE POTENTIAL

We developed a numerical method for calculating hole
energies, wave functions, and g factors in spherical NCs with
infinite boxlike potentials, which is similar to our methods
for spherical NCs with parabolic potential [31] and cube-
shaped NCs with infinite boxlike potentials [11]. It consists
of diagonalizing the hole Hamiltonian matrix, calculated on
the basis of eigenfunctions of the Luttinger Hamiltonian in
spherical approximation in spherical NCs with infinite box-
like potentials for a given set of Luttinger parameters γ1,
γ2 and γ3 in zero magnetic field [25] for full momentum
j and its projection on the z-axis (15). For even solutions,
the wave function for given values of j and M contains two
contributions, with radial functions corresponding to l equal
to j − 3/2 and j + 1/2, respectively [55] (we omit here the
normalization constants):

Rj, j−3/2(r) =
√

2 j + 3

6 j − 3
j j− 3

2
(kr)

−
√

2 j+3
6 j−3 j j− 3

2
(k) j j− 3

2
(kr

√
β )

j j− 3
2
(k

√
β )

, (B1)

Rj, j+1/2(r) =
(2 j + 3) jF− 3

2
(k) j j+ 1

2
(kr

√
β )

(6 j − 3) j j− 3
2
(k

√
β )

+ j j+ 1
2
(kr),

(B2)

where β = (γ1 − 2γ )/(γ1 + 2γ ) is the light to heavy hole
effective mass ratio and jl (x) are spherical Bessel functions.
The equation determining the hole wave vector k comes from
the boundary condition of the wave function vanishing at the

edge of the NC of radius a:

j j+ 1
2
(ka) j j− 3

2
(
√

βka) +
(2 j + 3) j j− 3

2
(ka) j j+ 1

2
(
√

βka)

6 j − 3
= 0.

(B3)

For the odd states, the wave function for given values of j
and M contains two contributions with l being equal to j +
3/2 and j − 1/2 and one has

Rj, j−1/2(r) =
√

2 j − 1 j j− 1
2
(kr)

−
√

2 j − 1 j j− 1
2
(k) j j− 1

2
(kr

√
β )

j j− 1
2
(k

√
β )

, (B4)

Rj, j+3/2(r) =
(1 − 2 j) j j+ 3

2
(kr)

√
3
√

2 j + 3

−
√

3
√

2 j + 3 j j− 1
2
(k) j j+ 3

2
(kr

√
β )

j j− 1
2
(k

√
β )

, (B5)

And from the boundary conditions one has

(2 j − 1) j j+ 3
2
(ka) j j− 1

2
(
√

βka)

+ 3(2 j + 3) j j− 1
2
(ka) j j+ 3

2
(
√

βka) = 0. (B6)

For the special case j = 1/2, the only one radial function
remains:

R1/2,1(r) = j1(kr) (B7)

for even state and

R1/2,2(r) = j2(kr) (B8)

for the odd state, and with simple boundary conditions,

j1(2)(ka) = 0 (B9)

for even (odd) states, correspondingly.
The introduced basis set is full, so one can use it for cal-

culating hole states in a magnetic field. In addition, it allows
valence band warping to be taken into account. In real world
calculations, we use a finite size basis set, while choosing it to
be sufficiently large for needed accuracy.

APPENDIX C: TRION EMISSION LINES IN AN APPLIED
MAGNETIC FIELD

For a magnetic field oriented at an arbitrary angle θ with
respect to the z axis of a NC, energies of the negative trion
spin states are the eigenenergies of the hole Hamiltonian (A8).
After the trion recombination, there remains an electron with
a spin projection on the magnetic field direction ±1/2. In the
case of the isotropic electron g factor, electron energy does
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not depend on the angle θ and equals ±geμBB/2. Knowing
energies of the excited and ground states, we can calculate
energies for all possible trion emission lines.

To calculate the relative oscillator strength of the trion
emission lines, we calculate the eigenvectors of the excited
and ground states of a NC using the set of basis spin states
along the z axis of the laboratory frame. The excited state of
the system is described by eigenvectors of the Hamiltonian
(A8). The dependence of the eigenvectors on the angle θ

is described by the transformation matrix for spin 3/2 with

good accuracy. For the ground state of the system, we use the
transformation matrix for spin 1/2.

|i〉 =
4∑

j=1

T 3/2
i, j (θ ) | j〉 , (C1)

|i′〉 =
2∑

j′=1

T 1/2
i′, j′ (θ ) | j′〉 , (C2)

where i, j = 1, 2, 3, and 4 correspond to hole states with angular momentum projection M = 3/2, 1/2, −1/2, and
− 3/2 on the magnetic field direction and z axis, respectively. i′, j′ = 1, 2 correspond to electron states with spin projection
S = 1/2,−1/2 on the magnetic field direction and z-axis, respectively. The matrices T 3/2 and T 1/2 are

T 3/2 =

⎛⎜⎜⎜⎜⎝
cos3(θ/2)

√
3 cos2(θ/2) sin(θ/2)

√
3 cos(θ/2) sin2(θ/2) sin3(θ/2)

−√
3 cos2(θ/2) sin(θ/2) cos(θ/2)(2 − 3 cos2(θ/2)) sin(θ/2)(2 − 3 sin2(θ/2))

√
3 cos(θ/2) sin2(θ/2)√

3 cos(θ/2) sin2(θ/2) − sin(θ/2)(2 − 3 sin2(θ/2)) cos(θ/2)(2 − 3 cos2(θ/2))
√

3 cos2(θ/2) sin(θ/2)

− sin3(θ/2)
√

3 cos(θ/2) sin2(θ/2) −√
3 cos2(θ/2) sin(θ/2) cos3(θ/2)

⎞⎟⎟⎟⎟⎠,

(C3)

T 1/2 =
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
. (C4)

For a photon emitted along the z axis of the laboratory frame,
we can calculate the relative oscillator strength of transitions
between |i〉 and |i′〉 states. For this purpose, we use the follow-
ing ratio between squared matrix elements of the operator Ap,
calculated on basis states along the z axis of NC:

|〈 j = ±3/2|Ap | j′ = ±1/2〉 |2 ∝ 3,

| 〈 j = ±1/2| Ap | j′ = ±1/2〉 |2 ∝ 2,

| 〈 j = ±1/2| Ap | j′ = ∓1/2〉 |2 ∝ 1,

| 〈 j = ±3/2| Ap | j′ = ∓1/2〉 |2 ∝ 0. (C5)

Here, A is the vector potential of electromagnetic field, p is

the momentum operator. Note that these selection rules are
written for a negative trion with ground states composed of a
resident electron. In the case of an electron-hole pair, the sign
of the electron spin projection should be inverted.

The resulting intensities of the trion emission lines are
calculated as

Ii,i′ = exp

(
− (E − �Ei,i′ )2

2σ 2
− Ei

kT

)
| 〈i| Ap |i′〉 |2. (C6)

Here, the exponential prefactor takes into account broadening
of trion lines with σ = 0.05 meV and Boltzman population of
initial trion states with energies Ei.
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[21] C. Sinito, M. J. Ferńe, S. V. Goupalov, P. Mulvaney, P. Tamarat,
and B. Lounis, Tailoring the exciton fine structure of cadmium
selenide nanocrystals with shape anisotropy and magnetic field,
ACS Nano 8, 11651 (2014).

[22] X. Marie, T. Amand, P. LeJeune, M. Paillard, P. Renucci, L. E.
Golub, V. D. Dymnikov, and E. L. Ivchenko, Hole spin quantum
beats in quantum-well structures, Phys. Rev. B 60, 5811 (1999).

[23] M. Syperek, D. R. Yakovlev, A. Greilich, J. Misiewicz, M.
Bayer, D. Reuter, and A. D. Wieck, Spin coherence of holes
in GaAs/(Al,Ga)As quantum wells, Phys. Rev. Lett. 99, 187401
(2007).

[24] M. Kugler, T. Andlauer, T. Korn, A. Wagner, S. Fehringer, R.
Schulz, M. Kubová, C. Gerl, D. Schuh, W. Wegscheider, P.
Vogl, and C. Schüller, Gate control of low-temperature spin
dynamics in two-dimensional hole systems, Phys. Rev. B 80,
035325 (2009).

[25] B. L. Gel’mont and M. I. D’yakonov, Acceptor levels in
diamond-type semiconductors, Sov. Phys. Semicond. 5, 2191
(1971).

[26] V. Kalevich and V. Korenev, Electron g-factor anisotropy in
asymmetric GaAs/AlGaAs quantum well, JETP Lett. 56, 253
(1992).

[27] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer, Berlin, 2003), p. 50.

[28] G. Dresselhaus, A. F. Kip, and C. Kittel, Cyclotron resonance
of electrons and holes in silicon and germanium crystals, Phys.
Rev. 98, 368 (1955).

[29] G. L. Bir and G. E. Pikus, Symmetry and Strain–Induced Effects
in Semiconductors (Wiley, New York, 1974).

[30] E. I. Ivchenko, Optical Spectroscopy of Semiconductor Nanos-
tructures (Alpha Science International Ltd., Harrow, UK,
2005).

[31] M. A. Semina, A. A. Golovatenko, and A. V. Rodina, Ground
State of the Holes Localized in II-VI Quantum Dots with Gaus-
sian Potential Profiles, Phys. Rev. B 93, 045409 (2016).

[32] A. Baldereschi and N. O. Lipari, Spherical model of shal-
low acceptor states in semiconductors, Phys. Rev. B 8, 2697
(1973).

[33] A. Baldereschi and N. O. Lipari, Cubic contributions to the
spherical model of shallow acceptor states, Phys. Rev. B 9, 1525
(1974).

[34] E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanos-
tructures (Alpha Science, Harrow UK, 2005).

[35] K. J. Vahala and P. C. Sercel, Application of a total-angular-
momentum basis to quantum-dot band structure, Phys. Rev.
Lett. 65, 239 (1990).

[36] P. C. Sercel and K. J. Vahala, Analytical formalism for deter-
mining quantum-wire and quantum-dot band structure in the
multiband envelope-function approximation, Phys. Rev. B 42,
3690 (1990).

[37] A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princenton University Press, Princenton, 1957).

[38] A. L. Efros and M. Rosen, Quantum size level structure of
narrow-gap semiconductor nanocrystals: Effect of band cou-
pling, Phys. Rev. B 58, 7120 (1998).

[39] B. L. Gel’mont and A. V. Rodina, Energy representing binding
of a hole to a multiply charged acceptor in semiconductors with
the diamond structure, Sov. Phys. Semicond. 25, 1319 (1991).

[40] I. A. Merkulov and A. V. Rodina, Wave-functions and binding-
energy of a hole in the ground-state of an acceptor in a diamond-
like semiconductor, Semiconductors 28, 195 (1994).

[41] A. V. Malyshev, I. A. Merkulov, and A. V. Rodina, Ground-
state wave functions of a non-Coulomb acceptor in diamond-
like semiconductors, Semiconductors 30, 91 (1996).

[42] A. V. Malyshev, I. A. Merkulov, and A. V. Rodina, Theory of
acceptor-ground-state description and hot photoluminescence
in cubic semiconductors, Phys. Rev. B 55, 4388 (1997).

[43] H. Fu, L.-W. Wang, and A. Zunger, Applicability of
thek·pmethod to theelectronic structure of quantum dots, Phys.
Rev. B 57, 9971 (1998).

[44] S. Adachi, Handbook on Physical Properties of Semiconductors
(Springer US, 2004).

[45] T. Friedrich, J. Kraus, M. Meininger, G. Schaack, and W. O. G.
Schmitt, Zeeman levels of the shallow lithium acceptor and
band parameters in cadmium telluride, J. Phys.: Condens.
Matter 6, 4307 (1994).

[46] L. W. Molenkamp, R. Eppenga, G. W. ’t Hooft, P. Dawson,
C. T. Foxon, and K. J. Moore, Determination of valence-band
effective-mass anisotropy in gaas quantum wells by optical
spectroscopy, Phys. Rev. B 38, 4314 (1988).

[47] A. V. Trifonov, I. A. Akimov, L. E. Golub, E. L. Ivchenko, I. A.
Yugova, A. N. Kosarev, S. E. Scholz, C. Sgroi, A. Ludwig, A. D.
Wieck, D. R. Yakovlev, and M. Bayer, Homogeneous optical
anisotropy in an ensemble of ingaas quantum dots induced by
strong enhancement of the heavy-hole band landé parameter q,
Phys. Rev. B 104, L161405 (2021).

[48] M. V. Durnev, M. M. Glazov, E. L. Ivchenko, M. Jo, T. Mano, T.
Kuroda, K. Sakoda, S. Kunz, G. Sallen, L. Bouet, X. Marie, D.
Lagarde, T. Amand, and B. Urbaszek, Magnetic field induced

235310-15

https://doi.org/10.1103/PhysRev.102.1030
https://doi.org/10.1134/1.1131163
https://doi.org/10.1134/S1063782615060214
https://doi.org/10.1103/PhysRevB.54.4843
https://doi.org/10.1103/PhysRevB.63.205309
https://doi.org/10.1103/PhysRevLett.102.017402
https://doi.org/10.1103/PhysRevLett.105.157402
https://doi.org/10.1103/PhysRevB.88.035302
https://doi.org/10.1021/nn5049409
https://doi.org/10.1103/PhysRevB.60.5811
https://doi.org/10.1103/PhysRevLett.99.187401
https://doi.org/10.1103/PhysRevB.80.035325
https://doi.org/10.1103/PhysRev.98.368
https://doi.org/10.1103/PhysRevB.93.045409
https://doi.org/10.1103/PhysRevB.8.2697
https://doi.org/10.1103/PhysRevB.9.1525
https://doi.org/10.1103/PhysRevLett.65.239
https://doi.org/10.1103/PhysRevB.42.3690
https://doi.org/10.1103/PhysRevB.58.7120
https://doi.org/10.1103/PhysRevB.55.4388
https://doi.org/10.1103/PhysRevB.57.9971
https://doi.org/10.1088/0953-8984/6/23/010
https://doi.org/10.1103/PhysRevB.38.4314
https://doi.org/10.1103/PhysRevB.104.L161405


SEMINA, GOLOVATENKO, AND RODINA PHYSICAL REVIEW B 108, 235310 (2023)

valence band mixing in [111] grown semiconductor quantum
dots, Phys. Rev. B 87, 085315 (2013).

[49] M. V. Durnev, Fine structure of electron-hole complexes in
trigonal quantum dots, Phys. Solid State 57, 1223 (2015).

[50] S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B.
Dubertret, and A. L. Efros, Colloidal nanoplatelets with two-
dimensional electronic structure, Nat. Mater. 10, 936 (2011).

[51] G. Qiang, A. A. Golovatenko, E. V. Shornikova, D. R. Yakovlev,
A. V. Rodina, E. A. Zhukov, I. V. Kalitukha, V. F. Sapega,
V. K. Kaibyshev, M. A. Prosnikov, P. C. M. Christianen,
A. A. Onushchenko, and M. Bayer, Polarized emission of
cdse nanocrystals in magnetic field: The role of phonon-
assisted recombination of the dark exciton, Nanoscale 13, 790
(2021).

[52] E. Kirstein, D. R. Yakovlev, M. M. Glazov, E. A. Zhukov, D.
Kudlacik, I. V. Kalitukha, V. F. Sapega, G. S. Dimitriev, M. A.
Semina, M. O. Nestoklon, E. L. Ivchenko, N. E. Kopteva, D. N.
Dirin, O. Nazarenko, M. V. Kovalenko, A. Baumann, J. Höcker,
V. Dyakonov, and M. Bayer, The landé factors of electrons and
holes in lead halide perovskites: Universal dependence on the
band gap, Nat. Commun. 13, 3062 (2022).

[53] K. V. Kavokin and A. V. Koudinov, Dynamical polarization of
nuclear spins by acceptor-bound holes in a zinc-blende semi-
conductor, Phys. Rev. B 88, 235202 (2013).

[54] https://rscf.ru/en/project/23-12-00300/.
[55] A. I. Ekimov and A. A. Onushchenko, Size quantization of

the electron energy spectrum in a microscopuy semiconductor
crystal, JETP Lett. 40, 1136 (1984).

235310-16

https://doi.org/10.1103/PhysRevB.87.085315
https://doi.org/10.1134/S1063783415060116
https://doi.org/10.1038/nmat3145
https://doi.org/10.1039/D0NR07117J
https://doi.org/10.1038/s41467-022-30701-0
https://doi.org/10.1103/PhysRevB.88.235202
https://rscf.ru/en/project/23-12-00300/

