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Molecular OR and AND logic gates: A theoretical proposal
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A conductance zero that results from the destructive quantum interference of the electron states in quantum
transport between two given sites of a molecular system persists or disappears depending on the location of an
externally applied perturbation. The a priori knowledge of the perturbation site that destroys or preserves a zero
is the basis of an algorithm that outlines the creation of logic gates having external perturbations as inputs and
a given conductance as output. Using a graph of the possible conductance paths between the various sites, we
showcase the several different scenarios that correspond to AND/OR/XOR logical functions for a given set of
contacts. This setup is shown to be independent of the strength of the coupling to the leads and magnitude of the
perturbation. We illustrate this approach in the case of bipartite and nonbipartite single carbon cycle molecules
(fulvene and benzene) and double carbon cycle molecules (naphthalene and biphenyl).
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I. INTRODUCTION

Interference effects that occur in electron transport in quan-
tum systems have been a generous source of theoretical and
experimental investigations in the past 50 years or so. From
the very beginning it was understood that the conductiv-
ity values can be affected by external parameters, such as
the magnetic flux or disorder potentials, as present in the
Aharonov-Bohm effect in mesoscopic rings and the associated
conductance fluctuations [1,2]. The idea of manipulating the
electron quantum state by the variation of some local external
parameters is ubiquitous in molecular systems, i.e., chemical
or quantum dot molecules. This lead to numerous applica-
tions such as transistors [3—5], thermoelectric and heat devices
[6-8], and switching devices [9,10].

The predictable modification of the electron quantum state
through the variation of external paramaters led also to the
possible implementation of the Boolean functions, thus allow-
ing the construction of logic gates with mesoscopic systems
[11-13]. In this situation, the measurable output value is
modified by the sequential or simultaneous application of
two or more parameters, the logical inputs. For example,
the six classical logic gates—two inputs/one output—can be
created using a quantum system with a minimum of three
points for which the input parameters are given by the matrix
elements of the Hamiltonian, while the output is read from
electron transmission or from the Heisenberg-Rabi oscillation
frequency [14,15].

In this algorithm, the Hamiltonian matrix elements consid-
ered input parameters in evaluating transport properties are
adjusted such that the desired logical function is obtained.
This Hamiltonian based computing protocol leads to the ex-
perimental realization of molecular logic gates with the output
given by the tunneling current through a scanning tunneling
microscope tip or between externally connected electrodes.
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As an example, the NOR logic gates were experimentally
implemented with tri-naphthalene molecule in Ref. [16] or
with long starphene in Ref. [17], the NAND logic gate with
starphene molecule in Ref. [18], and the XOR logic gate with
tetrabenzophenazine molecule in Ref. [19].

A different approach resulting in the construction of logic
gates in quantum systems has been focused on the direct
modification of the conditions that underlie the quantum inter-
ference of the electronic states. The propagation of quantum
particles can be modified in several possible ways. The sim-
plest example is a circular molecule or a quantum ring in
which there are two possible trajectories between two points
leading to an interference pattern of the electron wave func-
tions whose maxima or minima correspond to associated
values of the electric conductivity. External gates applied on
one arm of a quantum ring can turn a destructive interference
into a constructive one as in the OR logic gate proposed in
Ref. [20]. Other gates were also designed in quantum rings
[21-23], in circular molecules such as benzene [24-26] or
multi-circular ones such as graphene [27], where the de-
structive or constructive interference conditions of the initial
quantum state were determined by an external magnetic flux.
External gates modified this status leading to the desired an-
swer in the case of a specific logic gate.

In certain circumstances, however, conditions for the to-
tal destructive quantum interference (DQI) are created in
the absence of any magnetic flux [28-30]. In this case, the
conductivity cancellation is a result of different propagation
paths in the energy space [31,32]. The presence of a DQI for
the particle propagation between points i and j, is reflected
macroscopically as a cancellation of the conductance G;; = 0
[30,33,34].

Previously [30,35], we formulated some general criteria
that underlie the persistence of a zero in the presence of a
perturbation selectively applied at certain lattice points. This
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insight opens up a new direction in the realization of logic
gates. Since for a given conductance zero it is a priori known
where perturbations can be applied to maintain it or not, one
can design logical functions whose input parameters are the
strength of the perturbation, while the output is the value
of the conductance. This idea is described in Sec. II of the
paper where, after a short review of the previously obtained
invariance properties, we show how logic OR/XOR and AND
gates can be constructed using a visual representation for
the nonzero conductance paths between the various sites.
Sections III and IV illustrate the application of these consid-
erations to the fulvene and benzene molecules, respectively,
whose conductance zeros at several different propagation
energies are theoretically derived in Ref. [28,30,35,36]. More-
over, we prove that this outcome does not depend on the
strength of perturbation nor on the strength of the coupling
with the leads. Section V is dedicated to exploring the posi-
bility of creating logic gates by using two more complex
molecules, such as naphthalene and biphenyl. The effective
Hamiltonian method and the Green’s functions that are used
throughout the paper to calculate the logical outputs and trans-
port properties are detailed in Sec. III A.

II. GENERAL DESCRIPTION OF THE METHOD

The system of interest is represented by a set of discretely
localized quantum states |i) with i € M connected through
nonzero hopping elements. They can be the atomic orbitals as
in the Hiickel model of a molecule or quantum dot states as in
an artificial molecule. The Hamiltonian,

H= Y t;li){jl. ()
i,jeM
contains all the hopping matrix elements #; for i, j € M
written in terms of an energy unit 7.

Throughout our paper, the hopping integral between near-
est neighbors is taken as the energy unit (i.e., # = 1). Then,
the connection to different physical systems with the same
geometry can be done by adjusting the value of ¢. For the
benzene molecule, for instance, the hopping energy has been
calculated by density functional theory to be t=2.6 eV [24],
similar values being used for other two-dimensional carbon
structures [3,5,36]. For artificial molecular systems composed
of quantum dots, the energy unit ¢ can be tailored from the
geometrical lengths. The Green’s functions, calculated from
H~!, are expressed in 1/¢ units and the conductances in e?/h
units.

When a transport experiment is performed, two exter-
nal leads are connected at sites i and j of the system and
the G;; conductance is calculated by the Landauer-Biittiker
ansatz [33,37,38]. When the tunneling amplitudes of different
paths in the position or energy space [29] cancel, a DQI is
realized between sites i and j at energy E. Since the mea-
sured conductance between two points is proportional to the
Green’s function matrix element between the same points,
Gij=[(E - H)’l]ij [30,33,34], we focus on the properties
of the latter to develop our algorithm. To this end, we use the
nonzero matrix elements of (E — H)~' as edges that connect
vertices in the graph of the lattice sites to produce a visual map
of the nonzero conductance paths. This is the inverse graph

representation of the non-DQI paths for a given system. For
the energies considered in this problem, the matrix (£ — H)
is nonsingular and its inverse exist. The shape of the inverse
graph, however, changes as a function of the energy.

The persistence of a conductance zero G;; = 0 under the
application of external perturbations depends on the location
of the perturbation site, as discussed in Ref. [35]. A zero
is preserved if the perturbation is applied at points that are
nonadjacent vertices of i or j in the inverted graph. These
points define the invariance set M:

My, = {k|Gy = 0}. )

Similarly, the invariance set associated with the lattice point
Jj» MY contains all the points that are not connected with j
in the inverted graph. Any multisite perturbation,

H' =H+ Y wylk)| 3)
kleMii

inv

leaves the i — j DQI process invariant. Any other invariance

set derived by other methods, such as the interference point
method in [30], will be a subset of M or M/ .

The remaining sites define the sensitivity set which con-
tains all the lattice points that have a Green’s function
connection with both i and j points, or a line in the inverted

graph representation:
Mien = {k|Gix # 0, G # O} “

For a local perturbation of a quantum state |s) with s a
sensitivity point from M,

H' = H + w;|s)(s], (5)

the DQI process G;; = 0 is destroyed and a nonzero value
of conductance is obtained, G;; # 0 [35,39]. This behavior
allows the construction of logic gates with the perturbation as
input and the conductance value as output.

The on-site energies considered in this paper to generate a
desired transport output are compatible with any experimental
perturbation that can be applied to modify the local potentials,
such as new external leads [3], Buttiker probes [5], heteroatom
substitutions [6,39] and external gates [20,21,24,25]. In some
experiments, the logical inputs were realized by interactions
between the molecule with external Au and Al atoms [16-19].
Since all these situations lead to changes in the local (atomic)
potentials therefore they are being incorporated in the present
model as the single-site perturbations. Our formalism also ap-
plies to artificial molecules composed of connected quantum
dots, since the local potential on each dot can be easily tuned
experimentally.

Next, we present an algorithm for designing logic gates
starting from the general properties of the inverted graph.

A. The AND gate
In designing an AND gate, we exploit the invariance prop-
erty of a given zero G;; = 0 under any perturbation Eq. (3).
Here, we assume that the invariance sets ./\/linfl are distinct,
M ={jx ..} and (6)

mv

M=,y ...}, @)

mv

where x # y, i.e., x ¢ M! andy ¢ Mi

mnv mv-*
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FIG. 1. The linear subgraph of the inverted graph for an AND
logic gate. The three graph lines correspond to nonzero Green’s
functions Gjy, Gy, and G,;. The lines (i, j), (i,x) and (j,y) are
missing which means G;; =0, G;;, =0, and G, = 0. By applying
two external perturbations on sites x and y the Green’s function
dependence G H(wy, wy) is an AND logical function.

In Fig. 1 we show the basic subgraph representing the
distinct invariance sets for G;; = 0. This is a linear graph
containing three lines (7, y), (v, x) and (x, j) corresponding
to three nonzero Green’s functions Gy, Gy, and G, in agree-
ment with Eqgs. (6) and (7). For instance the invariance set
./\/lfnv contains only the nonadjacent points of i, and they are
x and j. Other points can be included, for as long they are
different from y. From Eqgs. (2), (6) and (7), G;; =0, G;x =0
and G;, = 0 so the corresponding lines (i, j), (i, x) and (j, y)
are missing from the inverted graph as shown in the figure.

If the above two distinct invariance sets exist one considers

the following AND Hamiltonian:
Hixpie, = H + welx) (x| + wyly) (] ®)

with x, y two invariance points from the two distinct sets de-
fined in Eqgs. (6) and (7). By using two one-site parameters w;
and wy, as logical inputs one obtains an AND logical function
for the conductance G;;(w,, wy).

The proof follows from the Dyson expansion of the Green’s
function G;j of H,\p Which satisfies, up to the second order
in perturbation,

G;j(wx, wy) x~ G,’j + G,'waij + G,-ywyGyj + G,»ywynywxij.

©))

In this expression G;; =0, from the hypothesis, while
Gixw,Gyj =0 because G;; =0 from Eq. (6). Similarly,
Giyw,Gy; = 0 because G,; =0 from Eq. (7). The second
order term G;,w,G,,w,Gy; is nonzero only when both w,
and w,, are non zero. This is the AND function behavior and,
via the Landauer-Biittiker ansats [30], it is transferred to the
conductance G;;(wy, wy).

In summary, a logic AND gate can be realized if two
distinct invariance sets of a DQI exist, i.e., for G;; = 0, there
are two different points x and y, each in a different invariance
set, with the property Gy, # 0. The output of the gate is G;;
and the inputs are the perturbations applied at points x and
v, wy and w,. This construct appears in the inverse graph
(E — H)™! as atrilinear i — y — x — j subgraph.

B. The OR gate

Realizing an OR logic gate hinges on the ability to identify
two Hamiltonian parameters such that either one or both de-
stroy a conductance zero. In this case, the sensitivity set of a
given conductance zero G;; has to contain at least two points,

Mgen = {s,t,...}. (10)

In the inverted graph representation, the common neigh-
bors of sites i, j belong to the sensitivity set Mg, [35], here
the points designated by s, 7. The square graph with no line

FIG. 2. A subgraph of the inverted graph that is useful to the
design of the OR logic gate. A graph line (i, s) corresponds to a
nonzero Green’s function G, while the absence of an edge (i, j)
means G;; = 0. s and ¢ are two common neighbors of i and j. The
application of one or two external parameters w, and w, on the sites
s and ¢ leads to a non-zero Green’s function G';;(w;, w,), which
establishes an OR logical function.

between i and j because G;; =0, relevant to the OR gate
design is represented in Fig. 2. The edges are nonzero Green’s
function, while nonzero values of Gj;, Gjs, Gi;, and Gj; are
obtained, as the sites s and ¢ are the common neighbors of i
and j.

The OR perturbation Hamiltonian is,

OoriG, = H + wyls) (s| +wilr) (t] (11)

with wg, w, the matrix elements of the local perturbations. The
two on-site external parameters w, and w, are the OR logic
gate inputs.

The Dyson expansion for the perturbed Green’s function
G j(ws, wy ), is written as a first-order expansion in the pertur-
bation as,

G} (ws, w) = Gij + Gsw,Gyj + Gyw, Gy . (12)

For wy, = w, = 0 the function ng(O, 0)=G;;=0.

For nonzero input parameters one obtains nonzero values
of G (ws,0), G',(0, w,), G ,(ws, w,). The Green’s function
behavior is transferred to the conductance [28,30] and the
conductance function G;;(wy, w;) becomes an OR logical
function. The particular values of w, and w, that give zero
in the r.h.s. of Eq. (12) are omitted. Otherwise, if this were to
happen, one obtains a XOR logical function.

In summary, an OR gate requires the existence of two
points s and 7 outside the invariance sets, that is, the set M,
contains at least two points, where the applied perturbation
modifies the G;; zero. The OR (or under special conditions
XOR gate) has as inputs the values of the perturbation applied
at s and ¢, ws and w;, and as output G;; or the correspond-
ing conductance Gj;. In the inverse graph representation,
the corresponding subgraph is of a square or circular type
i—s— j—1t—1i, which contains two double paths between
iand j,i—s— jandi —t — j, vias and ¢ sites, respectively.

II1I. APPLICATIONS TO THE FULVENE
MOLECULE ATE =0

We illustrate the logic gates construction method in the
case of a N = 6 fulvene molecule whose Hamiltonian H is
depicted in Fig. 3(a).

The inverted graph of the fulvene molecule at £ = 0 is
presented in Fig. 3(b). The corresponding conductance zeros,
represented by absent graph edges, as well as their invariance
properties were derived in Ref. [30]. The non-zero Green’s
functions, associated with nonzero conductance values
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FIG. 3. The H graph of the fulvene molecule in (a). The inverted
graph of fulvene and the values of the Green’s functions are shown
in (b). The missing lines in (b) indicate conductance zeros.

between the same points, are numerically calculated and their
values are written on the corresponding graph edge.

A. The AND fulvene gate

To construct an AND gate we identify a conductance zero
that has two different invariance sets. The relevant subgraph
of this case, that was sketched in Fig. 1, involves points 4,
3, 6, and 5 of the inverted fulvene graph. This is shown in
Fig. 4(a) where one notices the three-linear pattern 5-6-3-4.
The Green function zero, G45 = 0, has two invariance sets,
that contain the non-neighbor points 4 and 5, respectively:
MP = (2,4,5,6yand MO = (2,3, 4, 5).

Below, sites 3 and 6 are selected for the perturbation appli-
cations, described by a Hamiltonian,

Hxpig,s = H + ws]3)(3] + ws6) (6], (13)

where w3 and wg are the input parameters of an AND log-
ical function Gus(ws, weg), even though the energies w3 and
we do not modify G4s5 = 0 independently because 6 € ijv)
while 3 € MSV) Two leads are attached to the fulvene lattice
at the sites 4 and 5 as shown in Fig. 5. 7; is the hopping
energy on the leads. An incoming standing wave with wave
number k and energy E = 21; cos k enters the system through
L,. The outgoing electron can be reflected into the lead L,
or transmitted into L;. Following Ref. [40], we calculate the
conductance Gys of the connected molecule in the presence of
the perturbation (13) for £ = 0 (k = 7 /2). First, we use the
effective Hamiltonian of the system in the presence of leads,

Her = Hynp — iT14) (4] — iT]5)(5], (14)

with T = t2/7; where 7. is the coupling constant between the
leads and the sites 4 and 5 and 7; the hopping energy on the
leads [30,40].

FIG. 4. The inverted graph of fulvene at E = 0. The relevant
subgraphs for an AND function Gys(ws3, we) in (a) and for an OR
function Gss(w;, we) in (b) are drawn with solid lines.

[wa]ws ]| Gas |

AND GATE
0]0 0
110 0
w3 0 we 011 0
L1 g2

FIG. 5. An AND logic gate. G4s conductance in a fulvene device
with two gates w3, we applied on the sites 3 and 6. The conductance
is measured in e?/h and the energy in the ¢ units. T measures the
lead-molecule coupling strength.

The Landauer conductance is given by the formula:

2 (15)

g
G45 = 4;1’ |GZS
where the effective Green’s function ijsf satisfies a Dyson
equation,
£f . ff . ff
Gis = Gys — itGy, Gis — itGsGSs . (16)

G is the Green’s functions of Hamiltonian Hjp. G in turn
satisfies,

O3 = Gis — Oy G ~ el 1T
Finally, from Egs. (16) and (17) we obtain
Gis

eff __
G45 - 1 . G/ . G/ 2G/ Gl _ 2G/ Gl :
T TGy + 17655 + 176565y — 176Gy, Gss

(18)

The Green’s functions G5, Gis, and G, involved in
Eq. (18) are calculated from the Hamiltonian H,,, in
Eq. (13). Each satisfies a Dyson expansion. We start with G5
and its involved functions:

GAS = Gy5 + G43U)3G/35 + G46w6G/659 (19)
G5 = G35 + Gy3w3 G5 + Gasws Gy, (20)
G/65 = G65 + G63U)3G35 + G66w66/65' (21)

The Egs. (19), (20), (21) are simplified after introducing the
cancellation of the Green’s functions noted in Fig. 3(b): G45 =
0, G46 = 0, G35 = O, G33 =0and 066 =0. Solving for GitS’

Gy3w3G36weGes

Gys = (22)

1 — G3sweGezws
For G43 = —1, G36 = G63 = 1and G65 = —1 from Fig. 3(b),

G, = _Wats (23)
1-— w3 We
Similarly one obtains,

w3
Gy=—-, 24
a4 1-— w3 We ( )

’ We
= 25
33 1-— w3 We ( )

Introducing Eqgs. (23), (24) and (25) in Eq. (18) one ob-
tains:
w3 We

1 — wiwe(1 + 72) + it(w3 + we)

ngf = (26)

235307-4



MOLECULAR OR AND AND LOGIC GATES: ...

PHYSICAL REVIEW B 108, 235307 (2023)

OR GATE

FIG. 6. The logic OR gate in the fulvene lattice with two gates
w;, we. The Landauer conductance is evaluated at E = 0 in €?/h
units. T measures the lead-molecule coupling.

With these, the conductance in Eq. (15) becomes,
Gys(ws3, we)
472 w%wé

= , (27
1 = 2wzwe + (w3 + w2) + (1 + t2)2wiw? @7

an expression which corresponds to a logical AND function,
since G4s # 0 only when wiwg # 0. The conductance is mea-
sured in €?/h.

A schematic representation of the AND logic gate, along
with the numerical result is presented in Fig. 5. No other ful-
vene conductance zero can be used to build such an AND gate,
since Gys is the only one that satisfies the conditions stated in
Egs. (6) and (7) and Fig. 1. In fact no other conductance zero
has two distinct invariance sets as discussed in Ref. [30].

B. The OR fulvene gate

To build an OR gate we select a DQI process G;; =0
that has a sensitivity set with at least two different points.
In Fig. 3(b) this corresponds to points i and j that have at
least two common neighbors s and ¢. For instance, the sites
3-5, a DQI with G35 = 0, have two common neighbors 1 and
6, Men = {1, 6}. This is represented by the square subgraph
1-3-6-5 in Fig. 4(b).

The OR Hamiltonian is therefore, in agreement with
Eq. (11),

Hgig,, = H + wi|1) (1] 4 we|6) (6], (28)

whose output is an OR logical function for the conductance
G3s5(wy, wg) when two transport leads are connected to the
sites 3 and 5.

The molecule connected to leads is shown in Fig. 6 and the
two perturbed sites 1 and 6 are marked.

Following the same calculation method as in Sec. III B
one uses the effective Hamiltonian describing the contacted
molecule,

Her = Hog — it]3)(3] — it]5)(5], (29)

which leads to an effective Green’s function G§f5f that deter-
mines the conductivity

B 472 (wy + we)?

(= 2wy — wiwe)? + 412(wi + we)?
This is an OR logical function with the input parameters w
and wg. The input parameters of an OR gate are selected such

that G3s(wq, wg) # 0. If for instance one chooses w; = —wy
in Eq. (30) an XOR gate is obtained.

G3s

(30)

(a)

FIG. 7. The benzene molecule: (a) the graph of H; (b) the graph
of (H)™!; (c) the graph of (v/2 — H)™!.

Particular results for different on-site w; and wg energies
are given in the table from Fig. 6.

In contrast to the AND gate construction, there are many
other options for the design of an OR function based on the
fulvene quantum system. In the inverted graph in Fig. 3(b)
there are other points i, j with G;; = 0 and with at least two
common neighbors for i and j. They correspond to the con-
ductances Gys, Gys, Gss, G3s, Gz, and Ggg. Their sensitivity
sets contain at least two points and they can be used to design
OR logic gates.

Other conductance zeros, such as Gy,, G2z, Gos, Gos, Gog,
and Gys have only one common neighbor of their contact
points and they can not be used to design an OR logic gate.

IV. APPLICATIONS TO THE BENZENE MOLECULE

The benzene molecule is represented in Fig. 7 by its Hamil-
tonian H in (a), while in (b) and (c) we show the inverse
graphs, for E = 0 and E = /2, respectively, following cal-
culations in Ref. [35].

A. Benzene logic gates at E = (

The most well-known and studied example of DQI is the
zero conductance in the benzene molecule with contacts in the
meta position at £ = 0 [3,28,36,41-45]. This corresponds, for
example, to the Green’s function G3 = 0 which will be used
as a starting point in the following considerations.

1. No AND gate at E = 0

To investigate the possibility of an AND gate behavior
of the 1-3 conductance we start from its related invariance
properties. Following Ref. [35], G 3 is invariant to multisite
perturbations applied to nonadjacent points of site 1 which
form Milnv = {1, 3, 5}, as shown in Fig. 7(b). For these points
G;j1 = 0. On the other hand, G;3 is also invariant to the
perturbations applied to the points not adjacent to site 3,
M? = {1,3,5}. Since points 1 and 3 have identical sets of
nonadjacent points, Gz has only one invariance set and a
logic AND gate cannot be built at £ = 0. This can be proven
also by reductio ad absurdum. We assume that we found a
logical AND function G3(wy, wy). This means that w, taken
alone does not modify G3, indicating that x is an invariance
point that belongs to Mi,,. The other disturbance w,, taken
separately, does not change Gy3. So the point y also belongs
to Miny. It results that x, y € M, indicating that a multisite
perturbation w,, w, does not change the zero. The hypothesis
is contradicted.
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(a) (b)

FIG. 8. The benzene inverted graph at E = 0. The OR sub-
graphs are drawn with solid lines. The logical functions involved
are G3(ws4, we) in (a) and G3(w,, we) in (b). The green points 1
and 3 exhibit a DQI with G;3 = 0 for no external gates applied. The
external gates leading to the logical function behavior of G;3 are
colored in pink.

2. OR/XOR gate

Benzene with meta contacts at E = 0 can be used to build
logic gates of the OR (or XOR) type. To this end, we select
points at which a perturbation changes a given zero Gz =
0. These are the points outside the invariance set, Mg, =
{2,4, 6}, as shown in Fig. 7(b). These points that have a
“Green’s function link” with both contacts 1 and 3, indicating
that all functions G;; and G;3 with i € M., are nonzero.

A unisite perturbation at sensitivity points as they are de-
fined in Eq. (4) can modify an i — j DQI process as shown in
[35,39] and we use this property to build logic OR and XOR
gates.

We consider points 4 and 6 from Mg,, which separately
modify G3. wq modifies Gy3 and we modifies G3. Two cases
arise: if they modify together G5 then G3(w4, wg) is the OR
gate; and if not, we have the XOR gate.

To see for which values either the OR or the XOR
gates is obtained, we calculate the effective Green’s function
G4 for the effective Hamiltonian Hegr = Hig g, — it|1)(1] —
it|3)(3| where the perturbed Hamiltonian is H(’)RIGIS =H+
wq|4) (4] + weg|6) (6]. The analytical calculation can still be
done and we first obtain the effective Green’s function:

_ Wy + we
4+ 2it(ws + wg)

This gives us the conductance with the formula Gi3 =
412% G112,

For ws # —wg in Eq. (31) we have the OR gate and we
present the result for wy, wg = 0/1 in Fig. 9. To emphasize
that the obtained logical function is independent of the leads-
molecule coupling the conductance is expressed in terms on
the contact parameter .

eff

3= 3D

ORGATE  (3) wa|ws| G13[< ]
00 0

L

L @ L2, 0)11] =
2
E=0 11| =
e 7241

FIG. 9. The OR gate for benzene molecule at E = 0. The output
of the logic gate is the meta conductance G1; and the inputs are the
two external gates wy and we applied on sites 4 and 6. The transport
is calculated for the lead-molecule coupling T = 72/7; and for wave
number k = /2.

XORGATE () wa [ Wy GIB[%]
@ Te= [

2

1 0 ‘r;—+4

7_2

El;(l; @ 2) - (1) i T26r4

wy

FIG. 10. The XOR gate for benzene molecule at £ = 0. The
output of the logic gate is the meta conductance G5 and the inputs
are two external gates w, and w, applied on sites 2 and 4. t is the
lead-molecule coupling constant and wave number k = /2.

A similar argument can be made for the creation of an OR
gate using points 2 and 4 in the set M, = {2, 4, 6} to apply
the logical inputs. The perturbed Hamiltonian becomes

Hig, = H + w2(2) (2] 4+ wyl4) (4] , (32)

which gives OR/XOR logical function for G/ 5. In the presence
of contacts, when the Hamiltonian is transformed into H*ff =
H(’)RIGIS —it|1){1]| —it|3){(3|, the effective Green function
between points 1 and 3 becomes

W4 — W

G = (33)

(twy — 2i)(Twy — 2i)°
This gives the conductance Gi3. This indicates that a logical
OR function is obtained for any gates satisfying w, # w4 and
for any lead-sample coupling regime.

From Eq. (33), when the two external gates have equal
energies wy = wy, G‘fgf = 0, and the 1-3 DQI is restored. So
for this particular case one obtains the XOR logical function.
We present this case in Fig. 10 for inputs w;, ws = 0/1 and
output the 1-3 conductance.

We note that by moving the gate potential from the site 6
to site 2 in Figs. 9 and 10 the 1-3 constructive interference
obtained for nonzero inputs is totally destroyed, G3 becomes
zero, and the OR gate turns into an XOR one.

By using the inverted graph from Fig. 7(b), the two
OR gates derived from the functions Gi3(wy, we) and
Gi3(wy, wg) can be identified starting from two circu-
lar/square subgraphs that are pictured in Figs. 8(a) and 8(b).

B. Benzene logic gates at E = +/2

While previously we established that AND gates cannot be
constructed in benzene at E = 0, here we explore the outcome
of our algorithm for E = +/2. In this case, the DQIs and
zeros were calculated in Ref. [36], values we incorporate in
the inverse graph (v/2 — H)~' from Fig. 7(c) which shows
that only the lines between the ortho positions of benzene
are missing. This is in agreement with the fact that G, = 0.
(All other zeros, Gas, ..., Gg are of the same kind, i.e., ortho
contacted benzene zeros).

The invariance sets of the ortho G, = 0 are given by
the nonadjacent points to 1 and 2, respectively [35]. From
Fig. 7(c) we write the invariance set of point 1 as M/ =
{2, 6}, while the invariance set of point 2 is anv = {1, 3}.
Thus, M, = {4, 5} is formed by the set of external points of
the two invariance sets. We conclude therefore that an ortho
zero can be used for OR gates because we have two points in
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FIG. 11. The benzene inverted graph at E = /2. The AND/OR
subgraphs are drawn with solid lines. The linear AND subgraph
of the logical function Gy,(ws, we) is shown in (a). The square
subgraph for the OR logical function G(ws4, ws) is shown in (b).
The green points 1 and 2 exhibit a DQI process at E = V2 having
Gn(v2) =0.

Men, and it can also be used for an AND gate because it has
two different invariance sets.

1. AND gate at E = J2

The fact that the ortho zero at E = /2 has 2 invariance sets
means that it is possible to construct a logic AND gate starting
from the known properties. To apply the general theory of the
AND gate starting from G, = 0, we identify two different
points from the two invariance sets, x € M} andy e M2,
where x # y with the additional property that G,, # 0. These
are points 3 and 6.

The input points of the logical function, 3 and 6, together
with the contact points, 1 and 2, form a triple 1-2 path,
1-3-6-2, as shown in Fig. 11(a). This is the only one trilinear
subgraph that starts from 1 and ends at 2 as depicted in Fig. 1.
That is, the only AND logical function with output G, has
two inputs, w3 and wg.

According to the general theory in Sec. IT A, the depen-
dence of the Green’s function Gy, on the input parameters w3
and wg is a logic AND. An analytical formula for this func-
tion, is obtained by calculating the Green’s function G|, =

(v/2 —H')" ! of the perturbed Hamiltonian

Hanpig,, = H + w33) (3] + we6) (6] (34)
From a Dyson equation we obtain,
w3 W
12(V2) = - 2 (35)

2 — 2ws — v 2w3 — wiws
which is obviously a logical AND function with input param-
eters w3 and wg.

Transferring the properties on the conductance Gy, cal-
culated at Fermi energy Er = +/2 we will obtain the AND
gate function. The picture of the AND benzene device and
a numerical result is shown in Fig. 12. The wave number
involved in the transport calculation, from the formula Ep =
21, cosk, is k = m /4, leads hopping energy is t; = 1 and the
lead-sample coupling T = rcz /T =1

2. ORgateat E = J2

Because M, = {4,5}, we consider H(/)R\Glz =H+
ws|5) (5] + wq|4) (4] and show that the ortho component of the
Green’s function G = (E — H’)~! is alogical OR function (or
XOR in particular cases).

ws |we | G12 [%]
00 0
10 0
0|1 0
1)1 0.91

FIG. 12. The AND gate for benzene molecule at E = /2. The
output of logic gate is the conductance G, and the inputs are the
two external gates w3 and wg applied on sites 3 and 6. The transport
is calculated fort, = 1, t; = 1, and k = 7 /4.

Analytically,

, Wi Ws

? «/5 — W4 «/E - ws’
which behaves like an OR function for the values wy4, ws that
give the nonzero numerator of the sum.

The OR gate device is sketched in Fig. 13 and the gate
outputs are numerically calculated for the inputs values of
wa, ws equal to O and 1.

The subgraph related to OR logical function Giz(w4, ws)
is drawn on the inverted graph from Fig. 11(b). One notices
that it contains two (1, 2) paths, 1—4—2 and 1—5-2, via the
sites 4 and 5. These suggest that the perturbation wy, or ws,
respectively, can modify the 1-2 DQI process, in agreement
with the OR logical function.

(36)

V. APPLICATIONS TO COMPLEX MOLECULES

In this section we extend our algorithm to molecules with
more than one periodic structure. This process starts from the
calculation of the inverse matrix of a given molecule and its
graphic representation which is used to establish what logic
gates can be built. Here we discuss the case of naphthalene
and biphenyl at £ = 0.

A. Naphthalene logic gates at E = 0

The naphthalene molecule, shown in Fig. 14(a), contains
two hexagonal carbon cycles that share a common edge.
The H~' matrix and its nonzero elements are depicted as
lines in the inverted graph in Fig. 14(b). This is a complete
bipartite graph whose lines (i, j) have the property that i
and j belong to two disjoined subsets A = {1, 3, 5, 7, 9} and
B=1{2,4,6,8,10}.

A quantum device is constructed by connecting two ex-
ternal leads to the same subset of points i, j € A, while two

wa | ws Glz[%
00 0
110]| 0.87
0|1] 087
111 0.8

FIG. 13. The OR gate for benzene molecule at E = /2. The
output of the logic gate is the conductance G, and the inputs are the
two external gates w4 and ws applied on sites 4 and 5. The transport
is calculated fort, = 1, t; = 1, and k = 7 /4.
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(a) H

FIG. 14. The naphthalene molecule: the direct graph in (a) of H,
and the inverted graph at E = 0 in (b).

external gates are applied on the two points s, € B. AtE = 0,
the electrical conductance

Gij(ws, wy) = isan OR/XOR function. 37

This is immediate due to the fact that the s, points are
common neighbors of the i and j points in the inverted
graph and consequently the obtained subgraph is the one from
Fig. 2. According to the result from Sec. II B, the Green func-
tion G;j(ws, w;) and the conductance in Eq. (37) are logical
OR/XOR functions.

Our algorithm states that for any two contact points in
the set A = {1,3,5,7,9} one can construct an OR gate by
choosing the inputs as two perturbations applied on B points.
Figure 15 shows such an example when two transport leads
are connected to points i = 1 and j = 9 and two external gates
are applied on the sites s = 4 and t = 6. The effective function
is calculated for the Hef = Hip — it|1)(1] —it]9)(9] with
H{x = H 4 w4|4) (4] + we|6) (6]. In the first order of approx-
imations one obtains G?fgf(w4, We) = —%(w4 + wg) which is
an OR logical function for input parameters w4 and wg. Be-
yond the perturbation limit, an exact numerical calculation of
the G9 conductance is given in the Table of Fig. 15.

We remark that no AND function can be constructed with
the naphthalene molecules at E = 0 as no trilinear subgraph—
as the one in Fig. l—can be found in its inverted graph.

wy we .
@ ® wa |we | G1o[ %]
@ &) @ 0]0 0
1/0]| 0.15
©) o) ® 01| 0.15
171 0.39
L2y L1

FIG. 15. The OR gate for naphthalene molecule at £ = 0. The
output of the logic gate is the conductance G 9 and the inputs are the
two external gates w4 and we applied on sites 4 and 6. The transport
is calculated forr, = 1, ; = 1 and k = 7 /2.

& Q O ©A
@
0
@
5 7 ‘:“‘n D
® © © W
() H (b) G

FIG. 16. The direct (a) and the inverted (b) graphs of the biphenyl
molecule.

B. Biphenyl logic gates at E = 0

The biphenyl molecule is composed of two hexagon circles
serial coupled as shown in Fig. 16(a). The graph lines (i, j)
correspond to nonzero values of the Hamiltonian matrix ele-
ments H;; withi, j =1, ..., 12. The nonzero matrix elements
of H~! are represented as the graph lines (i, j) in Fig. 16(b).

From Fig. 16(b) one notices that the inverted graph is a
4-partite, this meaning that its points can be partitioned into
4 disjoint subsets, A, B, C, and D, with no line between the
points in the same subset. The four subsets are marked on the
Fig. 16(b).

In this case it is the possible to obtain an AND logic gate,
as we show below. First, we note that every conductance

G;j(wy, wy) = is an AND function, (38)

if the lead-molecule coupling points i, j are such that i € A
and j € D, and with perturbations w, and w, applied on the
pointsx € Band y € C.

The proof is immediate. Due to the 4-partite structure of
the inverted graph from Fig. 16(b) the points i, j, x, y from
Eq. (38) belong to a triple line subgraph i-x-y-j depicted in
Fig. 1. Following Sec. II A, the conductance G;;(wy, wy) is an
AND function.

An AND logic gate with conductance as output can
be obtained for biphenyl with lead-sample contact points
i=3,1,5and j =9,7,11. An example is given in Fig. 17
withi = 1 and j = 9. The effective function is calculated for
the Her = Hjp — iT13)(3] — i7|9)(9]. The two perturbations
are applied for the sites x € B and y € C from Fig. 16. One
chooses x =2 and y = 8 having H,\p, = H + w2|2)(2| +
wg|8)(8]. In the first order of approximation one obtains
Ggg‘(wg, wg) =~ “2% which is an AND function. The ex-
act conductance is numerically calculated in the Table from
Fig. 17 for input values 0 and 4 and, as expected, it exhibits
the AND logical answer.

VI. CONCLUSIONS

In this paper we describe a general algorithm to create
two types of logic gates-OR/XOR and AND-using as inputs
external perturbations strategically applied on certain points
of a quantum system and whose output is the conductivity
between the other two points.

235307-8



MOLECULAR OR AND AND LOGIC GATES: ...

PHYSICAL REVIEW B 108, 235307 (2023)

LI
- -
wz | ws | Goz[%]
@ 0jo0| o0
410 0
AND GATE 0|4 0
4|4 0.8
wg e

FIG. 17. The AND gate for biphenyl molecule at £ = 0. The
output of the logic gate is the conductance Go3 and the two inputs are
two external gates w, and wg applied on sites 2 and 8. The transport
is calculated fort, = 1, ; = 1, and k = 7 /2.

Our approach uses the invariance of the electric conduc-
tance to multisite perturbations applied to a selected set of
points called My [30,35]. When G;; = 0 has two distinct in-
variance sets we showed the algorithm to identify two points,
one in each set, say x and y, such that the perturbations w, and
w, acting on the two points are inputs to an AND gate.

The points in the sensitivity sets, M., [35], represent sites
where an applied perturbation modifies the i — j DQI process.
The perturbations w; and w, applied at s and ¢ in M, where
used here to generate an OR/XOR gate.

This analysis was performed using the inverted graph
method which enables a rapid identification of the four points
- two input points and two for the output signal - involved in
the logic gates design. This is done by looking at the relevant
subgraph of a specific gate: a triple line for an AND gate and
a square for an OR/XOR gate.

We applied these considerations to the particular cases of
four different molecules, selected for their paradigm role: ful-
vene (one cycle, nonbipartite), benzene (one cycle, bipartite),
naphthalene and biphenyl (two cycles). In each case we pro-
duced analytic results supporting our conclusions. Although
an analytic derivation of the OR/XOR and AND gates can
be done when the involved quantum system is small, our
algorithm has the advantage that it can be applied to arbitrary
larger structures for as long as the energy for which we calcu-
late the conductance is not an eigenvalue of the Hamiltonian
so that the inverted graph method is applicable.
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