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Topological enhancement of exciton-polariton coherence with non-Hermitian morphing
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The non-Hermitian skin effect (NHSE) has been intensely investigated over the past few years and has
unveiled new topological phases, which have no counterparts in Hermitian systems. Here we consider the
hybridization between the NHSE in an exciton-polariton waveguide and a localized defect mode. By tuning the
non-Hermiticity, we find that the resulting ground state of the system is both spatially extended and energetically
separated from other modes in the system. When polariton lasing occurs in the system, we find an enhanced
spatial coherence (of typically 30 times longer) compared to regular waveguides, which is robust in the presence
of disorder.
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I. INTRODUCTION

Coherence—the potential to display interference—is at the
very heart of photonics. It corresponds to the presence of
phase correlations, marking the ability of many bosons to act
collectively. Photonic applications typically use coherence as
the key feature setting them apart from electronic and other
systems [1]. Arguably, the most important milestone in pho-
tonics was the invention of the laser, which uses stimulated
boson scattering as a source of coherence [2].

Following progress in establishing coherence in the realiza-
tion of atomic Bose-Einstein condensates [3], there has been
an increased interest in the study of coherence in spatially
extended optical systems such as (arrays of) vertical cavity
surface emitting lasers [4] or the condensation of photons
in microcavities [5] or waveguides [6], excitons [7], or exci-
ton polaritons [8], which are considered their nonequilibrium
counterpart [9]. It is clear, however, that the spatial coherence
in these systems is still limited. Ideally, on chip devices typi-
cally seek a two-dimensional geometry (or less). However, for
these dimensions long-range spatial coherence is impossible
in uniform equilibrium systems [10]: a consequence of the
ground state not being gapped and therefore not robust to
fluctuations. The nonequilibrium nature of optical systems
introduces additional fluctuations, which may deteriorate the
spatial coherence further [11,12].

The advancement of fabrication techniques has allowed the
engineering of a variety of arrays of lasing or cavity systems
and such photonic crystals can mimic the behavior of elec-
tronic lattices. Inspired by electronic topological insulators
this has given rise to the field of topological photonics. The
field began with a photonic analogy of the quantum Hall
effect [13–16], followed by the demonstration of a variety
of other topological phases such as antichiral edge states
[17,18], Su-Schrieffer-Heeger edge states [19,20], valley Hall
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effects [21,22], and higher-order topological insulators (cor-
ner modes) [23–27]. Most recently, it has been appreciated
that the ubiquitous gain and loss processes throughout pho-
tonics allow for various non-Hermitian topological phases
[28–33]. Among them, the non-Hermitian skin effect (NHSE)
where all eigenstates are localized at the edge has drawn
particular attention due to the breakdown of the cele-
brated bulk-edge correspondence [34]. A topological invariant
known as the winding number is used to characterize the
nontrivial topology in this case [35,36]. Furthermore, it
has been proposed that combining systems with different
topologies allows for morphed states [37,38]. While a sat-
isfying amount of fundamental non-Hermitian physics has
been uncovered, actual uses of non-Hermitian topology are
seldom discussed. Here, we propose that the morphing of
non-Hermitian topological states can enhance the spatial co-
herence length of photonic systems. We focus on the system
of exciton-polaritons in planar microcavities, where spatial
coherence is possibly most challenging to achieve given the
two-dimensional nature of the system, nonequilibrium fluc-
tuations, unavoidable disorder, and the presence of nonlinear
interactions.

Exciton-polaritons are hybrid particles formed from cav-
ity photons and quantum well excitons [8,39]. Excitons
relaxing from higher energy states (possibly electrically
injected) provide a gain mechanism for polaritons, while pho-
tons constantly leak out providing a loss mechanism. This
non-Hermitian system supports the formation of a partially
coherent state when the gain overcomes the loss. As polaritons
are bosons, this is often considered as a nonequilibrium ver-
sion of Bose-Einstein condensation. The light emitted shows
a level of coherence such that the system is also identified
as a form of laser or polariton laser. Unlike a regular laser,
polariton lasers do not rely on population inversion and thus
they can operate with lower threshold powers. However, their
coherence is complicated by the presence of nonlinear inter-
actions (due to interactions between excitons). The highest
coherence of polariton lasers requires isolating the lasing
mode in energy, which has been achieved in structures etched
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so as to trap polaritons in all three dimensions [40]. While this
technique is good for enhancing temporal coherence [41], the
trapping of the condensate necessarily limits spatial coherence
to the trap size. In spatially extended systems, it is common for
multiple condensates to appear within an energy bandwidth.
While spectrally resolving each mode shows a good spatial
coherence of each mode [42], an ideal polariton laser would
show spatial coherence without such spectral filtering. It is
also understood that disorder limits the range of spatial coher-
ence in spatially extended systems [43].

The same etching techniques to trap polaritons can be
used to realize lattices for polaritons. This has supported
the field of topological polaritons [44–52], where the typical
objective is to engineer a band structure such that it iso-
lates a small number of states in a band gap using topology
to ensure robustness against structural variations and disor-
der. Being non-Hermitian systems, polaritons also support a
variety of non-Hermitian topological effects, including excep-
tional points [53–55], bound-statein-continuum modes [56],
NHSE [57–60], non-Hermitian corner modes [61], and end-
mode lasing [62].

Here, we consider the hybridization of a polariton waveg-
uide supporting non-Hermitian skin modes with the modes of
an intentional defect (trap). The aim is to morph the ideal
properties of the defect, namely the presence of a ground
state well isolated in energy, with the ideal properties of the
skin effect, namely the spreading of its wave functions over
a controllable localization length. We find theoretically that
the system can undergo polariton lasing in the ground state.
This allows us to predict an enhanced spatial coherence length
compared to that of a regular polariton waveguide. As is
expected of most topological systems, we also find robustness
of the attained spatial coherence in the presence of disorder.
Finally, we show that the mechanism is still feasible in the
presence of realistic levels of nonlinear interaction.

II. MODEL

It was pointed out in [58] that the NHSE can be attained
in polariton systems by arranging a phase dependent coupling
between two chains of modes with different gain/loss.
Examples of realizing such a model include using the coupling
between spin states in chains of elliptical micropillars [57],
the coupling between vortex modes in chains of polariton
rings [59], and most recently the coupling of spin states using
Rashba-Dresselhaus spin-orbit coupling (RDSOC) [63,64]
in liquid crystal filled microcavities [65]. The latter proposal
has pointed out that the NHSE can occur in continuous
waveguides, without a lattice. While our results should
not depend on the precise underlying mechanism of the
NHSE, the latter proposal will serve best our purpose given
that spatial coherence was previously considered in similar
one-dimensional waveguide [43,66] geometries and it will
avoid modulation of the spatial coherence function by the
presence of a lattice. Within such a model, the evolution of
polaritons is described by

ih̄
∂�±
∂t

=
(

− h̄2∇2

2m
+ V ∓ 2iα

∂

∂x
− iγ±

)
�± + �T �∓.

(1)

Here �± is the wave function of polaritons with ± spin
(corresponding to the circular polarization of emitted light).
m is the effective mass, V is a two-dimensional spatial po-
tential profile of our considered microcavity, which is deeper
inside the waveguide region [−20 meV; gray area as shown in
Fig. 1(a)], α is the strength of RDSOC, �T is the X-Y splitting
existing in the microcavity, and γ± correspond to the decay
rates of spin up and down polaritons.

It is instructive to first consider the system in a Hermitian
regime, neglecting the loss term (γ± = 0), which gives the dis-
persion shown in Fig. 1(b). The color bar used in the figure is
calculated according to the degree of circular polarization Sz,
which is defined as

Sz = |�+|2 − |�−|2
|�+|2 + |�−|2 . (2)

In this situation, time-reversal symmetry is preserved; how-
ever, opposite spins propagate in opposite directions in a
topological spin Hall effect (see the Appendixes).

Typically in a polariton system, the spin up and spin down
decay rates would be the same. However, this changes if we
apply a circularly polarized nonresonant pump, which serves
as gain. We consider a spin up polarized, spatially uniform
incoherent pump, resulting effectively in γ+ < γ−. We calcu-
late the eigenstates’ spatial distribution and find that, different
from the Hermitian case [Fig. 1(d)], all eigenstates are local-
ized at the right end of the waveguide as shown in Fig. 1(e).
Introducing a spin down polarized pump would reverse this
localization. This phenomenon known as the NHSE has no
counterpart in Hermitian systems. To prove its topological
nature, we calculate the complex energy spectrum under both
a periodic boundary condition (PBC) and open boundary con-
dition (OBC) as shown in Fig. 1(c). We find that the complex
energy spectrum from the PBC forms a closed loop, which
is a signature behavior of the NHSE [67]. In the NHSE, it is
expected that all injected polaritons propagate along the same
direction (right in this case; see the Appendixes).

III. MORPHING OF THE DEFECT MODE

Here, we consider the interplay between the NHSE and
a trivial defect ground state (lowest real energy state). The
defect state is governed by a region with deeper potential than
the rest of the waveguide. This could be realized by coupling
a micropillar to the waveguide or engineering a region with
stronger light-matter coupling [41].

Given that the defect has a deeper potential, the ground
state of the system could be expected to be localized in the
defect. When δγ = 0 (δγ = γ+ − γ−) as the case without
NHSE, the ground state’s spatial profile is shown in Fig. 2(b).
The spatial profile of this state changes drastically if we in-
crease δγ . When δγ is not sufficiently large, the mode will be
slightly pulled into the waveguide area as shown in Fig. 2(c).
Upon further increasing the decay difference, we find the
mode extends within the whole waveguide at the right of the
defect [Fig. 2(d)]. Eventually, with a larger δγ , the mode
becomes localized at the right end, similar to other modes
within the waveguide [Fig. 2(e)]. This effect occurs due to
the competition between defect’s trapping and localization of
the NHSE. The localization length of the NHSE depends on
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FIG. 1. (a) Schematic figure of a microcavity with an etched waveguide. The microcavity is formed by two sets of distributed Bragg
reflectors (DBRs) sandwiching a quantum well (QW). (b) Calculated band structure with the consideration of RDSOC, where Sz represents
the circular polarization. (c) Complex energy spectra calculated under different boundary conditions: orange points for PBC and black points
for OBC. (d), (e) Eigenstates’ spatial distribution in the Hermitian and non-Hermitian cases, respectively. Parameters: m = 2.285 × 10−5 of
the free electron mass, �T = 6 meV, and α = 1.7 meV. For (b) and (d), γ± = 0; for (c) and (e), γ+ = 1 meV, γ− = 0.

the value of δγ . The skin modes become more localized when
δγ increases. The enhancement of localization at the right end
compensates for the decay of the defect mode resulting in the
delocalized bebavior. When δγ is large enough, the NHSE
dominates and the ground state becomes localized again Ap-
pendix.

FIG. 2. (a) Schematic figure of a waveguide with a defect on the
left-hand side. [(b)–(e)] Spatial distribution of the ground state with
different decay rates. Ground state distribution changes drastically
from localized inside the defect, dragged into the waveguide, then
extended in the waveguide and finally localized at the right end.

IV. LASING IN THE EXTENDED DEFECT MODE

To model polariton lasing, we add to our model phe-
nomenological terms identified previously in the literature
as being consistent with experimental observations. These
include the gain and nonlinear loss introduced in [68] and
energy relaxation factor studied in [69]:

ih̄
∂�±
∂t

= (1 − iβ )

[(
− h̄2∇2

2m
+ V ∓ 2iα

∂

∂x

)
�± + �T �∓

]

+ i(P± − γ )�± − iα1|�±|2�±. (3)

Here, β represents energy relaxation, iP± denotes the cir-
cular polarized incoherent pump, and α1 is the nonlinear
decay. To achieve the NHSE, we select the incoherent circu-
larly polarized pump to be spatially uniform with different
strengths (P+ = 3.3 meV; P− = 0), thus creating different
effective decay rates. The steady state is shown in Fig. 3(a),
where polaritons are distributed almost uniformly through-
out the waveguide. Notice that this distribution is similar
to the extended state shown in Fig. 2(d). We then calculate
the polariton intensity as a function of energy by Fourier
transforming the wave function �± obtained from Eq. (3).
Subsequently, we sum up all the intensity along the real space.
As shown in Fig. 3(c), the intensity distribution in energy
from Fig. 3(a) reveals a peak at around −3.45 meV, which
is similar to the extended defect state’s eigenenergy calculated
by diagonalizing the linear Hamiltonian as shown in Fig. 3(b).
This further proves that we have obtained polariton lasing in
the extended defect state.
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FIG. 3. (a) Steady state’s spatial distribution obtained from
Eq. (3). The polaritons are uniformly distributed all over the waveg-
uide like the case of Fig. 2(d). (b) Eigenenergies solved in the linear
case (α1 = 0). The energy band gap between ground state and others
is around 0.16 meV. (c) Intensity of polaritons as a function of
energy. Parameters: β = 0.5, α = 1.7 meV, �T = 6 meV, α1 =
1 µeV µm2, P+ = 3.3 meV, and P− = 0.

V. NONLINEARITY EFFECT ON NHSE AND
NON-HERMITIAN MORPHING

Nonlinearity is an intrinsic property of polaritons, so it is
an interesting question of whether the NHSE and also the non-
Hermitian morphing can persist in the presence of nonlinear
interactions. To answer this, we consider the nonlinear inter-
action term (corresponding to an effective Gross-Pitaevskii
equation) by adding α2|�±|2�± into the right-hand side of
Eq. (3). We first consider a cavity without a defect and show
the polaritons are still accumulating at the right end of the
system [shown in Fig. 4(a)], which is the signature of the
NHSE even with nonlinearity added. Then, we add a defect
and show the morphing effect. We find that polaritons can
still be distributed all over the cavity, which shows the non-
Hermitian morphing is still valid with nonlinearity considered
[Fig. 4(b)]. The nonlinear interaction constant is taken to
be 1 µeV µm2, which is on the same order found in recent
experiments [70].

0
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min max

-40 -20 20 40
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2
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2
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FIG. 4. (a) Polaritons accumulate at the right end of the cavity,
which is a signature of NHSE. (b) In the presence of nonlinearity,
the ground state can still be extended all over the cavity, which
demonstrates the non-Hermitian morphing.

VI. SPATIAL COHERENCE IN AN EXTENDED
DEFECT MODE

Owing to the deeper potential, the ground state of the de-
fect carries less energy than the ground state of the waveguide.
This energy difference creates a band gap of around 0.2 meV.
As a result, after the ground state morphing, it is not only
distributed all over the waveguide but is also energetically
separated from other modes. This unique property enables
the possibility of achieving large-area spatial coherence. We
calculate the spatial coherence, g1(�x,�y) using the formula
Appendix

g1(�x,�y) =
∑

n �∗
n (x, y)�n(x + �x, y + �y)e− (En−Eg)2

δE2

√
I (x, y)I (x + �x, y + �y)

,

(4)

I (x, y) =
∑

n

|�n(x, y)|2e− (En−Eg)2

δE2 . (5)

This formula is equivalent to that used in [71], however, as-
suming a Gaussian energy distribution function. One might
have expected a Bose-Einstein distribution; however, it was
shown that this results in a poor fit to experiments given the
nonequilibrium nature of polariton systems [71]. Here I (x, y)
is the intensity profile of polaritons, En is the energy of the
modes, Eg is the energy of the ground state, and δE is the en-
ergy fluctuation. If δE is infinitesimally small corresponding
to a perfect condensate, g1 will equal to 1. In the calculation,
we take the reference point (x, y) as the point that has the
highest intensity.

In a typical cavity, because of the continuous energy spec-
trum, more than one mode is excited simultaneously, which
results in coherence decay, as shown in Fig. 5(a). It is impor-
tant to note that, with a larger δE , g1 drops more rapidly. In
comparison, the ground state morphing mode displays better
coherence all over the waveguide due to the separation of en-
ergy and the extended distribution nature. When δE is small,
almost just the ground state is excited and g1 is nearly one in
the whole waveguide. Of course if δE is increased too much,
coherence will drop, first at the right end of the waveguide.
This can be interpreted as other skin modes being excited,
which are dominantly localized at the right edge of the waveg-
uide. Note that the coherence remains high throughout the left
region of the waveguide.

A well-known advantage of topological systems is the
robustness of their states with respect to disorder (provided
that the disorder strength is within the topological band gap).
In Figs. 5(c) and 5(d), we compare the spatial coherence in
a regular waveguide and our morphing mode system in the
presence of disorder (added as a random potential). The mor-
phing scheme retains an enhancement of the spatial coherence
length by around 30 times the coherence length of the regular
waveguide [72].

To show the usefulness of our proposal, it is important to
see whether the spatial coherence can still be preserved in the
presence of nonlinear interaction and time-dependent noise.
To show this, we consider a Gross- Pitaevskii equation with an
additional stochastic term accounting for fluctuations [69,73].
It is based on the truncated Wigner formalism [8,74], keeping
the highest order terms in �. The nonlinear term α2|�±|2�±
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FIG. 5. (a), (b) Spatial coherence calculated from Eqs. (4) and (5)
in a normal cavity case and the NHSE morphing case under differ-
ent strengths of fluctuations, respectively. (c), (d) Spatial coherence
calculated in the presence of the same strength of disorder in a nor-
mal cavity and the NHSE morphing case. (e), (f) Spatial coherence
calculated in the presence of nonlinearity and stochastic noises in the
NHSE morphing case and a normal cavity case. Other parameters:
α2 = 1 µeV µm2 [70], dWi,± =

√
P±+γ

dx dy ξidt , where ξi is a complex
Gaussian noise process satisfying 〈ξiξ

∗
j 〉 = δi j/dt, 〈ξiξ j〉 = 0, where

i, j are discretization indices and dx(dy) is the spacing along the x(y)
direction.

and the stochastic term dW±
dt are added into the right hand of

Eq. (3). This corresponds to a more explicit treatment of noise
in the system and more accurate assessment of coherence. We
find that, even with nonlinearity, the coherence can still be
enhanced for the topological morphing case.

VII. CONCLUSION

We consider the hybridization of non-Hermitian skin effect
modes and a trapped mode in exciton-polariton waveguides.
Because of the competition between the trap and NHSE, the
localized defect ground state can become extended inside
the waveguide. We then show that lasing can be obtained in
the extended defect mode. The large band gap of this ground
state and the large area distribution properties make it possible
to achieve a significant spatial coherence length, considerably

enhanced compared to nontopological systems (more than 30
times). This enhancement survives in the presence of both
disorder and nonlinear interactions.
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APPENDIX A: DERIVATION OF EQ. (1)

To derive Eq. (1), we start with the Hamiltonian proven in
the work [75]. In the first equation of this work, the Hamilto-
nian is defined:

Ĥ = h̄2k2
x

2mx
+ h̄2k2

y

2my
+ ĤRD + 1

2
(EX,l − EY,l ′ )σ̂x, (A1)

where ĤRD = −2ασ̂zky is the Rashba-Dresselhaus Hamilto-
nian. The Hamiltonian acts on exciton-polaritons, which exist
in the plane of a microcavity with coordinates 	x = (x, y)T .
We note that polaritons have a two-component spin degree of
freedom, corresponding to left and right circularly polarized
optical components, written [�+(	x, t ), �−(	x, t )]T .Thus they
are represented as a 2-spinor and the above Hamiltonian is
of the form of a 2 × 2 matrix in this basis, where the Pauli
matrices are defined as

σ̂x =
(

0 1
1 0

)
, σ̂z =

(
1 0
0 −1

)
. (A2)

The wave vectors can be rewritten as operators: kx = −i ∂
∂x

and ky = −i ∂
∂y . While in [75], they consider different effective

masses mx and my; a simpler case is sufficient for our needs
so we will choose m = mx = my. Using standard notation,

we then use h̄2

2m (k2
x + k2

y ) = − h̄2

2m ( ∂2

∂x2 + ∂2

∂y2 ) = − h̄2

2m ∇2. Let us

define the constant �T = 1
2 (EX,l − EY,l ′ ), which represents a

splitting between linearly polarized states at zero wave vector.
The Hamiltonian is then

Ĥ = − h̄2∇2

2m

(
1 0
0 1

)
+ 2iα

(
1 0
0 −1

)
∂

∂y
+ �T

(
0 1
1 0

)
.

(A3)

Without loss of generality we can choose a different definition
of x and y coordinates to [75], choosing y ↔ −x. Then

Ĥ = − h̄2∇2

2m

(
1 0
0 1

)
− 2iα

(
1 0
0 −1

)
∂

∂x
+ �T

(
0 1
1 0

)

+
(

V (	x) − iγ+ 0
0 V (	x) − iγ−

)
. (A4)

We have added to this Hamiltonian a non-Hermitian potential,
where the real part is given by V (	x) and taken to be spin
independent, while the imaginary part corresponds to spin-
dependent but spatially uniform loss in the system.
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min

max(b) (c)

-1

(a)

FIG. 6. (a) Band structure obtained from Eq. (1) in the main text without X-Y splitting and RDSOC. (b) Band structure when there is only
X-Y splitting (�T ) considered. (c) Band structure calculated when there is only RDSOC coupling (α) considered.

We now use the Schrödinger equation to write

ih̄
∂

∂t

(
�+(	x, t )
�−(	x, t )

)
= Ĥ

(
�+(	x, t )
�−(	x, t )

)
=

(( − h̄2∇2

2m + V (	x) − 2iα ∂
∂x − iγ+

)
�+(	x, t ) + �T �−(	x, t )( − h̄2∇2

2m + V (	x) + 2iα ∂
∂x − iγ−

)
�−(	x, t ) + �T �+(	x, t )

)
. (A5)

This corresponds to Eq. (1) of our manuscript and the manip-
ulations used to connect to Eq. (1) of the work in [75].

APPENDIX B: EFFECT OF X-Y SPLITTING AND RDSOC
COUPLING

In this section, we investigate the effect of X-Y splitting
and RDSOC coupling on the band structure. The band struc-
ture is solved from Eq. (1) in the main text. First we calculate
the dispersion without X-Y splitting and the RDSOC coupling
as shown in Fig. 6(a). Then we turn on the X-Y splitting by
choosing �T = 6 meV, α = 0 and keep all other parameters
the same as in Fig. 1 in the main text. We find that the two
spins are still degenerate when there is no RDSOC as shown
in Fig. 6(b). Compared to the case without X-Y splitting, the
dispersion shift −6 meV, which can be explained by solving
the Hamiltonian in reciprocal space:

Hk1 =
(

h̄2k2

2m �T

�T
h̄2k2

2m

)
. (B1)

We can get two bands with energy E1 = h̄2k2

2m + �T , E2 =
h̄2k2

2m − �T . The dispersions shift ±6 meV, respectively, and
the higher energy band is not within the energy regime calcu-
lated here, so only one band is shown in Fig. 6(b).

Then we choose �T = 0 meV, α = 1.7 meV and find that
two spins are no longer degenerate. Two spins shift towards
different directions by 2mα/h̄2 in the reciprocal space. This
can be better understood by considering the Hamiltonian in
reciprocal space as

Hk2 =
(

h̄2k2

2m − 2αk 0
0 h̄2k2

2m + 2αk

)
(B2)

= h̄2

2m

((
k − 2mα

h̄2

)2
0

0
(
k + 2mα

h̄2

)2

)
− 2mα2

h̄2 . (B3)

From Eq. (B3) we find that the spin up dispersion shifts
towards the positive direction by 2mα/h̄2, while the spin down
dispersion shifts in the other direction by the same amount as
shown in Fig. 6(c).

min max

X

Y
Y

(a)

(b)

FIG. 7. Polariton time dynamics solved from Eq. (C1) for spin up polaritons (a) and spin down polaritons (b). Spin up and spin down
polaritons propagate along opposite directions, which demonstrates the TSHE. Other parameters: F± = 0 and P± = 1 meV µm−1.
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min max

X

Y
Y

(a)

(b)

FIG. 8. Polariton time dynamics solved from Eq. (C1) for spin up polaritons (a) and spin down polaritons (b). Both spin up and spin down
polaritons propagate along the same direction, which shows the NHSE. Other parameters: F+ = 2 meV, F− = 0, and P± = 1 meV µm−1.

APPENDIX C: TIME DYNAMICS FOR TOPOLOGICAL
SPIN HALL EFFECT AND NON-HERMITIAN SKIN

EFFECT

To illustrate the topological spin Hall effect (TSHE), we
choose a linearly polarized coherent pump in the middle of the
waveguide. The time dynamics of polaritons is solved from
(see Fig. 7)

ih̄
∂�±
∂t

=
(

− h̄2∇2

2m
+ V ∓ 2iα

∂

∂x
+ i(F± − γ±)

)
�±

+ �T �∓ + P±e−iωpt . (C1)

Here P± represents the coherent pump applied in the system
and F± corresponds to the incoherent pump. In order to in-
vestigate the behavior of TSHE, we set γ+ = γ− = 0.05 meV
and keep other parameters the same as in Fig. 1. We find that
spin up polaritons are propagating towards the right end, while
spin down polaritons propagate in the other direction. This
corresponds to the signature behavior of the TSHE.

Furthermore, we calculate the time dynamics for polaritons
in the non-Hermitian case by applying a spin up polarized
incoherent pump, which introduces different effective decay
rates. We observe that both spins propagate along the same
direction and accumulate at the right end of the waveguide,
which shows the NHSE. (See Fig. 8.)

APPENDIX D: ROBUSTNESS OF THE MORPHING
EFFECT

To show the robustness of the considered extended ground
state, we first introduce a parameter called the inverse partic-
ipation ratio (IPR), which is used to describe the localization
behavior of eigenstates. We divide the system into equally
spaced bins, each corresponding to 1 µm in the continuous
model to define this quantity:

I =
∑

i

|ψi|4. (D1)

Through definition, I is 1 when the eigenstate accumulates
within 1 µm and approaches zero when the eigenstate is ex-
tended homogeneously. Given the IPR, we can calculate a

phase diagram corresponding to the dependence of I on �T ,
δγ (shown in Fig. 9). We can identify in the diagram different
regimes: localized states and delocalized extended states. By
looking at the dark blue area, we find that the extended state
is not limited to just some specific values but can exist in a
region of the parameter space.

APPENDIX E: DERIVATION OF EQ. (4)

Equation (4) can be derived by noting the standard defini-
tion of the (first order) spatial coherence [76]:

FIG. 9. Phase diagram for the IPR depending on �T and δγ . The
dark blue area corresponds to the extended distribution, while the
yellow one corresponds to localized cases.
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g1(�x,�y) = 〈�∗(x, y)�(x + �x, y + �y)〉√〈�∗(x, y)�(x, y)〉〈�∗(x + �x, y + �y)�(x + �x, y + �y)〉 . (E1)

Here the angled brackets denote an ensemble average, which can be recast as a sum over a probability distribution:

g1(�x,�y) =
∑

n pn�
∗
n (x, y)�n(x + �x, y + �y)√∑

m pm�∗
m(x, y)�m(x, y)

∑
l pl�

∗
l (x + �x, y + �y)�l (x + �x, y + �y)

. (E2)

Here pn is the probability that the system is in the state �n. Experiments claiming polariton condensation typically measure an
energy distribution peaked about the ground state, Eg. We assume a Gaussian line shape, with width δE , defined by

pn = 1

N
e−(En−Eg)2/δE2

, (E3)

where N is a normalization constant. This probability distribution gives Eq. (4).
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