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Sign reversal of the effective Hall coefficient in laminates
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In the theory of composites, hierarchical laminate microstructures are known to often show optimal behavior.
In this paper, their performance in the context of the Hall effect is evaluated. Using numerical calculations, it is
shown that—despite the fact that they are the result of a simple layering process—they can mimic the behavior
of chain-mail-inspired composites, which exhibit a sign inversion of the effective Hall coefficient. To obtain such
a hierarchical laminate, a two-step strategy is used: In the first step, a rank-three laminate with an effective S
tensor that has a sign-inverted trace is introduced. In the second step, the final isotropic hierarchical laminate is
obtained from the rank-three laminate using an idea of Schulgasser’s. As measured by the conductivity contrast
required for the inversion as well as by the modulus of the obtained sign-inverted Hall coefficient, the identified
hierarchical laminate performs better than the previously studied chain-mail-inspired composites.
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I. INTRODUCTION

Composite materials are microscopically structured mate-
rials that effectively act like homogeneous materials on the
macroscopic length scale [1]. One of the most interesting
aspects of composites is the fact that their effective properties
can be very different from the properties of their constituent
materials, i.e., the materials from which they are made at
the microscopic length scale [1–3]. Particularly interesting
are instances in which an effective material parameter and
the corresponding material parameters of the constituent ma-
terials have opposite sign. Corresponding examples cover a
wide range of fields [2,4–13]. Here, with the sign inversion of
the effective Hall coefficient, an example concerning electric
conduction in the presence of a magnetic field is considered.

The Hall effect describes, in its simplest form, the occur-
rence of a transversal voltage, the so-called Hall voltage, in a
current-carrying slab-like conductor that is subject to a mag-
netic field [14,15]. Mathematically, it is a manifestation of an
antisymmetric contribution to the conductivity tensor that is
the result of the magnetic field locally breaking time-reversal
symmetry, implying that it is a nonreciprocal effect [16–19].
Aside from being employed in many sensing applications
[20,21], the Hall effect has been used for many decades to
study the properties of semiconductors, see, e.g., Chap. 6 in
Ref. [15] for an introduction. For example, the sign of the
Hall coefficient is usually determined by the predominant type
of charge carriers. Thus, from the sign of the measured Hall
voltage, which in a conventional Hall bar is given by the sign
of the Hall coefficient, one can tell, whether the conduction in
a given sample is due to electrons or holes.

As the mathematically rigorous construction of a compos-
ite exhibiting a sign inversion of the effective Hall coefficient
by Briane and Milton [22], which was based on earlier theoret-
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ical work [23], as well as experimental realizations [24,25] of
a simplified design [26] have shown, this simple textbook link
between the Hall coefficient and the underlying conduction
type does not hold true for composites. The key to obtaining
the sign inversion was a rather intricate geometry based on a
periodic arrangement of intertwined tori that was inspired by
medieval chain mail. Later, a second composite with a com-
plicated topology leading to a sign inversion of the effective
Hall coefficient was identified [27].

This paper is concerned with the Hall effect in laminates,
which form a particularly simple yet very powerful class of
composites. A detailed introduction to laminates is given in
Chap. 9 of Ref. [1]. The simplest type of laminate, a so-called
rank-one laminate, is formed by periodically layering two or
more media in a given direction. One can apply this procedure
iteratively, i.e., each of the media might be a laminate itself,
thereby obtaining a laminate of higher rank (a so-called hi-
erarchical laminate), a concept dating back to Maxwell [28].
Laminates have the advantage over most other composites
that their effective properties can be readily calculated, which
facilitates a mathematically rigorous treatment. Furthermore,
despite their simple building principle, they attain many fun-
damental bounds, i.e., they often realize the most extreme
effective properties any composite can fundamentally have
[29–31].

The effective properties of laminates extend in fact so
far that it is difficult to identify a scenario in which their
range (the so-called lamination closure, GL) is smaller than
the range of effective properties of more general composites
(the so-called G closure) and the border between those two
regimes is yet to be better understood [32]. This problem
is also of interest from a more mathematical perspective,
as it is connected (see Chap. 31 in Ref. [1]) to the rela-
tion between rank-one convexity and quasiconvexity, which
plays an important role in the calculus of variations [33].
In Chap. 31.9 in Ref. [1], based on Šverák’s example of a
function that is rank-one convex but not quasiconvex [34],
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Milton has introduced a three-dimensional composite made
from seven constituent materials with fixed orientation that
has effective elastic properties that cannot be attained by a
laminate. However, it remains to be answered, whether there
are simpler instances of the properties of general composites
going beyond those of laminates, especially with a smaller
number of constituent materials and without keeping their
orientation fixed [32].

The sign inversion of the effective Hall coefficient seems
to be a natural candidate. Given the complicated topology of
the chain-mail-inspired microstructure and the fact that its
design was based on the determinant of the matrix-valued
microscopic electric field (see below for a definition) having
locally negative values [22], an effect that cannot occur in lam-
inates [30], one would expect that the effective Hall coefficient
cannot be sign-inverted in isotropic laminates, at least not in
such made from two constituent materials [32].

In the following, after a brief introduction to the fun-
damentals and some considerations concerning individual
components of the effective Hall tensor, it is shown that,
contrary to this expectation, there are isotropic hierarchical
laminates made from two isotropic constituent materials ex-
hibiting a sign inversion of the effective Hall coefficient.
Moreover, it is shown that the identified hierarchical laminate
allows for a more strongly pronounced sign inversion than the
chain-mail-inspired composite.

II. FUNDAMENTALS

The first part of this section forms a brief introduction to
the theoretical description of the Hall effect in composites.
Details can be found in Refs. [1,22]. It is then described how
the effective properties of the hierarchical laminates presented
here were calculated. Finally, the necessity of increasing the
complexity of the hierarchical laminates beyond the usually
sufficient degree is briefly discussed.

A. The Hall effect in composites

We consider the electric conductivity problem,

∇ · j̃ = 0, ∇ × ẽ = 0, j̃ = σ̃(b)ẽ, (1)

in the presence of a magnetic field b. Here, j̃ is the electric
current density, ẽ is the electric field, and σ̃(b) is the magnetic-
field-dependent conductivity tensor. Throughout this paper,
it is assumed that the magnetic field is weak, in which case
the most general form of the constitutive law is given by, see
Refs. [18,22],

j̃ = σẽ + (Sb) × ẽ (2)

and its inverted form (keeping terms up to the first order in the
magnetic field) reads

ẽ = ρ j̃ + (Ab) × j̃, (3)

where σ and ρ are the zero magnetic-field (zmf) conductivity
and zmf resistivity tensor, respectively, and S and A are rank-
two tensors, which are being referred to as the S tensor and
the Hall tensor, respectively, and which are related via (see
Proposition 3 in Ref. [22])

S = −Cof(σ)A, (4)

where Cof(·) denotes the cofactor matrix. For an isotropic
material, the tensors A and S reduce to scalar multiples of the
identity. Specifically, the Hall tensor of an isotropic material
is given by A = AI, where A is the Hall coefficient.

We are interested in the effective zmf conductivity tensor
σ∗ and effective S tensor S∗ or, equivalently, the effective
zmf resistivity tensor ρ∗ and effective Hall tensor A∗ of the
composite, which are defined via the macroscopic version of
the constitutive law and its inverse version,

〈 j̃〉 = σ∗〈ẽ〉 + (S∗b) × 〈ẽ〉 (5)

and 〈ẽ〉 = ρ∗〈 j̃〉 + (A∗b) × 〈 j̃〉, (6)

respectively, where the macroscopic fields 〈ẽ〉 and 〈 j̃〉 are
obtained from the corresponding microscopic fields by aver-
aging over the unit cell of periodicity. Analogously to Eq. (4),
the effective S tensor and the effective Hall tensor are linked
via

S∗ = −Cof(σ∗)A∗. (7)

The effective zmf conductivity tensor can be determined
by evaluating the macroscopic constitutive law

〈 j〉 = σ∗〈e〉 (8)

for (in three dimensions) three different pairs of fields e = e(i),
j = σe(i) with i ∈ {1, 2, 3} solving the conductivity problem
in the absence of a magnetic field (the absence is indicated
by omitting the tilde). It is convenient to assume that the
three solutions for the electric field satisfy 〈e(i)〉 = x̂i, i.e.,
that the macroscopic fields are given by the three unit vectors,
and to introduce a matrix-valued field E, whose columns are
given by the fields e(i). The field E is the so-called matrix-
valued electric field (in homogenization theory it is commonly
termed corrector matrix [23,35]) and gives the microscopic
electric field in the composite for any choice of the macro-
scopic electric field,

e = E〈e〉. (9)

In terms of the matrix-valued electric field, the effective zmf
conductivity tensor is given by

σ∗ = 〈σE〉. (10)

Assuming that the magnetic field is weak, one can obtain
not only the zmf conductivity tensor, but also the effective S
tensor by solving the conductivity problem for zero magnetic
field. More precisely, using a perturbation approach [22], see
also Chap. 16 in Ref. [1], one obtains the following expression
for the effective S tensor, see Theorem 3 in Ref. [22],

S∗ = 〈Cof(E )ᵀS〉, (11)

which extends a result of Bergman [36]. The corresponding
expression for the effective Hall tensor reads

Cof(σ∗)A∗ = 〈Cof(σE )ᵀA〉. (12)

A simplified version of this formula can be obtained by intro-
ducing the field J′ = σE(σ∗)−1, which links the macroscopic
current density and the microscopic current density,

j = J′〈 j〉, (13)
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and in terms of which the effective Hall tensor is given by

A∗ = 〈Cof
(
J′)ᵀA〉. (14)

The perturbative expressions (11) and (14) will be used in the
construction of the isotropic hierarchical laminate exhibiting
a sign inversion of the effective Hall coefficient and the dis-
cussion of the sign inversion of individual components of the
effective Hall tensor, respectively.

B. Calculating the effective properties of laminates

For the numerical calculations of the effective properties
of the hierarchical laminates presented in this paper, the lam-
ination formula obtained by Milton [37] and Zhikov [38] was
used (note that an alternative lamination formula for arbitrary
lamination directions has been derived by Murat and Tartar
[39]). For a detailed discussion of this formula, the reader is
referred to Chap. 9.3 of Ref. [1]. Instead of working with the
effective conductivity tensor, one introduces the tensors

S̃ (b) = α[αI − σ̃(b)]−1

and S̃
∗
(b) = α[αI − σ̃∗(b)]−1

, (15)

where α is a reference constant that can be freely chosen.
The formula, which has to be iteratively applied for each
lamination step, reads

(S̃
∗
(b) − �1(n))−1 = 〈(S̃ (b) − �1(n))−1〉, (16)

where �1(n) = n ⊗ n with n being the direction of lamina-
tion, i.e., the direction perpendicular to the layers, and 〈·〉
denotes the volume average over the unit cell. Using this
formula, the effective magnetic-field-dependent conductivity
tensor σ̃(b) was numerically calculated for three mutually
orthogonal directions of the magnetic field, which allows one
to deduce all components of the effective S tensor. The numer-
ical calculations were carried out using the Python libraries
NumPy [40] and SciPy [41].

C. Going beyond orthogonal laminates

An orthogonal laminate is a hierarchical laminate whose
directions of lamination are chosen from an orthogonal set
of axes. Orthogonal laminates form an important class of
laminates, particularly as they are known to attain many
bounds on the effective properties of isotropic composites
[30]—see, e.g., the recent work on the complex permittivity
of three-dimensional two-phase composites in Ref. [31]—and
often also bounds on anisotropic effective properties—for
example, as shown by Murat and Tartar [39] and Lurie
and Cherkaev [42], in the absence of a magnetic field, any
(possibly anisotropic) effective conductivity than can be fun-
damentally attained by a three-dimensional composite that is
made from two isotropic constituent materials and that has
a fixed volume fraction is in fact attained by an orthogonal
laminate. However, neither the effective Hall coefficient nor
individual diagonal components of the effective Hall tensor of
an orthogonal laminate can be sign-inverted if the constituent
materials are isotropic.

This result follows immediately from Eq. (12) and the fact
that the matrix-valued electric field in an orthogonal laminate

formed from isotropic constituent materials is positive diag-
onal if, without loss of generality, the coordinate system is
chosen such that its axes coincide with the lamination direc-
tions (see the proof of Theorem 2.15 in Ref. [30]). Hence, the
Hall effect is exceptional in the sense that it requires one to
consider composites beyond those that usually suffice. Specif-
ically, in trying to find a laminate with a sign-inverted effective
Hall coefficient (or a sign-inverted diagonal component of the
effective Hall tensor), one is forced to allow at least one of
the lamination directions to deviate from an orthogonal set of
axes.

III. SIGN INVERSIONS OF COMPONENTS
OF THE EFFECTIVE HALL TENSOR

In this section, a laminate exhibiting a sign inversion in
one of the diagonal components of the effective Hall tensor is
introduced. To see what such an inversion would correspond
to in an experiment, we consider a long Hall bar made from
a composite. We assume that the magnetic field is oriented
along the x3 direction, b = b3x̂3, and that it is perpendicular to
the Hall bar in which the current is flowing parallel to the x1x2

plane, 〈 j〉 = (〈 j1〉, 〈 j2〉, 0)ᵀ. Far from the contacts, due to the
deflection and subsequent accumulation of charge carriers, an
electric field is built up that balances the magnetic part of the
Lorentz force. The macroscopic counterpart of this so-called
Hall electric field is given by

〈eH〉 = (A∗b) × 〈 j〉 = b3

⎛
⎜⎝

−A∗
33〈 j2〉

A∗
33〈 j1〉

A∗
13〈 j2〉 − A∗

23〈 j1〉

⎞
⎟⎠. (17)

Hence, a sign inversion in the component A∗
33 of the effective

Hall tensor would translate to a sign inversion in the x1 com-
ponent and the x2 component of the macroscopic Hall electric
field, implying that, for this specific orientation of the com-
posite, one would measure a sign-inverted Hall voltage. The
laminate exhibiting a sign inversion of the component A∗

33—
or, depending on the orientation of the laminate any other
diagonal component of A∗—is a rank-two laminate made from
two isotropic constituent materials only. The first constituent
material has a low zero-magnetic-field conductivity, σ (1), and
zero Hall coefficient, A(1) = 0, while the second constituent
material has a fairly large zero-magnetic-field conductivity,
σ (2), and a nonzero Hall coefficient, A(2). For the numerical
calculations, it is assumed that σ (1) = 1 Sm−1 and σ (2) =
400 Sm−1. An illustration of the laminate and the correspond-
ing tree structure are shown in Fig. 1.

To obtain a structure exhibiting a strong sign inversion, a
minimization of the component A∗

33 of the effective Hall tensor
was carried out. Four of the parameters of the laminate, the
polar lamination angles θA and θB and the volume fractions
fB and fD, were allowed to vary. Using the SciPy [41] im-
plementation of the downhill simplex method, the following
parameter values were obtained:

θA = 0.6390, θB = 0.9924, fB = 0.7898, fD = 0.9915.

(18)
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FIG. 1. (a) Schematic illustration of the rank-two laminate show-
ing a sign inversion of the component A∗

33 of the effective Hall tensor.
The laminate is made from two isotropic constituent materials. The
first constituent material, which is weakly conducting, is depicted
as semitransparent. The second constituent material, which is highly
conducting and has a nonzero Hall coefficient, is shown in gray.
Unlike depicted here, the mathematical description assumes that the
length scales of subsequent lamination steps are vastly separated.
The values of the geometry parameters of the shown laminate are the
result of the minimization of A∗

33 with the exception of the volume
fraction fC, which was enlarged for illustrative purposes. (b) Tree
structure of the laminate. The nodes of the tree correspond to the dif-
ferent lamination steps (red circles) and the two constituent materials
(blue ellipses). The volume fractions are assigned to the edges of the
tree. The lamination directions are specified in spherical coordinates
(θ, φ), where θ and φ are the polar angle and the azimuthal angle,
respectively, i.e., the convention common in physics is used.

The effective zmf conductivity tensor and the effective Hall
tensor of the optimized laminate are given by

σrank-two =

⎛
⎜⎝

28.775 0 −21.151

0 3.902 0

−21.151 0 18.322

⎞
⎟⎠ Sm−1 (19)

and Arank-two =

⎛
⎜⎝

46.119 0 29.594

0 1.922 0

−29.594 0 −18.665

⎞
⎟⎠A(2)

H ,

(20)

respectively. Note that the effective Hall tensor shows the
desired sign inversion in the component A∗

33.
The reason underlying this sign inversion can be seen in

the fact that a macroscopic current flow along the x1 direction
leads to microscopic current flow in the phase 2/E that has a
component in the opposite direction, i.e., in the fact that there
is local inversion of current flow. Indeed, a numerical calcula-
tion gives J ′

11 = −27.686 < 0 in the phase 2/E. Note that, in
order to arrive at this result, it is not necessary to go through
all steps of the numerical calculation. It suffices to calculate
the “macroscopic” current density in the sublaminate B. Then,
in order to determine the current flow in the phase 2/E, one
can use the fact that the lamination formulas simplify vastly in
the limit of large conductivity contrasts and volume fractions
approaching zero or one (see the Appendix).

It should be pointed out that the local inversion of current
flow is enabled by the oblique lamination angles. In each
lamination step, the current density is successively rotated.
A macroscopic current flow along the x1 direction leads to a
current flow roughly along the x3 direction in the sublaminate
B and, ultimately, a current flow with a negative x1 component
in the phase 2/E.

This inverted current flow in the phase 2/E causes a lo-
cal Hall voltage that is sign-inverted. As this phase extends
throughout the laminate along the x2 direction (and the effect
is not compensated by the remainder of the laminate), the
macroscopically measurable Hall voltage is sign-inverted, too.

One can understand the sign inversion of A∗
33 also from

Eq. (14). As the laminate is invariant with respect to arbitrary
translations along the x2 direction (except for the sublaminate
B, which, however, has a diagonal effective conductivity ten-
sor) and the constituent materials are isotropic, one has that
J ′

22 > 0 and J ′
21 = J ′

12 = 0. Hence, the cofactor Cof(J′)33 =
J ′

11J ′
22 − J ′

21J ′
12, which determines the sign of the component

A∗
33 of the effective Hall tensor of a composite made from

isotropic constituent materials, is negative in the phase 2/E.
As the value of this cofactor in the phase 2/G, in which it is
not negative, is not large enough to compensate this effect, the
effective Hall tensor component A∗

33 is sign-inverted.

IV. SIGN INVERSION OF THE EFFECTIVE
HALL COEFFICIENT

While the sign inversion of individual components of the
Hall tensor is already a curious effect, the main goal of this
paper is to identify a laminate with isotropic properties that
exhibits a sign inversion of the effective Hall coefficient. This
goal is reached in two steps: First, a laminate exhibiting a sign
inversion of the trace of the effective S tensor is identified.
Second, by extending an argument of Schulgasser’s [43], it
is shown that, if one has identified such a laminate, then one
can use it to form an isotropic higher-rank laminate with a
sign-inverted effective Hall coefficient.

First step: Sign inversion of the trace of the effective S tensor

To obtain a laminate with an effective S tensor with a
sign-inverted trace, an additional lamination step is used, i.e.,
a rank-three instead of a rank-two laminate is considered. This
additional complexity seems to be necessary because further
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FIG. 2. (a) Schematic illustration of the rank-three laminate exhibiting a sign inversion of the trace of the effective S tensor. The constituent
materials are the same as those of the rank-two laminate. The detailed view on the left shows the structure of the rank-three laminate in the
x1x3 plane. In the pictorial view on the right (but not in the detailed view on the left), the layering of the sublaminate E perpendicular to the
x2 axis is visible. The parameter values of the depicted laminate are the result of the minimization of the component A∗

33 of the effective Hall
tensor with the exception of the volume fraction fC, which was enlarged for illustrative purposes. (b) Tree structure of the rank-three laminate
including its parameters.

numerical results suggest that, while the second invariant,
i.e., the trace of the cofactor matrix, of the matrix-valued
electric field, tr(Cof(E )), in a rank-two laminate can locally
be negative, which is a necessary condition for the desired
sign inversion [compare Eq. (11)], the desired sign inversion
itself cannot be obtained with two lamination steps only.

A three-dimensional laminate with a locally negative value
of tr(Cof(E )) has been previously introduced by Briane and
Nesi [30]. In the same paper, they had shown that the first
invariant of the matrix-valued electric field, i.e., the determi-
nant det(E ), is non-negative for any laminate irrespective of
rank and dimension (see their Theorem 2.13), which made
it natural to ask whether this property extends to the second
invariant. Their laminate and counterexample (illustrated in
Fig. 1 of their paper) has a geometry that is translationally
invariant along one axis and is made from three constituent
materials with well-separated conductivities (in Fig. 1 of their
paper four constituent materials are shown, but their number
is reduced to three in Sec. 6.2).

The laminate introduced here, which is shown in Fig. 2,
is similar to theirs, but uses two constituent materials only.
More precisely, the constituent materials are the same as in the
last section. The laminate is formed from a rank-two laminate
and the weakly conducting constituent material. It is trans-
lationally invariant along the x2 direction with the exception
of the sublaminate E, which is formed by laminating the two
constituent materials along the x2 direction. This sublaminate
mimics an anisotropic homogeneous material with an inter-
mediate conductivity in the x1x3 plane and a low conductivity
along the x2 direction. The remaining free geometry param-
eters are the polar lamination angles θA, θC, and θD and the
volume fractions fB, fD, fF, and fH.

As one would expect, there is no unique choice of these
parameters leading to a sign inversion of the trace of the
effective S tensor. To be able to compare the results with those
obtained for the rank-two laminate in the last section, again
the component A∗

33 of the effective Hall tensor is minimized.
As it turns out, this choice not only results in an effective S
tensor with a sign-inverted trace, but also in a large modulus

of the sign-inverted Hall coefficient of the isotropic laminate
that will be formed from the rank-three laminate in the next
section.

Using the same minimization method and the same values
for the constituent material parameters as in the last sec-
tion, the following values for the geometry parameters were
obtained:

θA = 2.7224, θC = 0.2078, θD = 0.4712,

fB = 0.9590, fD = 0.3834, fF = 0.8670, fH = 0.2652,

(21)

and the corresponding effective conductivity tensor and effec-
tive Hall tensor are given by

σrank-three =

⎛
⎜⎝

1.869 0 0.324

0 1.903 0

0.324 0 1.166

⎞
⎟⎠ Sm−1 (22)

and Arank-three =

⎛
⎜⎝

15.010 0 27.861

0 0.699 0

−27.861 0 −51.444

⎞
⎟⎠A(2)

H ,

(23)

respectively. Notably, the inversion is much stronger than
in the rank-two case in the sense that the minimized sign-
inverted component of the effective Hall tensor has a much
larger modulus. The corresponding effective S tensor,

Srank-three =
⎛
⎝ 3.155 0 5.845

0 0.091 0
−6.770 0 −12.507

⎞
⎠S(2) × 10−4,

(24)

clearly has a sign-inverted trace implying that the first step of
the construction is completed. Note that, analogously to the
discussion of the rank-two laminate, the sign inversion of S∗

33
can be attributed to a sign inversion of the component E11 of
the matrix-valued electric field in the phase 2/G.
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Second step: Obtaining an isotropic laminate

It will now be shown that from any anisotropic material,
i.e., any material with an anisotropic (effective) zmf conduc-
tivity tensor, σ̃aniso, and/or anisotropic (effective) S tensor,
Saniso, one can form an isotropic laminate with effective zmf
conductivity σ̃ iso = tr(σ̃aniso)/3 and effective S coefficient
Siso = tr(Saniso)/3. As we will see, this result implies that one
can form an isotropic laminate with a sign-inverted effective
Hall coefficient from the rank-three laminate obtained in the
previous section.

The construction is based on a so-called Schulgasser lami-
nate [43], see also Sec. 22.2 in Ref. [1]. Schulgasser proposed
a specific way of forming a laminate that is isotropic (as long
as only the conductivity is concerned) from an anisotropic
material. A Schulgasser laminate has the specific property
that its effective conductivity is the largest among all isotropic
polycrystals that can possibly be formed from the anisotropic
material. The key idea is to repeatedly permute diagonal com-
ponents (via a rotation) and subsequently take an arithmetic
mean (via a lamination). In the following description, the
coordinate system is chosen such that the zmf conductivity
tensor of the anisotropic material is diagonal.

Schulgasser’s original construction involves three lamina-
tion steps on widely separated length scales:

In the first step, the anisotropic material is laminated with
a rotated copy of itself. The axis of rotation can be chosen
arbitrarily from one of the three coordinate axes and the angle
of rotation is 90◦. Consequently, the zmf conductivity tensor
of the rotated copy is still diagonal. The effect of the rotation
is simply a transposition of the two diagonal components
perpendicular to the axis of rotation while the component
parallel to the axis of rotation is unaffected. The direction of
lamination is identical to the axis of rotation. As a result of
the fact that the zmf conductivity tensors of the anisotropic
material and its rotated copy are diagonal and their compo-
nents in the direction of lamination are identical, the general
expression for the effective zmf conductivity tensor of the
resulting laminate reduces to a (volume-fraction weighted)
arithmetic mean.

In the two subsequent steps, the procedure is analogous,
but it is now the laminate obtained in the previous step that is
laminated with a rotated version of itself. Again, the rotation
and lamination correspond to a transposition of two of the
diagonal components and taking an arithmetic mean, respec-
tively. If the volume fractions and the axes of rotation are
chosen suitably, the zmf conductivity tensor of the laminate
obtained in the last step, i.e., the Schulgasser laminate, is
given by

σ̃Schulg = tr(σ̃aniso)/3. (25)

We can now derive an expression for the effective S tensor
of a Schulgasser laminate. First note that the S tensor is a
(proper) rank-two tensor, see Ref. [18], i.e., it has the same
transformational properties as the zmf conductivity tensor,
in particular under rotation. However, the S tensor and the
zmf conductivity tensor of the anisotropic material may not
be simultaneously diagonalizable, i.e., the S tensor may have
nonzero nondiagonal components in the chosen coordinate
system. Next, we again consider the general perturbative

expression, Eq. (11). As in each lamination step, the effec-
tive zmf conductivity tensors of the laminate obtained in the
previous step (in the first step, the zmf conductivity tensor
of the anisotropic material) and of the corresponding rotated
copy are diagonal and their components in the direction of
lamination are equal, the microscopic electric field is given
by the identity (see the Appendix). Hence, the effective S
tensor of the laminate obtained in each step is given by the
arithmetic mean of the laminate obtained in the previous step
and its rotated copy and, ultimately, the expression for the di-
agonal components of the effective S tensor of the Schulgasser
laminate is analogous to the expression for the effective zmf
conductivity tensor, Eq. (25),

SSchulg
ii = tr(Saniso)/3 for every i ∈ {1, 2, 3}. (26)

Potentially nonzero nondiagonal components of the
S tensor of the Schulgasser laminate can be eliminated via
two additional lamination steps using the fact that if the mi-
croscopic zmf conductivity is constant, then the expression for
the effective S tensor reduces to an arithmetic mean. In the first
additional lamination step, the Schulgasser laminate is lami-
nated in equal proportions with a copy of itself that is reflected
at the x2x3 plane. In the second additional lamination step, it is
the laminate obtained in the first step that is laminated in equal
proportions with a copy of itself, the plane of reflection being
the x1x3 plane. The resulting rank-five laminate is isotropic
and has the desired effective conductivity and effective Hall
coefficient.

Finally, this construction is used to obtain an isotropic
hierarchical laminate with a sign-inverted effective Hall coef-
ficient. Assume that the anisotropic material is the rank-three
laminate obtained in the last section. Then, the effective Hall
coefficient of the isotropic laminate is given by

Aiso = − Siso

(σ̃ iso)2
= − tr(Srank-three)

3(σ̃ iso)2
. (27)

As the trace of the S tensor of the rank-three laminate,
tr(Srank-three), is sign-inverted, the Hall coefficient of the
isotropic laminate, Aiso, is sign-inverted as well. Using the
parameters obtained for the rank-three laminate in the last
section, the effective conductivity and the effective Hall co-
efficient of the isotropic hierarchical laminate are given by

σ̃ iso = 1.646 Sm−1 and Aiso = −18.230 A(2), (28)

respectively.
A slightly smaller value of the effective Hall coefficient of

the isotropic hierarchical laminate, Aiso, can be obtained by
minimizing it directly instead of minimizing one of the com-
ponents of the effective Hall tensor of the rank-three laminate.
During the minimization, one of the polar lamination angles
of the rank-three laminate can be held fixed because adding
the same offset to θA, θC, and θD corresponds to a rotation
of the rank-three laminate in the x1x3 plane, which does not
affect the effective properties of the isotropic laminate. The
resulting effective conductivity and effective Hall coefficient
of the isotropic hierarchical laminate are given by

σ̃ iso = 1.987 Sm−1 and Aiso = −20.826A(2), (29)

respectively.
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Evaluating the performance of the laminates

Having established that there are isotropic laminates ex-
hibiting a sign inversion of the effective Hall coefficient, it is
now investigated how well the identified laminates perform.
The effective Hall coefficient is used as the figure of merit.
Typically, a Hall coefficient with a large modulus is desirable
as a Hall bar made from such a material will have a large
current-related sensitivity [15].1

A natural way of assessing the performance of a composite
is to compare its effective properties with a bound. For the
structures considered here, a suitable bound has been derived
by Briane and Milton [44]. They have shown that each com-
ponent of the effective Hall tensor is bounded as follows, see
Eq. (2.30) in their paper,

∣∣A∗
i j

∣∣ � 6
βH

α
aH for any i, j ∈ {1, 2, 3}, (30)

where α is a lower bound on the conductivity of the con-
stituent materials, βH is an upper bound on the conductivity
of the constituent materials with nonzero Hall coefficient, and
aH is an upper bound on the Hall coefficient of the constituent
materials.

From a glance at the results obtained in the previous sec-
tions, it becomes clear that the isotropic hierarchical laminate
as well as the anisotropic rank-three laminate are far from
attaining this bound. Consequently, it might be possible to
find yet better composites (which may or may not be lami-
nates) and/or to derive an improved bound. An indication that
there should be a tighter bound is the fact that the bound in
question does not differentiate between the sign-inverted and
the non-sign-inverted regime. Intuitively, one would expect
that a sign-inverted effective Hall coefficient (or component
of the effective Hall tensor) is more strongly constrained.
Furthermore, one would certainly expect that there is a tighter
bound for isotropic composites because the bound (30) was
derived for individual components of the Hall tensor implying
that isotropy was not an assumption entering its derivation.

Another way of assessing the performance of a given com-
posite geometry is to compare it with known microstructures.
In the following, the isotropic hierarchical laminate is com-
pared with the simplified version of the chain-mail-inspired
microstructure that was introduced in Ref. [26]. This mi-
crostructure consists of a periodic arrangement of intertwined
solid tori that are connected by short cylinders. The geometry
parameters of the structure are the major radius of the tori,
R, the minor radius of the tori, r, which is simultaneously the
radius of the cylinders and the signed distance between the
axial circles of neighboring tori, d . In the paper introducing
this simplified version [26], as well as in the later experimental
realizations [24,25], the structure was made from a single
constituent material. Here, while the tori and cylinders are
still made from an isotropic material with nonzero Hall coeffi-
cient, the microstructure is embedded in a weakly conducting
isotropic material with zero Hall coefficient. More precisely,

1However, it should be noted that, while composites can exhibit an
enhanced effective Hall coefficient, this enhancement can be readily
mimicked by making the Hall bar thinner.

FIG. 3. Evaluating the performance of the isotropic hierarchical
laminate by comparing it with a modified version of the chain-mail-
inspired microstructure. (a) Illustration of a unit cell of the modified
version of the chain-mail-inspired microstructure. As opposed to the
microstructure studied in Ref. [26], the periodic arrangement tori and
cylinders is embedded in a weakly conducting surrounding medium.
The lattice constant, a, is determined by the major radius of the
tori, R, and the distance parameter, d , via a = 4R + 2d (using the
convention that d is negative if the tori are intertwined). (b) Nu-
merical results for the effective Hall coefficient of the optimized
structures as a function of the ratio of conductivities of the two
constituent materials. The blue squares correspond to the isotropic
hierarchical laminate, as indicated by the inset. The orange squares
correspond to the chain-mail-inspired composite. The smallest con-
ductivity ratio for which a sign inversion is obtained is 54 and 94
for the isotropic hierarchical laminate and the chain-mail-inspired
composite, respectively.

for the comparison the same two constituent materials are
used for both the laminate and the chain-mail-inspired com-
posite. A corresponding unit cell is illustrated in Fig. 3(a).

The quantity that is compared is the smallest attainable
value of the effective Hall coefficient of the two structures
as a function of the ratio of conductivities. For the isotropic
hierarchical laminate, the minimization of Aiso already de-
scribed in the last section was repeated for each value of
σ (2)/σ (1). For the chain-mail-inspired composite, the effective
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properties were deduced from finite element calculations that
were carried out as described in Ref. [27]. In the latter case,
the effective Hall coefficient was minimized as a function of
the geometry parameters d/R and r/R. Varying only these
two parameters is sufficient because scaling the parameter R
while keeping d/R and r/R fixed corresponds to scaling the
microstructure as a whole, which does not affect its effective
properties.

The numerically calculated values of the relative effec-
tive Hall coefficient of the optimized structures as a function
of σ (2)/σ (1) are shown in Fig. 3(b). For both structures,
the general behavior is the same. A sign-inverted effective
Hall coefficient is obtained only if the ratio of conductivities
exceeds a certain threshold. As the ratio of conductivities
increases further, the modulus of the effective Hall coefficient
of the optimized structures increases as well. This behavior
is typical for composites in the sense that obtaining a wide
range of attainable effective properties and especially obtain-
ing exotic effective properties generally requires a sufficiently
large contrast in the properties of the constituent materials.
However, both in regard to the value of the threshold above
which a sign inversion is obtained as well as in regard to
the value of the obtained effective Hall coefficient at larger
conductivity ratios, the laminate significantly outperforms the
chain-mail-inspired composite.

V. CONCLUSIONS

The sign inversion of the effective Hall coefficient in com-
posites was studied. In contrast to the seminal mathematical
work [22,23] and the later theoretical [26,27] and experimen-
tal [24,25] studies that built upon it, the present paper was
concerned with the question of whether this effect can occur
in hierarchical laminates.

First, a rank-two laminate exhibiting a sign inversion of
one of the diagonal components of its effective Hall tensor
was introduced. If such a composite is used to construct a
conventional Hall bar and the orientation of the composite is
suitably chosen, the measured Hall voltage is sign-inverted,
feigning that its charge carriers are oppositely charged.

Second, an example of an isotropic hierarchical laminate
with a sign-inverted effective Hall coefficient was given. Its
construction was based on a rank-three laminate exhibiting a
sign inversion of the trace of its effective S tensor. Using an
idea of Schulgasser’s, additional lamination steps were used
to obtain isotropic behavior. In this case, the Hall voltage
measured on a conventional Hall bar is sign-inverted indepen-
dently of the orientation of the composite.

In comparison with the inception of the previously intro-
duced chain-mail-inspired structure, the isotropic hierarchical
laminate was obtained with relative conceptional and compu-
tational ease. Furthermore, the sign inversion was obtained
for a smaller ratio of the conductivities of the constituent
materials and the optimization resulted in a larger modulus
of the sign-inverted effective Hall coefficient.

These results show that the effective properties of hierar-
chical laminates extend yet farther than expected, indicating
that their potential has not been fully exploited yet. As, ad-
ditionally, their effective behavior can be readily calculated,
hierarchical laminates constitute a useful tool for establishing

FIG. 4. Dependence of the component E (α)
11 of the matrix-valued

electric field in one of the phases of a two-phase laminate on the
volume fraction, fα , and the ratio of conductivities, σ

(β )
11 /σ

(α)
11 . In

the three regimes in which E (α)
11 takes very large or very small val-

ues or values close to one, the link between the macroscopic and
the microscopic electric field is particularly simple. If one relabels
the vertical axis σ

(β )
22 /σ

(α)
22 or σ

(β )
33 /σ

(α)
33 , under the assumption that

the conductivity tensors of the phases are diagonal, the plot shows the
behavior of J ′(α)

22 or J ′(α)
33 , respectively, which link a given macroscopic

current density to the corresponding microscopic current density in
phase α.

that certain effective properties can be obtained in principle
(see also Ref. [29]). If one aims to find microstructures that
can be fabricated more easily, the identified hierarchical lam-
inates can then serve as a benchmark.
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APPENDIX: EXPRESSIONS FOR THE MICROSCOPIC
FIELDS

We briefly discuss the expressions for the microscopic
fields in a laminate formed from two phases with zmf con-
ductivity tensors σ (α) and σ (β ). It is assumed that there is no
magnetic field present. The coordinate system is chosen such
that its x1 axis aligns with the direction of lamination (i.e., the
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direction perpendicular to the layers). Then, the fields satisfy
the following set of equations, see Chap. 9 in Ref. [1]:

fαe(α) + fβe(β ) = 〈e〉 with fβ = 1 − fα,

j (α)
1 = j (β )

1 and e(α)
k = e(β )

k = 〈ek〉 for k = 2, 3. (A1)

One can solve these equations to obtain the microscopic elec-
tric field in phase α and phase β, e(α) and e(β ), respectively.
For the diagonal components of the matrix-valued electric
field in phase α, one finds

E (α)
11 =

(
fα + fβ

σ
(α)
11

σ
(β )
11

)−1

and E (α)
22 = E (α)

33 = 1. (A2)

Under the additional assumption that the zmf conductivity
tensors of the two phases are diagonal, these are the only
nonvanishing components. The mathematical treatment is
considerably simplified in the following three regimes:

i. For fα → 0, σ
(β )
11 /σ

(α)
11 → 0, one has E (α)

11 → 0, i.e.,
the macroscopic electric field is projected onto the
plane perpendicular to the direction of lamination.

ii. For fα → 0, σ
(β )
11 /σ

(α)
11 → ∞, one has E (α)

11 → ∞, i.e.,
the x1 component of the microscopic electric field is

strongly enhanced relative to the same component of
the macroscopic electric field. If the latter is nonzero,
then the microscopic electric field becomes almost par-
allel to the direction of lamination.

iii. For fβ → 0, fβσ
(α)
11 /σ

(β )
11 → 0 or σ

(β )
11 /σ

(α)
11 → 1, one

has E (α)
11 → 1, i.e., the microscopic electric field ap-

proaches the macroscopic electric field.
A plot of the component E (α)

11 as a function of fα and
σ

(β )
11 /σ

(α)
11 in which these three regimes are readily apparent

is shown in Fig. 4. The obtained simple links between the
direction of lamination and the microscopic electric field in
these regimes can be used to intuitively design hierarchical
laminates in which the microscopic electric field shows a
certain desired behavior.

For the electric current density, a similar expression can be
given,

J′(α) = diag

⎛
⎝1,

(
fα + fβ

σ
(β )
22

σ
(α)
22

)−1

,

(
fα + fβ

σ
(β )
33

σ
(α)
33

)−1
⎞
⎠,

(A3)
where it was again assumed that the zmf conductivity tensors
of the phases are diagonal. The discussion of the limiting
behavior is then analogous to the one for the electric field.
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