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Magnetic phases of bilayer quantum-dot Hubbard model plaquettes
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It has been demonstrated that small plaquettes of quantum dot spin qubits are capable of simulating condensed
matter phenomena that arise from the Hubbard model, such as the collective Coulomb blockade and Nagaoka
ferromagnetism. Motivated by recent materials developments, we investigate a bilayer arrangement of quantum
dots with four dots in each layer which exhibits a complex ground state behavior. We find using a generalized
Hubbard model with long-range Coulomb interactions, several distinct magnetic configurations occur as the
Coulomb interaction strength is varied, with possible ground states that are ferromagnetic, antiferromagnetic,
or having both one antiferromagnetic and one ferromagnetic layer. We map out the full phase diagram of the
system as it depends on the inter- and intralayer Coulomb interaction strengths, and find that for a single layer,
a similar but simpler effect occurs. We also predict interesting contrasts among electron, hole, and electron-hole
bilayer systems arising from complex correlation physics. Observing the predicted magnetic configuration
in already-existing few-dot semiconductor bilayer structures could prove to be an important assessment of
current experimental quantum dot devices, particularly in the context of spin-qubit-based analog quantum
simulations.

DOI: 10.1103/PhysRevB.108.235301

I. INTRODUCTION

Quantum dots remain a promising platform for developing
quantum information technologies due to their long coher-
ence times (on the order of seconds in Si devices) [1,2] and
their small physical size which allows for long-term device
scalability. These advantages are among the key criteria for
the implementation of a quantum processor [3]. Since their
initial proposal as a quantum computing platform in 1998
[4], there has been slow but steady progress in the fabri-
cation and control of quantum devices as many obstacles
have been overcome [5]. Over the past few years, there has
been progress in fabricating quantum dot arrays in silicon [6]
and germanium [7,8]. A 3 × 3 phosphorus dopant array has
been operated [9], and a 4 × 4 quantum dot array has been
fabricated in germanium [10]. Full control has been demon-
strated over a six-qubit quantum processor [11]. Quantum
dot based spin qubits and quantum processors are among the
three most active and important current quantum computing
platforms (along with superconducting transmons and atomic
ion traps).

Despite the successes of quantum dot devices, experimen-
tal capabilities are still well below what is needed for commer-
cial applications such as Shor’s algorithm [12,13]. Quantum
error correction protocols such as surface code [14–17] allow
for the possibility of fault-tolerant quantum computing, but
necessitate error thresholds well below 1% and require thou-
sands of physical qubits for each logical qubit. Current devices
still struggle with the presence of charge noise [18–21] as
well as challenges tuning qubits in larger devices, which will
need to be fully automated in order to operate devices suitable
for industrial applications [22–24]. Because the fault-tolerant
implementation of quantum algorithms is still many years (if

not decades) away, it is crucial to discuss the applications
of current qubit technologies, small plaquettes of around 4–9
quantum dots, to interesting quantum problems.

One of the successful models to theoretically investigate
realistic quantum dot qubit systems is the generalized
Hubbard model [25–28]. The Hubbard model is a minimal
model that was originally proposed to study ferromagnetism
in transition metals and excels in explaining a host of other
condensed-matter phenomena such as antiferromagnetism
and Mott transitions. However, a full understanding of
ferromagnetism starting from a microscopic model still
eludes us except in a few special cases (in fact, the Hubbard
model generically gives rise to antiferromagnetism rather than
ferromagnetism). These ferromagnetic cases include Nagaoka
ferromagnetism, which is a mathematical theorem that
predicts ground state ferromagnetism for systems precisely
1 electron above half-filling for certain graphs of lattice sites
[29,30], and flatband ferromagnetism, which is a similar
result for bands which have a large number of degenerate
states [30–33]. These are both of course rather idealized (and
unrealistic) situations for macroscopic systems. It was first
proposed in 1994 that the Hubbard model could be simulated
by a quantum plaquette [34], and was later realized experi-
mentally when the collective Coulomb blockade was observed
in a Hubbard model simulated by a quantum dot array [35]. In
2020, Nagaoka ferromagnetism was also observed in a 2 × 2
quantum dot array [36]. Observing physical phenomena such
as these in models simulated by quantum dot plaquettes can
act as intermediate milestones between single-qubit devices
and a full fault-tolerant quantum processor capable of running
quantum algorithms. As an aside we mention that there
has been enormous recent progress in the simulation of the
fermionic Hubbard model in cold atomic systems, where
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the physics and the experimental constraints are completely
different from the quantum dot systems of our interest in
the current work [37,38]. Hubbard model ferromagnetism
has, however, not been studied in the cold fermionic atomic
systems.

In a recent breakthrough work at Delft, operation of a ver-
tical gate-defined double quantum dot was demonstrated in a
Ge/SiGe double quantum well [39]. This new result opens the
possibility of creating quantum dot devices extending beyond
a single plane, and beyond just electrons since Ge introduces
holes. By combining several vertical double quantum dots in
a two-dimensional array, the authors of Ref. [39] envision
that a full bilayer device can be made. Such a device could
have many potential applications ranging from improving
quantum computing architectures to simulating bilayer many-
body physics. Since one of the key characteristics of quantum
computers is their ability to solve quantum problems in
exponentially large Hilbert spaces not accessible to classical
digital computers, it is essential to diagnose this ability first
on systems with few qubits, which is one of our proposed
ideas in the current work with respect to quantum magnetism
problems.

In this paper, motivated by the Delft experiment, we inves-
tigate the magnetic properties of the Hubbard model ground
states of a bilayer quantum dot system. We give a specific
example of a bilayer plaquette where each layer contains four
quantum dots arranged along a triangular lattice (other con-
figurations can also be studied quite generally using the same
technique). We show that if a bilayer quantum dot device were
to simulate a Hubbard model with such a geometry (similarly
to in Ref. [36]), then nontrivial and unexpected magnetic
behavior of the ground state would arise from the inter-dot
correlations. Using exact diagonalization, we determine the
spin configuration in each layer as a function of the inter-
and intralayer Coulomb interaction strengths V and V ′. We
find that magnetic phase transitions occur in both variables
and that the system behaves much differently depending on
the relative strengths of the interactions. Of course, these are
only finite-size magnetic phases and transitions among them,
perhaps more akin to magnetic phases of various molecules
occurring in this bilayer dot system. Since our work deals
with finite systems and far from the thermodynamic limit,
we will refer to these as “magnetic ground state transitions”
to distinguish them from traditional thermodynamic phase
transitions. We hope that our work will motivate future bi-
layer quantum dot experiments, as we predict that highly
nontrivial magnetic behavior should be observable with a
plaquette of only four vertical double quantum dots, which
is likely within the scope of experimental capabilities over
the next few years, if not already right now. Our main moti-
vation is to introduce nontrivial theoretical ideas which can
be applied to the existing small system quantum dot cir-
cuits to do useful quantum many-body physics as is being
done extensively using both ion trap and superconducting
qubits.

This paper is organized as follows: in Sec. II, we introduce
and define the relevant Hubbard model Hamiltonian for our
system. In Sec. III, we give our results, starting with special
cases where V or V ′ equals 0, then showing the complete
phase diagram with V and V ′ both variable, and lastly

t

t

t
t

t

t

t

t
t

t

No
hopping

V′
V′

V′
V′

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Layer 1

Layer 2

Layer 1

Layer 2

V

VV

V

1

2

3

4

1

2

3

4

Layer 1

/ 3

1

+ 3

1

+

Layer 2

FIG. 1. (Left) Bilayer quantum dot plaquette with a rhombus
geometry. There is a tunneling coefficient t between adjacent dots
within a single layer, but no tunneling between layers. (Center) Inter-
layer Coulomb interactions with strength V and intralayer Coulomb
interactions with strength V ′. (Right) Long-range Coulomb interac-
tions are present with strengths written in terms of V and V ′, see
Eq. (3).

investigating a similar system filled with electrons rather than
holes. Finally, we give our conclusions in Sec. IV.

II. MODEL AND HAMILTONIAN

We consider a bilayer plaquette layout where each layer
contains four quantum dots arranged in a rhombus, with dots
from layer 1 being positioned directly above dots in layer 2, as
depicted in Fig. 1. We allow tunneling between adjacent dots
within a single layer, but disallow tunneling between layers,
consistent with the Delft experimental system. We include
an onsite Coulomb interaction term U , as well as long-range
Coulomb interaction terms between all dots in both layers.
This system can be modeled with the following generalized
Hubbard Hamiltonian, where c†

l,iσ is the creation operator
for a particle /hole on site i of layer l with spin σ , and
nl,iσ = c†

l,iσ cl,iσ :

H =
∑
i �= j
l,σ

tl,i jc
†
l,iσ cl, jσ + U

∑
l,i

nl,i↑nl,i↓

+
∑

(l,i)�=(m, j)
σ,τ

Vlm,i j

2
nl,iσ nm, jτ . (1)

Because there is no tunneling between layers, the total
particle number within a single layer is conserved. We con-
sider the cases where each layer contains either two holes
or two electrons. We note that for the single-band Hubbard
model, having two holes is equivalent to being filled with six
electrons and vice versa since there are eight states for four
spinful fermions in our plaquette. For the sake of simplicity,
we will assume the tunneling coefficients between all adjacent
pairs of dots have the same amplitude t . This can be relaxed
at the considerable cost of the final results becoming much
more complicated than they already are. In any case, variable
t values would correspond to a random incoherent system,
which is not a particularly meaningful system to study. The
sign of tl,i j will depend on whether the layer contains holes or
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electrons, as follows:

tl,i j =
⎧⎨
⎩

t for adjacent i, j if layer l contains holes
−t for adjacent i, j if layer l contains electrons
0 for nonadjacent i, j

.

(2)

The separation between layers can be controlled when
fabricating devices, and thus the interlayer Coulomb interac-
tion strength can vary compared to the intralayer interaction
strength. Note that, by contrast, the intralayer interaction (as
well as the hopping t) depends on the dot placement in the
layer. We define V to be the nearest-neighbor Coulomb inter-
action strength between layers, and we let V ′ be the interaction
strength between neighboring dots within a single layer. The
Coulomb interaction strength over longer distances is given in
terms of these two scales according to a simple 1/r potential.
Thus Vlm,i j for the rhombus plaquette is given as follows:

Vlm,i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V ′ for l = m and adjacent i, j

V ′/
√

3 for l = m and nonadjacent i, j
±V for l �= m and i = j

±1√
V −2+V ′−2 for l �= m and adjacent i, j

±1√
V −2+3V ′−2 for l �= m and nonadjacent i, j

, (3)

where the ± sign is determined by the charge of the particles
(i.e., electron/hole) in each layer. We will assume that the
onsite Coulomb interaction strength is much larger than the
other energy scales in the model, that is U � V,V ′, t . For this
work we neglect the higher-energy states with doubly occu-
pied dots, as these states contribute corrections on the order
of the exchange interaction O(t2/U ), which are much smaller
than the other energy scales present in the system (particularly
since t tends to be small in quantum dot qubits). We have
investigated the effects of these higher-energy states in pre-
vious works [40,41], and found that the magnetic behavior
of quantum dot systems remains unchanged so long as U/t
is larger than some geometry-dependent critical value. The
behavior of the bilayer quantum dot plaquette we study here
is similar: when the strength of the exchange interaction be-
comes comparable to t , the system will transition to a spin-0
ground state. This exchange-interaction dominated regime is
straightforward to understand for small, non-frustrated sys-
tems; the more interesting question is how the system will
behave in the regime where the kinetic motion of the electrons
dominates. Thus, for the purposes of this work, we will inves-
tigate a model where the exchange interaction vanishes. While
the absence of doubly occupied dots makes the Hubbard
model with U � t at half filling equivalent to a Heisenburg
model (in this case, the exchange interaction terms are im-
portant, since there is no kinetic motion of the electrons), the
same is not true away from half-filling, since the Heisenburg
model does not permit dots to be empty. Unoccupied dots are
crucial to magnetic effects such as Nagaoka ferromagnetism,
which comes about due to the kinetic motion of electrons or
holes within the plaquette [30]. Thus the physics of interest
here is much richer than the usual exchange-coupled spin
qubits considered in most quantum dot qubit architecture as
our goal is to use the quantum dot platform to study complex

quantum magnetism by going beyond the strict spin-spin cou-
pled Heisenberg model.

III. RESULTS

We first examine the case where both layers are occupied
by holes, and hence tl,i j > 0 and the Coulomb interaction
between layers is repulsive (Vlm,i j > 0). Because there is no
tunneling between layers (this is the experimental situation)
and hence no exchange interaction between layers, spin is
conserved within each layer. Therefore all eigenstates have
one of the following spin configurations: both layers have total
spin 0, both layers have total spin 1, or one layer is spin 0
while the other is spin 1. In the latter case, there will be a
trivial two-fold degeneracy since in our model the two layers
are identical–that is, any eigenstate with spin configuration
(0,1) would have the same energy as (1,0). In practice, this
degeneracy may be broken due to asymmetries in the physical
system, however for the sake of this discussion, we will con-
sider only one of these spin configurations, as the physics for
the other are similar. The situation with strong asymmetries
is theoretically uninteresting since it is basically a random
system with the results varying from sample to sample with
no generic ground states to discuss.

We use exact diagonalization to determine the ground state
of the Hamiltonian for various choices of the parameters V
and V ′, while keeping t fixed. We specifically note the total
spin of each layer, with particular interest in the question of
how the ground state spin relies on the parameters V/t and
V ′/t . We first investigate these parameters individually, and
then give a phase diagram of the system while allowing both
parameters to vary independently. Thus the dimensionless
intralayer and interlayer Coulomb couplings determine the
quantum phases of the system.

A. V ′ = 0 limit

We first consider the limit where V ′ = 0. This represents a
system where the separation between layers is significantly
smaller than the distance between dots within a layer. In
Fig. 2, we plot the lowest energy eigenstate in each of the three
spin configurations versus V , holding t constant. Remarkably,
the ground state changes spin configuration several times as
V changes. Initially, when V = 0, the system behaves like
2 completely noninteracting layers, each of which having a
spin 1 ground state, as the dominant energy scale is t , and
there is no Coulomb interaction or exchange interaction (by
our prior assumption) between the two layers. We mention
this completely noninteracting case, as it is important to note
that the tunneling term ti j in the Hamiltonian (combined with
the onsite interaction term U ) pushes each layer towards
a spin 1 ground state in the absence of other long-range
interactions. However this changes as the long-range
Coulomb interaction is introduced to the system. For example,
at V = 1.2t , the system transitions to the spin (0,1) config-
uration. At V = 5.1t , the system transitions back to a spin
(1,1) ground state, although as we will discuss, this second
spin (1,1) ground state is qualitatively different from the initial
spin (1,1) ground state. Finally, at V = 11t and onwards, the
system adopts a completely antiferromagnetic ground state
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FIG. 2. (Top) Ground state energy vs V/t for each of the three
possible spin-configurations. (Bottom 2) Zoom-in on various cross-
ings near V/t = 1.2 and 11.

in the strong interaction limit (as is expected in a Hubbard
model).

In order to understand the transition between the (1,1)
and (0,1) spin configurations, it is helpful to examine the
orbital dependency of the wavefunctions. In Fig. 3, we plot
the expectation value of the occupation number of dot 1 (one
of the outer dots) 〈�|nl,1|�〉, where |�〉 is the ground state
wavefunction for a particular spin configuration. Note that due
to symmetry each layer will behave identically, and within
each layer, the outer dots (1 and 4) will have the same average
occupation number, and the inner dots (2 and 3) will have
the same occupation number. Additionally, since total particle
number is conserved within layers, for 2 holes the expecta-
tion value of all four dots must add up to 2, and therefore
〈nl,1〉 = 〈nl,4〉 = 1 − 〈nl,2〉 = 1 − 〈nl,3〉.

From Fig. 3, we see that in the absence of Coulomb in-
teractions (that is when V = 0), the lowest-energy spin 0 and

FIG. 3. 〈�|n1,1|�〉 for dot 1 of layer 1 (one of the outer dots),
for each possible spin configuration. Note that the degenerate (0, 1)
and (1, 0) spin configurations are plotted separately here, since the
locations of the holes in each layer are different.

spin 1 states in each layer have differing dot occupations. This
is a feature of the specific plaquette geometry and particle
number (two holes in a four-dot rhombus geometry) and varies
in general. When the two holes within a layer form a spin
singlet, the multiparticle wave function distributes the two
holes evenly among the four dots, and thus each dot has an
average occupation of 1/2. In contrast, the spin 1 ground
state distributes the holes unevenly, with a 0.69 probability of
observing the inner dots 2 and 3 occupied, and a 0.31 prob-
ability of observing the outer dots 1 and 4 occupied. This
imbalance between the ground state occupation of the inner
and outer dots, and specifically the fact that this imbalance
is dependent on the total spin in each layer, gives rise to
interesting physical effects.

The first ground state transition at V = 1.2t arises from
the ground state occupation imbalance. When V = 0, the two
layers are decoupled, and thus each independently adopts a
spin 1 ground state. As V is then increased, the layers become
weakly coupled, and an additional potential energy is added
to each state given by the third term of Eq. (1), which is
dependent on the occupation number of each dot. If the hole
density of at least one layer is evenly distributed among the
four dots in that layer, then the total additional energy cost
from long-range Coulomb interactions between layers will be
given by

〈�|HV |�〉 =
∑

i

V n1,in2,i =
∑

i

V n1,i(1/2) = V (4)

since
∑

i nl,i is simply the total number of holes in layer l , in
this case 2. However, if the hole density of both are concen-
trated towards the center dots, then the long-range Coulomb
energy between layers will be greater. In the case of the values
given above, it will be given by

〈�11|HV |�11〉 = 2V (.31)2 + 2V (.69)2 = 1.14V. (5)

Then the ground state of each layer is spin 1 when V = 0,
but this energy increases more quickly than other competing
states as V increases. Thus we expect to see a transition to a
different spin state, as shown in Fig. 2.

Note that in Fig. 3, there is a sharp discontinuity in the spin
(1, 1) state located at V = 2.8t . This corresponds directly to
the sharp bend in the energy at the same location in Fig. 2.
This is due to a crossing of two spin (1, 1) states, although in
our plots, we only plot the lowest-energy spin (1, 1) state. This
crossing allows a new spin (1, 1) state to overtake the current
ground state as V is increased, causing a transition back to
spin (1, 1). A similar but less consequential crossing occurs in
the spin (0, 1) state near V = 13t .

It is instructive to consider the Von Neumann entanglement
entropy S between layers, defined as follows:

S = −Tr1ρ1 ln ρ1, (6)

where ρ1 = Tr2|�〉〈�|, and Trl traces out layer l . In Fig. 4,
we plot the entanglement entropy normalized by the max-
imum possible entanglement entropy Smax = ln 6, so that a
value of 1 indicates maximal entanglement between layers.
We find that the entanglement entropy remains small around
the first transition, which supports the claim that the coupling
is weak in this regime. As V increases, the two layers become
significantly entangled together and are strongly correlated.

235301-4



MAGNETIC PHASES OF BILAYER QUANTUM-DOT … PHYSICAL REVIEW B 108, 235301 (2023)

FIG. 4. Entanglement entropy between layers, normalized so that
a value of 1 indicates maximal entanglement between layers.

It is interesting to discuss how the spins interact between
layers, and what the overall spin of the system is. For the case
where both layers have spin-0, the total spin of the system is
also 0, as follows from basic addition of angular momenta.
Thus the entanglement between layers which occurs for large
V is entanglement in the charge state, not entanglement
between spins. Thus we would expect this entanglement to be
sensitive to irregularities between dots. Similarly, when one
layer is spin-0 and the other layer is spin 1, the total spin of
the system will be spin 1. When both layers have spin 1, they
would combine to make degenerate states with total spin of
0, 1, or 2. However, this degeneracy would be broken by the
exchange interaction between layers, leading to a ground state
with total spin 0.

B. V = 0 limit

We briefly consider the limit where V = 0, which is the
case when the interlayer separation is large. In this case,
the two layers act independently, since our model allows no
tunneling between layers. However, a ground state transition
still exists as V ′ is changed. In Fig. 5, we show the energy and
expectation value 〈n1〉 of a single rhombus plaquette. Note that
the energy has an asymptotically linear (trivial) dependence
on V ′ which has been subtracted off in this figure. There is
a single magnetic ground state transition from spin 1 to spin
0. This again arises from the fact that in the absence of long-
range Coulomb interactions, the plaquette geometry prefers a

FIG. 5. (Left) Energy for dot 1 of a single layer (one of the
outside dots). Note that the trivial linear dependence on the Coulomb
interaction strength V ′√

3t
has been subtracted off. (Right) Expectation

value of the occupation number 〈�|n1|�〉.

FIG. 6. (Left) Ground state energy for each spin configuration
in the case where V = V ′. Note that the trivial linear dependence
on the Coulomb interaction strength ( 2√

3
+ 3)V

t has been subtracted
off. (Right) Entanglement entropy between layers when V = V ′,
normalized so that a value of 1 indicates maximal entanglement.

spin 1 ground state with holes concentrated in the center two
dots of the plaquette. By this we mean that in the absence
of other (long-range Coulomb) interactions, a single-layer
rhombus plaquette with two holes has a ground state where the
holes are more likely to be measured in the center dots than in
the outer dots. This is simply a consequence of diagonalizing
the specific Hamiltonian, and is geometry-dependent in that
any significant change to the geometry would change the
Hamiltonian, and therefore this result as well. However, if
V ′ is large, the holes will be repelled away from each other
towards the outer two dots of the plaquette. This competition
between the Coulomb interaction pushing holes towards the
outside, and the plaquette geometry’s natural tendency to pre-
fer the holes concentrated towards the center gives rise to a
change in spin from 1 to 0 as V ′ increases, and the system is
an antiferromagnet for large enough V ′.

C. Nonzero V and V ′

Now consider the case where both the interlayer coupling
V and the intralayer coupling V ′ are nonzero. In Fig. 6, we
plot the ground state energy for each spin configuration in
the case where V = V ′. We find only a single transition from
the (1, 1) spin configuration to the (0, 0) spin configuration at
V = t , although the (0, 1) spin configuration briefly becomes
the ground state during the transition from (0, 0) to (1, 1). This
behavior is similar to two copies of the single-layer transition
discussed in the previous section. This is made particularly
clear by plotting the entanglement entropy, which we also
show in Fig. 6, again normalized so that a value of 1 indicates
maximal entanglement between layers. Note that the entan-
glement entropy stays well below 5% of its maximal value for
all 3 spin configurations except for a brief region between 2t
and 4t where the (1, 1) spin configuration becomes entangled.
However, in this region, the (1, 1) spin configuration has a
significantly higher energy than the ground state, and thus
the entanglement entropy of the ground state remains well
below 5% of maximally entangled for all values of V . This
also indicates that for V = V ′, the system acts as two weakly
coupled copies of the single-layer physics.

In Fig. 7, we plot the full numerically calculated phase
diagram for all values of V and V ′, as well as the entangle-
ment entropy of the ground state. The results presented above
correspond to cuts along both axes, as well as the line V = V ′.
From this diagram we can see that for values of V less than
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FIG. 7. (Top) Ground-state spin phase as a function of V and V ′.
The line V = 1.5V ′ is shown for reference. (Bottom) Entanglement
entropy between layers for the ground state.

1.5V ′, the system acts like two weakly coupled independent
layers, whereas for V > 1.5V ′, the two layers become closely
entangled and are strongly correlated.

D. Electron case

For completeness, we compare the above results with the
cases where one or both layers of the quantum dot plaquette
are occupied by electrons rather than by holes. We find that if
electrons are present rather than holes, the complex magnetic
ground state transitions we discussed above vanish.

In Fig. 8, we show the ground state energies for a bilayer
plaquette with V ′ = 0, and where each layer is occupied by
two electrons. Here we find that the (0, 0) spin configuration is

FIG. 8. (Top left) Ground state energies vs V/t for each spin
configuration for a plaquette where each layer is occupied by two
electrons and V ′ = 0. (Top right) 〈�|n1,1|�〉 for dot 1 of layer 1.
(Bottom) Entanglement entropy between layers.

FIG. 9. (Top left) Ground state energies versus V/t for each spin
configuration for a plaquette where layer 1 is occupied by two elec-
trons and layer 2 is occupied by two holes. Here V ′ = 0. (Top right)
〈�|n1,1|�〉 for dot 1 of layer 1 (one of the outside dots). (Bottom left)
Phase diagram showing the spin configuration of the ground state as a
function of V and V ′. (Bottom right) Entanglement entropy between
layers.

the ground state for all values of V/t . In fact, if V ′ is allowed
to be nonzero and vary independently of V , the (0, 0) spin
configuration remains the ground state for any values of V and
V ′. Thus the system is always antiferromagnetic in sharp con-
trast to Hund’s rule expectations. The absence of a transition
occurs because when the plaquette is occupied by electrons,
the ground state is spin 0 which has electron occupation 〈nl,i〉
evenly distributed among all dots in the plaquette.

It is interesting to consider the case where one layer is
occupied by electrons, and the other layer is occupied by
holes. In this case, the interlayer Coulomb interaction will
be attractive rather than repulsive, and so in the large-V limit
holes in one layer will occupy the same dots as particles in
the other layer. However, the electron layer’s preference to
equally occupy all four dots in a spin 0 state causes the spin
transition of this model to remain trivial. As shown in Fig. 9,
there is only one spin transition, the one in V ′ discussed prior
that is present in a single layer occupied by holes.

IV. CONCLUSION

We have studied the zero-temperature magnetic ground
states of a bilayer quantum dot plaquette using the general-
ized Hubbard model with long-range intralayer and interlayer
Coulomb interactions for systems of holes, electrons, and both
together. A bilayer rhombus plaquette at 3/4 filling demon-
strates a magnetic ground state transition as the strength of the
long-range Coulomb interaction is varied. A simple transition
from spin 1 to spin 0 occurs in a single layer. However,
interlayer effects can occur if two identical layers are brought
close to one another. This is particularly noteworthy, as the
spin state in one layer can directly affect the spin state in
the other layer, even when interlayer tunneling or exchange
interactions are small or vanishing, as the main mechanism for
these effects is the interplay between the kinetic motion of the
holes and the capacitive coupling between layers. Specifically,
this is due to the holes’ preference to more heavily occupy the
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inner two dots in a rhombus plaquette in the absence of long-
range Coulomb interactions. When the Coulomb interaction
strength is increased enough, the holes are pushed away from
the center, which causes a transition. This effect is depen-
dent on the exact plaquette geometry, as the properties of the
ground state can change quite drastically for various layouts
of quantum dots. In fact, for many other geometric layouts of
only a few quantum dots (which we have investigated using
the same techniques as presented in this work), the addition
of long-range Coulomb interactions has little to no qualita-
tive effect on the properties of the ground state. We showed
that a simple transition occurs for a rhomboidal geometry,
even in a single-layer, and that additional two-layer effects
occur so long as the interlayer Coulomb interaction is greater
than roughly 1.5 times the intralayer Coulomb interaction
strength.

Among our interesting and nonintuitive findings are com-
plex magnetic ground state transitions in the bilayer hole
system, but not necessarily in the bilayer all-electron or
electron-hole systems. Our predictions of nontrivial magnetic
configurations and transitions among them can be tested in
existing bilayer quantum dot structures recently fabricated in

Delft [39]. We believe such studies of quantum ground states
to be most promising initial experimental investigations of
hole quantum dot structures since studying quantum corre-
lations is one of the main goals of quantum circuits being
developed worldwide in different platforms.

As quantum dot experimental capabilities continue to
grow, the capability to observe physical phenomena in quan-
tum dot devices is an important step towards realizing quan-
tum technologies. Magnetic order and effects such as the tran-
sitions discussed in this work are examples of highly nontriv-
ial phenomena which are particularly well-suited for the cur-
rent stage of experimental capabilities due to the small number
of requisite quantum dots and the distinct qualitative features
of the system’s ground state. A rhombus plaquette is a good
candidate for observing magnetic effects in a bilayer quantum
dot system, and a simpler ground state transition is present in
a single-layer plaquette with the same geometry as well.
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