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Photocurrents in bulk tellurium
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We report a comprehensive study of polarized infrared/terahertz photocurrents in bulk tellurium crystals. We
observe different photocurrent contributions and show that, depending on the experimental conditions, they are
caused by the trigonal photogalvanic effect, the transverse linear photon drag effect, and the magnetic field
induced linear and circular photogalvanic effects. All observed photocurrents have not been reported before and
are well explained by the developed phenomenological and microscopic theory. We show that the effects can be
unambiguously distinguished by studying the polarization, magnetic field, and radiation frequency dependence
of the photocurrent. At frequencies around 30 THz, the photocurrents are shown to be caused by the direct optical
transitions between subbands in the valence band. At lower frequencies of 1 to 3 THz, used in our experiment,
these transitions become impossible and the detected photocurrents are caused by the indirect optical transitions
(Drude-like radiation absorption).
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I. INTRODUCTION

Tellurium is an elementary semiconductor that has been
studied from the very beginning of the history of semicon-
ductor physics. In the ’60s and ’70s, such phenomena as
quantum effects in cyclotron resonance [1], Shubnikov–de
Haas effect [2], Nerst-Ettingshausen and Seebeck effects [3],
surface quantum states [4,5], and natural optical activity [6–9]
were detected in Te crystals. In addition, several photoelec-
tric phenomena, including the circular photogalvanic effect
(PGE) [10,11], the circular photon drag effect (PDE) [12],
and the electric current-induced optical activity [10,13], were
discovered for the first time in bulk Te; for a recent review, see
Ref. [14]. These effects arise from spin splitting of the valence
band at the boundary of the first Brillouin zone (camelback
structure).

In recent years, studies of Te have experienced a renais-
sance due to the possibility of fabricating 2D Te crystals
(tellurene) which exhibit unique material properties; for re-
views, see, e.g., Refs. [15–20], and theoretical proposals for
closing the energy gap in Te and the appearance of Weyl
points near the Fermi level with Fermi arcs at the surface by
applying proper strain, see, e.g., Refs. [21–27].

Experimental access to the properties of tellurene as well
as to the specific properties of Weyl fermions should allow
studies of photoelectric effects excited by infrared/THz radia-
tion. The power of the method has already been demonstrated
for other 2D materials, surface states of topological insulators,
and Weyl semimetals; see, e.g., Refs. [28–37]. Recently, a
transverse circular PGE (CPGE) has been observed in bulk
unstrained Te at oblique incidence and has been attributed to
Weyl fermions [38]. However, no features specific to Weyl
fermions have been detected and these results can be ex-
plained alternatively by considering optical transitions in the
conventional Te band structure without involving Weyl bands,
which are not expected without a significant strain [21–27]. In

view of the increasing interest in photoelectric effects excited
in 2D and on the surface of 3D Te crystals, it becomes impor-
tant to understand the photocurrents excited in bulk Te that are
not related to 2D states or the topological charges of the Weyl
points.

In the present paper, we report the observation of three
photoelectric phenomena in Te crystals, which have not been
previously addressed either experimentally or theoretically.
These phenomena are (i) trigonal linear photogalvanic effect
(LPGE) due to intersubband optical transitions in the valence
band, (ii) transverse linear PDE, and (iii) circular (radiation
helicity driven) magnetophotocurrents due to intersubband
optical transitions in the valence band. While effect (ii) is de-
tected for Drude absorption (THz frequencies) only, effects (i)
and (iii) are observed at both infrared frequencies and Drude
absorption. The observed phenomena are characterized by dif-
ferent dependencies on radiation frequency and polarization.
Furthermore, the linear and circular magnetophotocurrents
depend linearly on an external magnetic field B and vanish
for B = 0. The qualitatively different functional behavior al-
lows us to clearly distinguish and study all these individual
effects. The results are well described by the developed phe-
nomenological and microscopic theories. It is shown that all
phenomena are excited in the bulk of the material and are
caused by the displacement of electrons in real space due to
direct intersubband optical transitions (trigonal LPGE at IR
frequencies), asymmetric scattering of carriers at Drude ab-
sorption (trigonal LPGE at THz frequencies), transfer of linear
photon momentum to free carriers (PDE at THz frequencies),
and magnetic field assisted asymmetric scattering (magnetic
field induced LPGE and CPGE).

The paper is structured as follows. In Sec. II, we describe
the investigated samples and the experimental technique. In
Sec. III, we discuss the experimental results. In Sec. IV, we
perform a symmetry analysis of the photocurrent excited by
radiation propagating along the c axis and identify different

2469-9950/2023/108(23)/235209(20) 235209-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2209-1524
https://orcid.org/0000-0003-3818-1014
https://orcid.org/0000-0002-9630-9787
https://orcid.org/0000-0001-6423-4509
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.235209&domain=pdf&date_stamp=2023-12-21
https://doi.org/10.1103/PhysRevB.108.235209


M. D. MOLDAVSKAYA et al. PHYSICAL REVIEW B 108, 235209 (2023)

FIG. 1. Experimental setup. Here z is the c axis of Te crystal and
x is parallel to one of three C2 rotation axes.

mechanisms of the observed photocurrents excited by linearly
(Sec. IV A) and elliptically (Sec. IV B) polarized radiation. In
Sec. V, we discuss possible optical transitions in the studied
experimental arrangement and some details of the band struc-
ture. Next, we present the developed theory and corresponding
model pictures for the PGEs excited at the intersubband
transitions (Secs. V A and V B) and the intrasubband Drude-
like transitions (Secs. V C and V D). After discussing the
mechanisms of photogalvanic currents, we consider the linear
PDE and the linear magnetic field induced PDE excited at
intraband (Drude like) transitions (Sec. V F). In Sec. VI, we
compare the experimental and theoretical results. Finally, in
Sec. VII we summarize the results. We have also included
four Appendixes. In Appendix A, we cover the complete phe-
nomenology of PGE and PDE currents at normal incidence.
In Appendix B, we present the equations that describe the
absorption coefficient at direct intersubband transitions, and
Appendixes C and D contain the microscopic derivation of
the PDE and MPDE currents.

II. SAMPLES AND EXPERIMENTAL SETUP

The measurements were carried out on a p-type tellurium
single crystal grown by the Czochralski method in a hydrogen
atmosphere. The inset in Fig. 1 shows the sample and the
experimental setup. A plate with thickness 0.8 mm was cut
perpendicular to the c axis. A pair of Ohmic contacts was
fabricated on opposite sides of the hexagon-shaped plate [39].
This allowed us to measure the photocurrents along the y
direction. Note that we use the coordinate system (x, y), where
x is parallel to one of three C2 rotation axes. The contacts were
made of an alloy of tin, bismuth, and antimony with a low
melting temperature (Sn : Bi : Sb = 50 : 47 : 3) [12]. The
magnetotransport measurements were performed in the van
der Pauw geometry on a sample cut from the same tellurium
crystal as the sample used for the photocurrent measurements.
The room-temperature carrier density was p = 7 × 1016 cm−3

and the hole mobility μ = 700 cm2/(V s). For the effec-
tive mass m ≈ 0.2 m0 (see Refs. [40,41]), this results in a
momentum relaxation time τ ≈ 8 × 10−14 s. Note that the
same parameters were obtained for similar Te crystals used
in Ref. [12].

To study the photocurrent in a wide frequency range we
used two pulsed laser systems: a TEA CO2 laser and an
optically pumped molecular terahertz laser [42]. The lasers
operated at single frequencies in the range from f ≈ 1 to
30 THz (corresponding photon energy range from h̄ω = 4.4
to 132 meV, where ω = 2π f is the angular frequency).
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FIG. 2. Azimuth angle dependence of the normalized photocur-
rent Jy/P measured at zero magnetic field (red squares) and Bx =
±1.7 T (blue and dark yellow squares). Note that the small
polarization-independent offset J0 � Jy is subtracted for clarity. The
data are obtained at f = 31.2 THz (λ = 9.6 µm). Solid lines are fits
to (Jy − J0 )/P ∝ sin 2α. The double arrows at the top illustrate the
state of the polarization for different values of the azimuth angle α.
The inset shows the intensity dependence of the photocurrent. Solid
line is the linear fit.

Radiation with frequencies of about 30 THz was obtained by
a line-tunable TEA CO2 laser [43,44]. We used four frequen-
cies of the laser radiation from 28.3 THz (wavelength λ =
10.6 µm, h̄ω = 117 meV) to 32.2 THz (λ = 9.3 µm, h̄ω =
133.3 meV) [45]. The laser generated single pulses with a
duration of about 100 ns and a repetition rate of 1 Hz. The
radiation power on the sample surface P was about 50 kW. For
the low frequencies (from 1 to 3.3 THz) we used a line-tunable
pulsed molecular laser with NH3 as active media [46–48]. The
laser operated at f = 1.07 THz (λ = 280 µm, h̄ω = 4.4 meV)
and 3.3 THz (λ = 90.5 µm, h̄ω = 13.7 meV). The operation
mode of the NH3 laser was similar to that of the TEA CO2

laser. The radiation power on the sample surface was about
5 kW. The peak power of the radiation was monitored by
infrared and terahertz photon-drag detectors [42,49], as well
as by a pyroelectric power meters. The beam positions and
profiles were checked with pyroelectric camera or thermally
sensitive paper. The radiation was focused onto spot sizes
of about 0.5 to 3 mm diameter, depending on the radiation
frequency.

Photocurrents were measured at room temperature by ap-
plying polarized radiation at normal incidence, see the inset
in Fig. 2. In experiments with linearly polarized radiation, the
in-plane radiation electric field vector E was rotated counter-
clockwise with respect to the y axis. The orientation of the
vector E is defined by the azimuth angle α (E ‖ y corresponds
to α = 0) and was varied by rotation of a λ/2 plate. To study
photocurrents sensitive to the radiation helicity, we used λ/4
plates. By rotating the λ/4 plate, we varied the THz radiation
helicity according to Pcirc ∝ sin 2ϕ [50], where ϕ is the angle
between the laser polarization plane and the optical axis of the
plate. Note that for ϕ = 0, the radiation is linearly polarized
along the y direction.
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FIG. 3. (a) Magnetic field dependencies of the amplitudes of lin-
ear (J1, squares) and circular (Jcirc, circles) photocurrents normalized
on the radiation power P. The red and blue symbols correspond to
data obtained at f = 28.3 THz (λ = 10.6 µm) and f = 31.2 THz
(λ = 9.6 µm), respectively. Inset: 1 – ALPGE in nA/W, 2 – DMLPGE in
nA/(WT), 3 – DMCPGE in nA/(WT). (b) Frequency dependencies of
photocurrents J1/P and its components due to the photon drag JPDE

and photogalvanic JPGE effects measured at zero magnetic field in the
THz frequency range. Lines correspond to the spectral dependence
of the Drude absorption. (c) Magnetic field dependencies of the
amplitudes of linear (squares) and circular (circles) photocurrents
J/P measured at f = 3.3 THz (λ = 90 µm).

The induced photocurrents were detected as a voltage drop
across load resistors RL = 50 ohm. The signals were recorded
using digital oscilloscopes. In experiments on magnetopho-
tocurrents, an external in-plane magnetic field B up to 1.7 T
was applied along the x direction using an electromagnet.

III. EXPERIMENT

We begin by describing the experimental results obtained
under various experimental conditions. The phenomenologi-
cal theory and identification of the photocurrent mechanisms
are given in the next section.

First, we present the photocurrent excited at frequencies
about 30 THz. Figure 2 shows the dependence of the normal-
ized photocurrent Jy/P excited by linearly polarized radiation
as a function of the orientation of the electric field vector. The
data obtained at f = 31.2 THz are shown for zero magnetic
field and for magnetic fields Bx = ±1.7 T. All three traces can
be well fitted by

Jy = J1(Bx ) sin 2α + J0, (1)

where coefficients J1(Bx ) and J0 are fit parameters [51]. Note
that the polarization-independent offset J0 is more than an
order of magnitude smaller than the parameter J1(Bx ) and will
not be discussed below. The magnetic field dependence of
the coefficient J1(Bx ) measured for f = 30.2 and 28.3 THz
are shown in Fig. 3(a). It demonstrates that the photocurrent
depends linearly on B and has a substantial magnitude at zero
magnetic field. Solid lines in Fig. 3(a) show that the coefficient
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FIG. 4. Azimuth angle dependence of the normalized photocur-
rent (J − J0 )/P measured at zero magnetic field (red squares) and
Bx = ±1.7 T (blue and olive squares). The data are obtained applying
radiation with f = 3.3 THz (λ = 90 µm). Solid lines are fits after
(J − J0 )/P ∝ sin[2α − ψ (Bx )]. The double arrows at the top illus-
trate the state of the polarization for different values of the azimuth
angle α. Inset shows magnetic field dependence of phase ψ (circles).
Solid line is fit after Eq. (13).

J1(B) within the error bars are well described by the function

J1 = ALPGEP + DMLPGEPBx, (2)

where ALPGE and DMLPGE are fitting parameters, which, as we
show below, describe the LPGE and linear MPGE, respec-
tively. The magnitudes of these coefficients measured for four
laser frequencies in the range between 28.3 and 32.2 THz are
shown in the inset of Fig. 3(a). The slope of the straight line
in the inset of Fig. 3(a) depends on the radiation frequency.
Measuring the photocurrent as a function of the radiation
power P, we found that it scales linearly with P, i.e., depends
quadratically on the radiation electric field E , see the inset in
Fig. 2.

For radiation at lower frequencies ( f = 1.07 and 3.3 THz),
the photocurrent still varies sinusoidally with the double angle
α but the experimental traces become phase shifted, see Fig. 4.
Now the data can be well fitted by

Jy = J1(Bx ) sin[2α − ψ (Bx )] + J0. (3)

The magnetic field dependencies of the amplitude J1(Bx ) and
the phase ψ (Bx ) are shown in Fig. 3(c) and the inset of Fig. 4,
respectively. Figure 3(c) reveals that, alike at high frequencies,
the coefficient J1(Bx ) depends linearly on magnetic field Bx

and has a substantial amplitude at zero magnetic field.
Figure 3(b) shows the frequency dependence of the pho-

tocurrent magnitude J1(0) at zero magnetic field. For the low
frequencies used in the experiments, f = 1.07 and 3.3 THz,
which correspond to the photon energies of 4.4 and 13.7 meV,
optical transitions in Te can only be due to Drude absorption.
It varies with the radiation frequency as KD ∝ 1/(1 + ω2τ 2),
where KD is the absorption coefficient. The solid line in
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FIG. 5. Helicity dependencies of the normalized photocurrent
(J − J0 )/P obtained at zero magnetic field (red circles) and Bx =
±1.7 T (blue and dark yellow circles). The data are measured at
f = 31.2 THz (λ = 9.6 µm). Solid lines are fits after Eq. (4). The
ellipses on top illustrate the polarization states at several angles ϕ.
Vertical blue and red arrows in the panels indicate left- and right-
handed circularly polarized radiation.

Fig. 3(b) shows the frequency dependence of J1 ∝ KD cal-
culated for a momentum relaxation time τ = 8 × 10−14 s
determined from magnetotransport measurements. It shows
that Drude absorption describes the data well at low frequen-
cies. At high frequencies, however, the signal magnitudes are
by more than two orders of magnitude larger than would be
expected from the calculated dependence. This observation
shows that at frequencies of about 30 THz, i.e., photon en-
ergies of about 125 meV, the photocurrent is not related to the
indirect optical transitions in the valence band, but stems from
direct optical transitions between subbands of the valence
band. Below we discuss this in more detail. Comparing the
slopes of the magnetic field dependencies of J1(Bx ) measured
at high frequencies [28.3 and 31.2 THz, see Fig. 3(a)] with
that measured at low frequencies [3.3 THz, see Fig. 3(c)], we
obtain that they have comparable magnitudes. Using the same
arguments as above for the zero magnetic field photocurrent,
we conclude that also the magnetophotocurrent at high fre-
quencies ∼30 THz stems from direct intersubband transitions
and not the Drude absorption.

Using circularly polarized radiation, we also detected a
magnetic field induced circular photocurrent whose direction
reverses when the radiation helicity reverses. Figure 5 shows
the dependencies of the photocurrent on the angle ϕ measured
at f = 31.2 THz. The curves can be fitted by

Jy = 1
2 J1(Bx ) sin 4ϕ + Jcirc(Bx ) sin 2ϕ + J0, (4)

where J1(Bx ) is the same as used in Eq. (1) and Jcirc(Bx )
is a fitting parameter that corresponds to the magnitude of
the circular photocurrent, which is proportional to Pcirc and
reverses its sign by changing polarization from σ− to σ+ [52].
The magnetic-field dependencies of the circular photocurrent,

FIG. 6. Magnetic field dependence of the amplitude of the lon-
gitudinal circular photocurrent normalized on the radiation power P.
The inset shows the experimental setup.

measured at two different radiation frequencies, are shown in
Figs. 3(a) and 3(c). These plots reveal that the sign of

Jcirc(Bx ) = DMCPGEPBx (5)

changes by reversing the magnetic field direction; at Bx = 0
this contribution vanishes.

At first glance, one can attribute the magnetic field induced
circular photocurrent Jy to the CPGE current excited along
the c axis [10,11], which is turned towards the sample plane
due to the Lorentz force. To examine this possibility, we per-
formed additional measurements. Using a tellurium sample
with a length of 25 mm and the cross section of about 20
mm2, we detected the longitudinal circular photocurrent only.
Application of magnetic field Bx � 2 T neither changes the
magnitude of the CPGE current nor causes other photocur-
rents, see Fig. 6. This contradicts the scenario addressed at
the beginning of the paragraph, because that should result in
the suppression of the longitudinal photocurrent due to the
Lorentz force. This proves that the measured current Eq. (5)
comes from a so far unknown mechanism of the circular
magnetophotocurrent. The microscopic sense of the fitting
parameter DMCPGE is discussed in Sec. VI.

IV. PHENOMENOLOGICAL THEORY AND
IDENTIFICATION OF INDIVIDUAL

PHOTOCURRENT CONTRIBUTIONS

Tellurium is a chiral semiconductor with two enan-
tiomorphs in nature, dextrarotatory and levorotatory, which
are mirror images of each other. They can be visualized as two
screws with opposite threads. We used levorotatory tellurium,
which was determined by measuring its natural optical activity
[12]. The point-symmetry group of tellurium is D3. This group
has a threefold rotation axis C3, the so-called c axis. We denote
this direction z. There are also three C2 rotation axes in the
perpendicular plane (xy).

A complete phenomenological analysis of the photocur-
rents excited by a light propagating uniformly along the
c axis (q ‖ +z) in a homogeneous Te crystal is presented
in Appendix A. In experiments, the polarization-dependent
photocurrent is measured in the y direction for either zero
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magnetic field or a magnetic field applied along the x axis
parallel to one of the C2 axes. For these conditions, the phe-
nomenological theory yields

jy = [−χ P̃lin + �l P̃linBx − �cPcircBx]PGE|E|2

+ [T̃ Plinqz − SlBxPlinqz]PDE|E|2, (6)

where j is the photocurrent density, E is the complex ampli-
tude of the radiation electric field

E(t ) = E exp(−iωt ) + E∗ exp(iωt ), (7)

and

Plin|E|2 = |Ex|2 − ∣∣Ey

∣∣2
, (8)

P̃lin|E|2 = ExE∗
y + E∗

x Ey, (9)

Pcirc|E|2 = i(ExE∗
y − E∗

x Ey) (10)

are the Stokes parameters, which describe the polarization of
the radiation [53]. The terms in the brackets [...]PGE describe
the PGE caused by the chiral symmetry of bulk Te. The first
term in this bracket proportional to parameter χ is the trigonal
LPGE, the second and third terms proportional to �l and �c

describe the linear and circular MPGE currents. The terms in
the bracket [...]PDE describe the PDE caused by the transfer of
the linear momentum of light to the charge carriers. The first
term in this bracket denoted by parameter T̃ is the trigonal
PDE and the second one, proportional to the parameter Sl , is
the magneto-photon-drag effect (MPDE).

The PGE current amplitudes obtained in experiments
are related with the theoretical values by [ALPGE, DMLPGE,

DMCPGE] = 2πS/(cn⊥)[χ,�l ,�c], where S is the sample
aspect ratio and n⊥ is the refraction index of Te for radiation
propagating along the c axis.

A. Photocurrents in response to linearly polarized radiation

Equation (6) shows that a proper choice of experimental
setup together with variation of the polarization state can be
used to identify the contributions of different photocurrent
mechanisms. In our experiments, linearly polarized light prop-
agates along z ‖ c and the orientation of the in-plane electric
field vector E is varied by a counterclockwise rotation of a
λ/2 plate. A zero azimuth angle, α = 0, corresponds to E ‖ y.
Under these conditions, the Stokes parameters are given by
[50]

Plin = − cos 2α, P̃lin = − sin 2α. (11)

Consequently, Eq. (6), which describes the total current in
the y direction and represents the sum of the LPGE and PDE
takes the form

jy = (χ sin 2α − T̃ qz cos 2α)|E|2

+ (−�l sin 2α + Slqz cos 2α)Bx|E|2. (12)

For convenience, we have grouped the zero magnetic field
(first bracket) and magnetic field induced (second bracket)
PGE and PDE contributions.

Figure 2 shows that both zero-field (first bracket) and
magnetophotocurrents (second bracket) excited by radiation
with f ≈ 30 THz vary with the rotation of the electric field

vector E sinusoidally with the double angle α. This fact shows
that at Bx = 0 the photocurrents are governed by the trigonal
LPGE ( jy = χ sin 2α|E|2) and the photon drag contribution
with a current proportional to cos 2α is not detectable, see
Fig. 2. In the presence of a magnetic field Bx, this current is
superimposed with the linear MPGE ( jy = �lBx sin 2α|E|2),
see Figs. 2 and 3(a) (squares) [54].

At low frequencies, however, we found that the dependence
of the zero-magnetic field photocurrent on the angle α is phase
shifted by the angle ψ , see Fig. 4(a). This shows that at these
frequencies the photocurrent is caused by the superposition of
the LPGE and linear PDE, which are proportional to the sine
and cosine of 2α, respectively. From the fit obtained for zero
magnetic field, where Jy ∝ sin(2α − 460), see Fig. 4(a), we
can conclude that χ/qzT̃ = tan 460 ≈ 1, hence χ ≈ qzT̃ .

From measurement of the azimuthal dependence of the
photocurrent for different magnetic field strengths, we found
that the phase shift ψ (Bx ) depends on the magnitude and sign
of Bx, see inset in Fig. 4. Considering that, as shown above,
χ ≈ qzT̃ , we obtain the azimuthal angle dependence of the
magnetic field induced photocurrent in the form

jy ∝ sin

(
2α − arctan

1 − BxSl/T̃

1 − Bx�l/χ

)
. (13)

The dependence of the phase ψ on the in-plane magnetic
field ψ (Bx ), see inset in Fig. 4, allows us to extract the ratio
of the parameters defining the linear MPGE and the trigonal
PGE, �l/χ = −0.5 T−1, as well as the parameters defining
the MPDE and the trigonal PDE, Sl/T̃ = −0.2 T−1.

B. Photocurrents in response to elliptically polarized radiation

Experiments show that the circular photocurrent, whose
direction is reversed by changing from σ− to σ+ circularly
polarized radiation, can only be observed in the presence of an
external magnetic field, see Figs. 5, 3(a), and 3(c). This is fully
consistent with the phenomenological theory which yields a
magneto-induced circular photogalvanic current (MCPGE):

jMCPGE
y = −�cBxPcirc|E|2 . (14)

In experiments, the polarization state of the radiation is varied
by rotating the λ/4 plate by an angle ϕ with respect to the y
direction, and the Stokes parameters are given by [50]

Plin = −(cos 4ϕ + 1)/2, (15)

P̃lin = − sin 4ϕ/2, (16)

Pcirc = sin 2ϕ. (17)

Consequently, the photocurrent in y direction is given by

jy = [χ sin 4ϕ/2 − T̃ qz(cos 4ϕ + 1)/2]|E|2

− [�l sin 4ϕ/2 − Sl qz(cos 4ϕ + 1)/2]Bx|E|2

− �cBx sin 2ϕ|E|2. (18)

Here, the last term describes the circular MPGE. All other
terms are due to the PGE and PDE discussed in the previ-
ous sections: they are characterized by the same values of
the parameters χ, T̃ ,�l , Sl as detected in experiments with
linearly polarized radiation, and the polarization dependence
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FIG. 7. Band structure of the valence band of tellurium. At
h̄ω > 2�2, direct intersubband optical transitions are allowed.

is simply modified according to the modification of the cor-
responding Stokes parameters. The fit of the experimental
data with this function describes the experimental data well
and is shown in Fig. 5. The magnetic field dependencies of
the MCPGE current, extracted from the experimental helicity
dependencies or, in some measurements, as the half difference
between the photocurrent magnitudes in response to σ+- and
σ−- circularly polarized radiation, are shown in Figs. 3(a) and
3(c).

V. MICROSCOPIC THEORY

Figure 7 sketches the valence band structure of bulk Te
crystals. For the microscopic picture of the observed pho-
tocurrents, we need to identify optical transitions responsible
for their formation. As discussed in Sec. III, the analysis of
the photocurrent frequency dependence, see Fig. 3(b), shows
that the photocurrent excited by infrared radiation with photon
energies of the order of 130 meV is driven by the direct
intersubband transitions, see red downward arrows in Fig. 7.
Note that the photon energies are too low to excite interband
transitions (h̄ω � Eg = 335 meV). For THz radiation with
photon energies in the order of 10 meV, i.e., much smaller
than the energy separation of the subbands in the valence band
2�2 ≈ 100−125 meV [55–59], the photocurrents are caused
by the indirect Drude-like optical transitions.

We develop a theory of photocurrents in tellurium that
are induced by both intersubband optical transitions in the
valence band, Fig. 7, and intrasubband Drude-like transitions.
We derive expressions for the trigonal LPGE current and the
photocurrents in the presence of a magnetic field.

In the basis of ±3/2 states, the valence-band Hamiltonian
for the H point of the Brillouin zone has the following form:

H = �2σx + βkzσz+A1k2
z + A2k2

⊥. (19)

Here �2 is half the gap between the valence subbands at
k = 0, see Fig. 7, and β is a constant that is the same for
both H and H ′ valleys but of opposite sign in levorotatory and
dextrarotatory tellurium. The eigenstates of the Hamiltonian
H have the camelback dispersion

E1,2 = A1k2
z + A2k2

⊥ ∓
√

�2
2 + (βkz )2, (20)

and the envelopes

ψ1,2 = 1√
2

(
√

1 ± η,±
√

1 ∓ η), η = βkz√
�2

2 + (βkz )2
.

(21)

The direct intersubband optical transition matrix element is
at k⊥ �= 0 nonzero only [57]:

V21 = i
eE

h̄ω

�2

E2
g

|L|2(k+e− − k−e+). (22)

Here k± = kx ± iky, Eg is the energy gap between the conduc-
tion band and valence band and L is the interband momentum
matrix element [60]. The matrix element V21 is quadratic in L
because the intersubband transitions in the valence band occur
via virtual states in the conduction band. The absorption coef-
ficient for intersubband transitions K (ω) calculated according
to Fermi’s golden rule with the matrix element Eq. (22) is
given in Appendix B.

A. Trigonal LPGE current at intersubband transitions

First, we derive the trigonal LPGE which is responsible
for the photocurrent J1(B = 0) excited by infrared radiation.
The Hamiltonian Eq. (19) describes the uniaxial model of
tellurium. In order to account for the trigonality we add an
additional term to the valence-band Hamiltonian which has
the following form in the basis of the ±3/2 states [57]:

δH = iγ ′(k3
+ − k3

−)σz. (23)

Here γ ′ is a real constant equal at both H and H ′ Brillouin
zone points. This correction results in an additional term
in the intersubband matrix element δV21(k) = (ie/h̄ω)E ·
∇kδH. This results in two competitive contributions to the
LPGE: the shift current and the ballistic or injection current.
The latter occurs when the interference of light absorption
with disorder or phonon scattering is taken into account [61].
The shift current is due to holes with a wave vector k undergo-
ing a spatial shift R21(k) during the light absorption process.
The accumulation of the shifts results in a contribution to
the steady-state photocurrent. In general, the ballistic and
shift photocurrents have the same order of magnitude and are
equally dependent on the system parameters. Here we esti-
mate the LPGE current by calculating the shift contribution.

The shift value for direct optical transitions is given by
[62,63]

R21(k) = −∇karg(V21 + δV21) + �2(k) − �1(k), (24)

where arg stands for the complex argument and the Berry
connections in the subbands are �1,2 = i〈ψ1,2|∇k|ψ1,2〉. The
shift photocurrent density reads

j = 2e
∑

k

2π

h̄
|V21|2R21δ

[
2
√

�2
2 + (βkz )2 − h̄ω

]
( f1 − f2).

(25)

Here the factor of 2 accounts for the two valleys of tellurium,
and f1,2 are occupancies of the initial and final states.
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Calculating the shift photocurrent for intersubband transi-
tions (ib), we obtain in accordance with the phenomenological
Eq. (6),

jx = χ ibPlin|E|2, (26)

jy = −χ ibP̃lin|E|2, (27)

where

χ ib = γ ′K (ω)
12ecE2

g

π |L|2(h̄ω)2
, (28)

with K (ω) being the absorption coefficient for intersubband
transitions; see Appendix B.

B. Linear and circular MPGE currents
at intersubband transitions

Application of an external magnetic field results in an
additional photocurrent superimposed with the trigonal one.
This is caused by the change in the probability of optical
transitions for positive and negative wave vectors resulting in
an imbalance of the population of states involved in radiation
absorption. In a magnetic field, the following correction to the
Hamiltonian appears:

δHB = γBσz(k2
+k−B− − k2

−k+B+). (29)

Here, γB is a real constant that is the same for both H and H ′
Brillouin-zone points. The constant γB can be obtained in the
fifth order of the k · p perturbation theory. Accounting for this
term results in additional, magnetic field dependent spatial
shifts of the holes under elliptical polarization. Calculation
of the shift R21(k, B) by Eq. (24) with δV21 = (ie/h̄ω)E ·
∇kδHB and then the photocurrent by Eq. (25), we obtain (at
q ‖ +z) in accordance with Eqs. (6), the shift MCPGE current

j = �ib
c B × ẑPcirc|E|2, (30)

where the shift contribution to �ib
c is given by

�ib
c = − γB

4γ ′ χ
ib, (31)

with χ ib the zero-field trigonal LPGE constant for intersub-
band transitions, Eq. (28).

Accounting for the correction Eq. (29) also changes the
selection rules for the intersubband transitions under linearly
polarized or at unpolarized excitation. The correction to the
matrix element is given by

δV lin
21 = − 2

eE

h̄ω

√
1 − η2γBk2

⊥B⊥

× [2 sin(α − ϕB) + sin(2ϕk − α − ϕB)], (32)

where ϕk, ϕB, and α are the azimuthal angles of k⊥, B⊥
and E⊥, respectively. As a result, the squared matrix element
contains a part |V21 + δV lin

21 |2 ∝ 2�(V ∗
21δV lin

21 ) asymmetrical in
k. The corresponding asymmetrical part of the intersubband
transition probability W (as)

21 results in a ballistic photocurrent.
Its density is calculated as

j⊥ = 2e
∑

k

v⊥W (as)
21 ( f1 − f2)(τ2 − τ1). (33)

Here τ1,2 are the momentum relaxation times in the subbands
labeled 1 and 2, and v⊥ = 2A2k⊥/h̄ is the hole velocity
equal in both subbands. Calculation yields in accordance with
Eq. (6) and Appendix A,

jx,y = [
�ib

l (±PlinBx,y + P̃linBy,x ) + �ibBx,y
]|E|2, (34)

where the MLPGE and the polarization-independent MPGE
constants �ib

l and �ib are given by

�ib
l = −2�ib = 8kBT (τ1 − τ2)

3h̄
�ib

c . (35)

Here T is the temperature, kB is the Boltzmann constant, and
�ib

c is given by Eq. (31).

C. Trigonal LPGE current at intraband transitions

Now we turn to the photocurrent generated by linearly
polarized THz radiation. For Drude-like intraband optical
transitions inside the ground valence subband which are rel-
evant for THz frequencies, the photocurrent is derived from
the Boltzmann kinetic equation. In this approach, the low
symmetry of tellurium is taken into account in the collision
integral. This means that the photocurrent is generated due to
the action of polarized radiation and asymmetric hole scatter-
ing by disorder or phonons.

To obtain the asymmetrical scattering probability, we con-
sider the following terms of different parity in the interband
Hamiltonian:

〈±1/2|H|±3/2〉 = Lk± + Qk2
∓. (36)

Here |±1/2〉 are the conduction-band states, L is the inter-
band matrix element giving rise to intersubband transitions,
Eq. (22), and Q fixes the trigonal symmetry of tellurium. Ac-
cordingly, the wave-function envelope in the ground valence
subband has the form

ψk = ψ0 + (Lk+ + Qk2
−)|1/2〉 + (Lk− + Qk2

+)|−1/2〉
Eg

√
2

,

(37)

where ψ0 is the wave function calculated without mixing with
the conduction band. Then, the matrix element of scattering by
the disorder potential Uk′k = U0〈ψk′ |ψk〉 gets an asymmetric
part:

Uk′k =U0

{
1 + i

Im(LQ∗)

E2
g

[
k⊥k′

⊥
2 cos(ϕk + 2ϕk′ )

− k2
⊥k′

⊥ cos(ϕk′ + 2ϕk)
]}

. (38)

Here, U0 is the Fourier image of the scattering potential which
is assumed to be independent of k and k′, corresponding to the
scattering by short-range elastic impurities, and the notation
⊥ denotes the projection onto the (xy) plane. This form of
Uk′k allows us to obtain the asymmetric (skew) scattering
probability W a

k′k = −W a
kk′ . This can be achieved using the next
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to Born approximation, which yields [29,64–66]

W a
k′k = (2π )2

h̄
N δ(εk − εk′ )

×
∑

p

Im(Uk′ pUpkUkk′ )δ(εk − εp), (39)

where N is the concentration of scatterers and εk ≡ E1(k)
is the hole dispersion in the ground valence subband. In the
following, we assume an isotropic parabolic dispersion εk =
h̄2k2/(2m). The calculation yields the asymmetrical scattering
probability in the form

W a
k′k = 2πU0

τ
δ(εk − εk′ )

Im(LQ∗)

E2
g

[
k⊥k′

⊥
2 cos(ϕk + 2ϕk′ )

− k′
⊥k2

⊥ cos(ϕk′ + 2ϕk)
]
, (40)

where τ is the relaxation time introduced by 1/τ (εk ) =
(2π/h̄)NU 2

0 g(εk ), where g(ε) is the density of states. Note
that the value of Im(LQ∗) is the same in the H and H ′ valleys.

The trigonal PGE constant χD in 3D tellurium which de-
scribes the trigonal LPGE current for Drude-like absorption,

jx = χDPlin|E|2, (41)

jy = −χDP̃lin|E|2, (42)

is calculated analogously to the 2D case in Refs. [29,65,66]:

χD = 2e3
∑

k

ξτ

[(
τ

1 + ω2τ 2
f ′
0

)′
+ τ ′ f ′

0
1 − ω2τ 2

(1 + ω2τ 2)2

]
.

(43)

Here, f0 is the equilibrium distribution function, prime means
differentiation over energy εk , and the asymmetry parameter
is introduced according to

ξ (εk ) = τ

〈∑
k′

W a
kk′vx(k)

[
v2

x (k′) − v2
y (k′)

]〉
, (44)

where angular brackets indicate averaging over directions of
k at a fixed energy εk . The calculation gives

ξ (εk ) = −16π Im(LQ∗)

15h̄3E2
g

U0g(εk )ε3
k . (45)

Integrating the first term in Eq. (43) by parts, we get

χD = −e3
∑

k

ξτ 2/εk

1 + ω2τ 2
f ′
0

(
7 + 1 − ω2τ 2

1 + ω2τ 2

)
, (46)

where we used the energy dependencies g(εk ) ∝ √
εk , τ ∝

1/
√

εk , and ξ ∝ ε
7/2
k .

Equation (46) is valid for any temperature and any relation-
ship between frequency and relaxation rate. For Boltzmann
statistics and high frequency ωτ � 1, we get

χD = −96pe3kBT Im(LQ∗)

5
√

πE2
g h̄3ω2

SnB(T ). (47)

Here p is the hole concentration, and we introduced the non-
Born dimensionless parameter SnB(T ) = 2πU0g(kBT ). The
temperature dependence is χD ∝ T 3/2.

D. Linear and circular MPGE current at intraband transitions

The experiment shows that, also at THz frequencies, the
application of an external magnetic field Bx results in mag-
netic field induced linear and circular photocurrents, see
Figs. 4, 5, and 3(b). The MPGE current caused by the Drude-
like intraband optical transitions is calculated analogously to
Eqs. (41)–(43) but taking into account the magnetic field in the
interband mixing. The magnetic field changes the interband
matrix elements Eq. (36) according to

〈±1/2|H|±3/2〉 = Lk± + MB±. (48)

We see that the forbidden interband transitions are allowed by
the magnetic field. Using the same approach as in Eq. (37),
we obtain the the B⊥ dependence of the disorder scattering
matrix element Uk′k. It contains a part responsible for MPGE,
given by

Uk′k = U0

[
1 + Re(LM∗)

E2
g

B⊥ · (k⊥ + k′
⊥)

]
. (49)

This part of the scattering matrix element leads to the gy-
rotropic terms in the scattering probability already in the Born
approximation:

Wk′k = W (0)
k′k

[
1 + 2

Re(LM∗)

E2
g

B⊥ · (k⊥ + k′
⊥)

]
, (50)

where W (0)
k′k is the zero-field symmetrical part. Note that the

value of Re(LM∗) is the same in the H and H ′ valleys.
To calculate the MPGE current, one has to iterate the ki-

netic equation for the hole distribution function fk,

∂ fk

∂t
+ e

h̄
E(t ) · ∂ fk

∂k
=

∑
k′

(Wkk′ fk′ − Wk′k fk), (51)

with E(t ) given by Eq. (7), in the small parameters E, E∗,
and B. First, we account for E and obtain the correction to the
distribution function in the form

f (E )
k = −eτω f ′

0E · vk. (52)

In the following, we use the notation τω = τ/(1 − iωτ ).
Then there are two ways to get the current carrying dis-

tribution. One is to account for E∗ in the next step and get
the correction f (EE ) ∝ |E|2, and account for the kB terms
in the end to obtain the correction f (EEB) ∝ |E|2B⊥. In the
second step, we get the correction to the distribution function
describing an alignment of electron momenta:

f (EE )
k = e2|E|2τv2

⊥Re(τω f ′
0)′(Plin cos 2ϕk + P̃lin sin 2ϕk).

(53)

Then we include the magnetic field and get the correction
f (EEB)
k from the equation

f (EEB)
k

τ
+

∑
k′

Wk′k
(

f (EE )
k − f (EE )

k′
) = 0, (54)

which yields

f (EEB)
k = −2

Re(LM∗)

E2
g

(B⊥ · k⊥) f (EE )
k . (55)
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It contributes to the MPGE current which is calculated as
follows:

j = 2e
∑

k

vk f (EEB)
k . (56)

Substituting f (EEB)
k , we obtain in accordance with the phe-

nomenological Eq. (6),

jx,y = �D
l (±PlinBx,y + P̃linBy,x )|E|2, (57)

where the MLPGE constant �D
l is given by

�D
l = −e3 8Re(LM∗)

5mh̄E2
g

∑
k

ε2
kτ

(
τ

1 + ω2τ 2
f ′
0

)′
. (58)

Now we calculate an additional contribution to the distribu-
tion function that takes into account the kB terms in the second
step. In doing so, we find a time-dependent correction to the
distribution function f (EB)

k ∝ EB that satisfies the equation

f (EB)
k

τω

+
∑

k′
Wk′k

(
f (E )
k − f (E )

k′
) = 0. (59)

The solution is given by

f (EB)
k = 2

Re(LM∗)

E2
g

τ 2
ω

τ
e f ′

0

×
[

(B⊥ · k⊥)(E · vk) − (B⊥ · E )
k⊥v⊥

2

]
. (60)

Then we find the quadratic in E and linear in B correction
f (EBE ) which satisfies the following equation:

e

h̄
E∗ · ∂ f (EB)

k

∂k
+ c.c. = − f (EBE )

k

τ
. (61)

Substituting f (EBE )
k to Eq. (56) (instead of f (EEB)

k ) and inte-
grating by parts we get a contribution to the MPGE current in
the form

δ j = 2
e2

h̄
E∗ ·

∑
k

f (EB)
k

∂ (τvk)

∂k
+ c.c. (62)

Since f (EB)
k is zero on average, we differentiate here τ only.

This yields

δ j = 2e2
∑

k

τ ′
[
v(E∗ · v) − v2

⊥
2

E∗
]

f (EB)
k + c.c., (63)

where τ ′ = dτ/dεk= −τ/(2εk ). Substituting f (EB)
k , we finally

obtain in accordance with Eq. (6),

δ jx,y = (±�D
c PcircBy,x + �DBx,y

)|E|2, (64)

where the MCPGE and the polarization-independent MPGE
constants �D

c and �D for Drude-like absorption are given by

�D
c = e3 16ωRe(LM∗)

5mh̄E2
g

∑
k

τ 2τ ′

(1 + ω2τ 2)2
ε2

k f ′
0, (65)

�D = e3 8Re(LM∗)

5mh̄E2
g

∑
k

ττ ′(1 − ω2τ 2)

(1 + ω2τ 2)2
ε2

k f ′
0. (66)

For Boltzmann statistics, short-range scattering potential, and
high frequency ωτ � 1, we get

�D
l = −24pe3Re(LM∗)

5mh̄ω2E2
g

, �D
c = − 4

3
√

πωτT
�D

l , (67)

and �D = −�D
l /4, where τT = τ (kBT ).

E. Chiral PDE in tellurium

We consider linearly polarized light propagation along
z ‖ c. In this setup, the following PDE current is allowed by
symmetry in Te, see Eq. (6) and Appendix A:

jx = T̃ qz|E|2P̃lin, jy = T̃ qz|E|2Plin. (68)

The constant T̃ is chiral, i.e., it has opposite sign in two
enantiomorphic modifications of tellurium. This PDE current
is different from that in C3v symmetric systems where qz

is invariant, and we have jx ∝ qzPlin, jy ∝ qzP̃lin. This re-
sults in different dependencies on the light polarization in Te
and in previously studied C3v systems such as surface states in
topological insulators [31,65,67].

We calculate the constant T̃ for intraband absorption in
the ground valence subband of Te assuming an isotropic
energy dispersion for holes εk = h̄2k2/(2m). To account for
D3 symmetry for intraband transitions, one has to include
asymmetric hole scattering in the kinetic theory, which can be
described as scattering by wedge-shape defects. We denote the
corresponding part of the scattering probability as W w

k′k. It is
asymmetric with respect to an exchange of the initial and final
wave vectors: W w

k′k = −W w
kk′ [64]. This probability is similar

to W a
kk′ , Eq. (39), but describes skew scattering of holes with a

nonzero z component of the velocity.
To calculate the PDE current, one has to take into account

either the finite wave vector of light qz or the magnetic field
B̃ ⊥ z of the radiation. In the first approach, the PDE current
is the sum of various contributions obtained by iteration of
the Boltzmann kinetic equation in the small parameters E , qz,
E∗, and W w, which we also denote as w. The analysis shows
that the following three iteration sequences can contribute to
the PDE current, EqEw, EwqE , and EqwE . In the second
approach, there are two contributions: EwB̃ and EB̃w.

Qualitatively, the PDE current is formed by skew scat-
tering from wedges of nonequilibrium holes, which have an
anisotropic momentum distribution due to the action of the
spatially dispersive polarized radiation.

We consider a geometry with q ‖ z when the electric and
magnetic fields of the radiation, E⊥ and B̃⊥ are perpendicular
to the z axis. The hole distribution function f (k) satisfies the
Boltzmann kinetic equation where the field term contains the
forces of the electric field and the Lorentz force of magnetic
field B̃⊥ of the radiation:

∂ fk

∂t
+ iqzvz fk + e

h̄
E⊥(t ) · ∂ fk

∂k⊥

+ e

h̄c
[v × B̃⊥(t )] · ∂ fk

∂k
= St[ f ]. (69)

Here B̃⊥(t ) = B̃⊥ exp(−iωt ) + c.c., the second term comes
from the v · ∇ term, taking into account that the coordinate
dependence of fk is ∝ exp(iqzz), and St[ f ] stands for the
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elastic collision integral. It describes the isotropization of the
distribution over the isoenergetic surface εk = const and skew
scattering by wedges:

St[ f ] = − fk − 〈 f 〉
τ

+
∑

k′
W w

kk′ fk′ . (70)

In the following, we consider either qz �= 0 or B̃ �= 0 in the
kinetic equation because they give contributions to the PDE
currents of the same order.

The microscopic theory developed in Appendix C yields
the PDE current described by the phenomenological Eqs. (68)
where the constant T̃ is given by

T̃ = 2e3
∑

k

[
τ ′(ξw − ξ̃w )

Im
(
τ 3
ω

)
τ

− (ξwτ
√

εk )′√
εk

Im
(
τ 2
ω

)]
f ′
0.

(71)

The imaginary parts read

Im
(
τ 3
ω

) = −ωτ 4[(ωτ )2 − 3]

[1 + (ωτ )2]3
, Im

(
τ 2
ω

) = 2ωτ 3

[1 + (ωτ )2]2
.

(72)

We introduced two dimensionless parameters ξw and ξ̃w which
are nonzero due to the D3 point symmetry of Te and describe
the wedgelike character of hole scattering:

ξw = τ

〈∑
k′

W w
kk′vz(k′)vy(k)

[
v2

x (k′) − v2
y (k′)

]〉
, (73)

ξ̃w = τ

〈∑
k′

W w
kk′vz(k′)vy(k′)

[
v2

x (k) − v2
y (k)

]〉
. (74)

In contrast to the parameter ξ given by Eq. (45), the values ξw

and ξ̃w describe skew scattering of holes propagating oblique
to the (xy) plane.

At high frequencies ωτ � 1, we have

T̃ = 2e3

ω3

∑
k

[
−τ ′

τ
(ξw − ξ̃w ) − 2

(ξwτ
√

εk )′

τ
√

εk

]
f ′
0. (75)

The wedge scattering efficiencies ξw, ξ̃w are obtained in the
fourth order of k · p perturbation theory, therefore ∝ ε

9/2
k .

Using τ ∝ ε
−1/2
k , we have for Boltzmann statistics

T̃ = 24pe3

√
πω3(kBT )2

(17ξw + ξ̃w )εk=kBT , (76)

where p is the hole concentration. The temperature depen-
dence is T̃ ∝ (kBT )5/2.

F. Magnetic field induced photon drag effect
at intraband transitions

For the considered linearly polarized light propagating
along z ‖ c and an external magnetic field B ‖ x, the following
MPDE current is allowed, see Eq. (6) and Appendix A:

jx = Bxqz|E|2Sl P̃lin, jy = −Bxqz|E|2Sl Plin. (77)

This photocurrent which can also be rewritten in the form
j+ = Sl iqzB−E2

+ is allowed in systems of any symmetry.

We calculate the constant Sl for intraband absorption in the
ground valence subband of Te.

We discuss the qualitative picture of the MLPDE assuming,
for brevity, a degenerate statistics. Under the action of the
radiation electric field, an ac electric current in the (xy) plane
j⊥(z, t ) = j⊥(ω) exp[i(qzz − ωt )] + c.c. appears. It oscillates
in space and time with the amplitude

j⊥(ω) = σωE⊥, (78)

where σω = pe2τω/m is the ac conductivity. The magnetic
field Bx leads to cyclotron motion, which causes the Hall
component of this ac current to flow in the z direction,

jz(ω) = −ωcτω jy(ω), (79)

where ωc = eBx/(mc) is the cyclotron frequency. This ac
current is accompanied by oscillations of the carrier density
δp(z, t ) = δpω exp[i(qzz − ωt )] + c.c. Its amplitude is related
to the ac current by the continuity equation:

−eiωδpω + iqz jz(ω) = 0. (80)

These density oscillations in the presence of the radiation’
electric field result in a dc current due to rectification [28,68],

j⊥ = e2τ

m
δp(z, t )E⊥(z, t ) = e2τ

m
δp(ω)E∗

⊥ + c.c., (81)

where the bar denotes averaging over time and z coordinate.
This approach gives the MLPDE current Eqs. (77) with the
constant Sl given by

Sl = − pe4τ 3(1 − ω2τ 2)

m3ωc(1 + ω2τ 2)2
. (82)

There is a competing contribution � j of the same order,
which stems from the radiation magnetic field. It appears as
follows: in the presence of radiation with amplitude Ey and the
Lorentz force from B ‖ x, an ac electric current appears which
oscillates along and opposite to the z axis with an amplitude
jz(ω), Eq. (79). Then, this current is rotated due to the action
of the ac magnetic field B̃⊥. This gives rise to the emergence
of a dc Hall component:

� jy = eτ

mc
B̃∗

x jz(ω) + c.c. ∝ EyB̃∗
x + c.c. (83)

Noting that B̃ = cq × E/ω, we obtain the contribution to
Eqs. (77) with

�Sl = pe4τ 3(1 − ω2τ 2)

m3ωc(1 + ω2τ 2)2
. (84)

This qualitative consideration gives the correct magnitude
of the MLPDE current at a constant relaxation time τ inde-
pendent of electron energy. However, a microscopic theory
is needed because, in the qualitative consideration above, the
two contributions cancel each other out.

The microscopic theory developed in Appendix D shows
that the resulting coefficient Sl in Eqs. (77) is nonzero and
depends on the dominating scattering mechanism. To calcu-
late the MPDE current, one has to take into account either the
finite wave vector of light qz or the magnetic field B̃ ⊥ z of the
radiation. In the first approach, the MLPDE current is a sum
of several contributions obtained by iterating the Boltzmann
kinetic equation in the small parameters E , qz, E∗, and Bx. The
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TABLE I. Various contributions to the MLPDE constant prefac-
tor a in Eq. (85). The coefficient r = d ln τ/d ln ε is determined by
the dominating elastic scattering mechanism.

Contribution Prefactor a

EqEB 0
EBqE 1 + 2r/3
EqBE −2r/5
EBB̃ −1
EB̃B polarization-independent

analysis shows that the following three iteration sequences can
contribute to the MLPDE current: EqEB, EBqE , and EqBE .
In the second approach, there are two contributions: EBB̃ and
EB̃B. Microscopic calculations show that all the contributions
give rise to the MLPDE constant Sl in Eqs. (77) for high
frequencies ωτ � 1 in the following form:

Sl = a
4e4

3m3cω3

∑
k

εk (− f ′
0)τ, (85)

with different prefactors a. All contributions to the prefactor a
are given in Table I.

With Boltzmann statistics and τ ∝ εr
k , we obtain summing

all contributions Eq. (85)

Sl = 16r�(r + 5/2)pe4τT

45
√

πm3cω3
∝ T r, (86)

where τT = τ (εk = kBT ). At arbitrary frequency, we obtained
for the MLPDE constant Sl the following expression, see
Appendix D:

Sl = 8re4

45m3cω

∑
k

εk f ′
0τ

[
5Re

(
τ 2
ω

) − 3ωIm
(
τ 3
ω

)]
. (87)

VI. DISCUSSION

Below we discuss the experimental data in the context of
the the theory developed. We compare experimental and the-
oretical results and present microscopic models that illustrate
the generation of the different photocurrents described in the
previous section. The photocurrents were obtained for radia-
tion with strongly different photon energies of about 130 meV
in experiments with infrared CO2-laser radiation and on the
order of several meV in experiments with THz radiation.

The magnitude of the photocurrent excited by infrared radi-
ation is large enough to enable direct intersubband transitions
sketched in Fig. 7 but about three times smaller than the
forbidden gap, which excludes interband absorption.

As discussed in Secs. III and V, the photon energy in the
THz range is much smaller than the energy required for any
kind of direct optical transitions (intersubband or interband)
and the photocurrent is due to Drude absorption.

The microscopic mechanisms responsible for the pho-
tocurrents for both intersubband and Drude absorption which
summarize the results of Sec. V are given in Table II. We begin
with the photocurrents and magnetophotocurrents excited by
infrared radiation and then consider the photoresponse to THz
radiation.

TABLE II. Microscopic mechanisms responsible for the ob-
served photocurrents for infrared and THz ranges at inter- and
intrasubband absorption, respectively. The notation “shift” indicates
the sum of the shift contribution and the ballistic contribution caused
by the interference of electron-photon interaction with scattering.
Note that the MLPGE current at intersubband transitions is caused
by ballistic propagation of photoholes in both subbands limited by
scattering with different transport times τ1 �= τ2.

Intersubband Intraband Drude

LPGE Shift Skew scattering by triangles
LPDE Skew scattering by wedges
MCPGE Shift kB terms in scattering
MLPGE τ1 �= τ2 kB terms in scattering
MLPDE Lorentz force

and photon momentum

A. Infrared radiation induced photocurrent
at zero magnetic field

For all the infrared frequencies used in our experiments, we
observed that the photocurrent is excited only when the degree
of linear polarization is nonzero. This is seen in experiments
with linearly polarized radiation, see Fig. 2(a), and elliptically
polarized radiation, see Fig. 5(a). The latter figure clearly
shows that the response to circularly polarized radiation (σ+
and σ−) is zero. The photocurrent detected in the y direction is
proportional to the degree of linear polarization jy ∝ P̃lin, see
Eq. (6) and Figs. 2(a) and 5(a). Consequently, the azimuthal
angle dependence of the current in response to linearly po-
larized radiation is given by j ∝ sin(2α) or, in experiments
using a λ/4-plate, j ∝ sin(4ϕ), see Eqs. (8), (11), and (16).
This functional behavior corresponds to the trigonal LPGE
current obtained in Sec. V, see the terms proportional to the
parameter χ in Eqs. (6), (12), (18), and (27). We empha-
size that all other photocurrents either depend differently on
the degree of linear polarization, jy ∝ Plin ∝ cos(2α) (con-
tributions proportional to the parameter T̃ ) or vanish at zero
magnetic field (contributions proportional to �l , �c and Sl ).
We also note that the theory shows that the circular photocur-
rent at normal incidence and zero magnetic field is symmetry
forbidden; see Eq. (6) and Appendix A.

The microscopic theory of the observed LPGE current
is developed in Sec. V A. Taking into account the shift
mechanism of the LPGE, we obtained the trigonal LPGE pho-
tocurrent and derived the parameter χ ; see Eqs. (27) and (28).
The generation of the LPGE current caused by the shifting of
the hole wave packets in real space is illustrated in Fig. 8. Fig-
ure 8(a) shows the crystallographic structure of the Te crystal
with the Te atoms at the corners of the triangles when viewed
in the direction of the c axis. Optical transitions between the
subbands are sketched in Fig. 8 by downward vertical arrows.
As can be seen from Eqs. (24) and (25), depending on the
orientation of the radiation’s electric field vector with respect
to the y axis, these transitions lead to shifts of the photoexcited
holes by +R (α = 45◦) or −R (α = −45◦), which, conse-
quently, causes a dc electric current (blue horizontal arrows).
For vertical or horizontal polarization (α = 0 or 90◦), the shift
along the y axis is zero. The frequency dependence of this
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FIG. 8. Illustration of the shift contribution to the trigonal LPGE current at intersubband transitions.

mechanism is χ ∝ K (ω)/ω2. In the frequency range studied,
the frequency dependence is weak, which agrees with the
experimental data, see curve 1 in the inset of Fig. 3(a).

B. Infrared radiation induced linear
and circular MPGE currents

The application of an in-plane magnetic field B ‖ x leads
to new photocurrent contributions, which belong to the class
of magnetogyrotropic PGEs [30,50]. Figures 2, 3(a), and 5
demonstrate that the magnetic field results in the photocur-
rents being odd in magnetic field B and excited by linearly as
well as circularly polarized infrared radiation.

Figure 2 (blue and olive squares at ±Bx) shows that the
magnetic field induced current in the y direction excited by
a linearly polarized infrared radiation is characterized by the
same azimuthal angle dependence as the photocurrent at zero
magnetic field: jy(Bx ) ∝ P̃lin ∝ sin(2α). Analyzing Eq. (6),
we find that this indicates that the magnetic field induced
current is caused by the linear MPGE. Note that another possi-
ble magnetic field induced photocurrent caused by the photon
drag is not detected in the experiments discussed because it
would lead to jy(B) ∝ Plin ∝ cos(2α) and, consequently, to
a phase shift in the azimuthal angle dependence. As follows
from the microscopic theory presented in Sec. V B, the linear
MPGE is described by Eqs. (34) and (35). The generation of
the linear MPGE current at intersubband transitions is illus-
trated in Fig. 9. For any value of the photon energy h̄ω > 2�2,
optical transitions are possible for hole states in the upper
subband with wave vectors ±kz that satisfy the energy con-
servation law:

h̄ω = 2
√

�2
2 + (βkz )2.

The in-plane wave vector can be arbitrary, and there are pairs
of hole states with a fixed kx and |ky| that differ by the sign of
ky. These transitions result in the depopulation of initial states
i1 and i2 and the population of the final states f 1 and f 2 by
photoexcited holes. As a result, four elementary currents are
generated, two in the upper subband and two in the lower

subband. This is indicated by horizontal blue arrows. As
shown in Sec. V B, the transitions i1 → f 1 and i2 → f 2 have
different probabilities, which depend on the magnetic field
strength and direction. In Fig. 9, this difference is illustrated
by a thick red downward arrow for transitions from state i2
and a thin dashed arrow for transitions from state i1. As a
result, the balance between the population of states i1 and
i2 and f 1 and f 2 is violated and the corresponding currents
have different strengths, which is illustrated by sketching the
dominating currents by solid arrows. Furthermore, the mag-
nitude of the contribution of each state to the total current is
determined by the momentum relaxation time of the corre-
sponding states. Holes in the final states of optical transitions
have more effective momentum relaxation due to the emission
of optical phonons (h̄�ph = 11 meV in Te [57]); see bent
dotted curves in Fig. 9, than in the initial states (τi > τ f ).
As a result, the contributions of photoexcited holes to the
current is smaller, and the current in Fig. 9 is dominated by
the contribution ji2 caused by the depopulation of the initial
state i2. The frequency dependence of this mechanism is the
same as for LPGE, Eq. (28): �l,c ∝ K (ω)/ω2. In the inves-
tigated frequency range, this gives rise to a weak frequency

ji2ji1

jf 1 τ τ> i f

ky0

ħω

B  ≠ 0x jf 2
ε

ħω

+ +
ħΩph ħΩph

FIG. 9. Illustration of the MLPGE current jy ∝ BxP̃lin formation
at intersubband transitions. �ph is the optical phonon frequency.
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dependence, which agrees with the experimental data, see
curves 2 and 3 in the inset of Fig. 3(a), respectively.

The experimentally observed magnetic field induced cir-
cular photocurrent Jy ∝ PcircBx, see Figs. 5(b), 5(c), and 3(a),
can also be explained by the shift mechanism in the developed
theory. It shows that such photocurrent is caused by the PGE,
see Eqs. (6), (30), and (31). The mechanism of its formation is
similar to that of the linear PGE. The only difference is that the
probability for optical transitions at positive and negative ky,
see Fig. 8(b), depends on the radiation helicity. Consequently,
the resulting current reverses its sign upon reversal of the
magnetic field and/or switching polarization from σ+ to σ−
and vice versa. The latter is described by Eqs. (30) and (31)
and detected experimentally; see Figs. 5(b) and 5(c).

C. Terahertz radiation induced trigonal LPGE
and photon drag currents

As discussed above, the photocurrents excited by infrared
radiation are caused by intersubband optical transitions. At
terahertz frequencies, the corresponding mechanisms are in-
applicable because the photon energies are too small to
fulfill the energy conservation law and only indirect optical
transitions can be responsible for the radiation absorption
(Drude-like mechanism) and the photocurrent generation. In
this spectral range, the azimuthal angle dependence of the
zero-B photocurrent is observed to be phase shifted as com-
pared to the one discussed for the LPGE, see Fig. 4(a).
This observation indicates that the THz radiation induced
photocurrent is caused by the superposition of the linear pho-
togalvanic [ jy ∝ P̃lin ∝ sin(2α)] and linear PDE [ jy ∝ Plin ∝
cos(2α)], see Eq. (6). As shown in Sec. IV A, both effects
contribute almost equally to the total current.

The microscopic theory developed in Sec. V C shows that
the linear PGE is caused by asymmetric scattering of holes
driven by the THz electric field. The corresponding current is
described by Eqs. (42) and (43) which, for the case relevant to
our experimental conditions, Boltzmann statistics, and ωτ �
1, takes the form of Eq. (47). The frequency dependence of the
trigonal PGE follows that of the Drude absorption and is for
ωτ > 1, given by jy ∝ 1/ω2. This is in full agreement with the
experiment; see fits in Fig. 3(b). The model of the LPGE due
to intraband transition is similar to that presented previously
for bulk or surface states of other materials having trigonal
symmetry. It has been discussed in detail in works aimed at
THz radiation induced LPGE in GaN quantum wells [69] and
surface states of BiSbTe-based 3D topological insulators [65].
Therefore, it is applicable to the description of photocurrent
in Te, and will not be presented here.

The microscopic theory of the chiral linear PDE is
developed in Sec. V E. It confirms that the PGE and PDE pho-
tocurrents in Te are characterized by π/2-shifted azimuthal
angle dependencies. The chiral PDE current is described by
Eqs. (68). Similar to PGE its frequency dependence is given
by that of Drude absorption, qzT̃ ∝ 1/ω2 at ωτ � 1, see
Eq. (76), which is in agreement with the experiment, see fits
in Fig. 3(b). The trigonal PDE current has previously been
demonstrated for 2D surface states of BiSbTe 3D topolog-
ical insulators [31,67]. The model developed to describe it
is applicable to the chiral PDE in Te, the only difference

with respect to the trigonal PDE in 2D systems is that it is
based on scattering by 2D triangle wedges, whereas in Te the
wedges are three dimensional (top view triangle but atoms are
shifted along z axis). To avoid repetition, this model will not
be presented in this paper.

We estimate the chiral PDE current, JPDE/P =
(2πS/cn⊥)T̃ qz, where S is the sample aspect ratio. From
Eq. (76), we obtain T̃ ≈ 102 pe3ξw/[ω3(kBT )2]. The wedge
scattering probability is obtained in the fourth order of the
k · p perturbation theory and beyond the Born approximation,
therefore we have an estimate ξw ∼ SnB|LL′|2(kBT/h̄Eg)4.
Here L′ is the interband momentum matrix element fixing
the chirality of Te (|L′| � |L|), and SnB is the non-Born
dimensionless parameter, cf. Eq. (47). This gives an estimate

JPDE

P
≈ 102 2πS pe3

c2ω2
SnB|LL′|2 (kBT )2

(h̄Eg)4
. (88)

For S = 0.15, room temperature, f = 1 THz, Eg = 335 meV,
L = 3.3 eV Å [27], and taking |L′| = 0.1|L| and SnB = 10−2,
we obtain JPDE/P ∼ 1 nA/W, which coincides by an order of
magnitude with the measured values.

D. Terahertz radiation induced linear and circular MPGE
and linear MPDE currents

Finally, we discuss the magnetic field induced photocurrent
excited by THz radiation. The analysis of the experimental
data in the light of phenomenological theory shows that the
magnetophotocurrent induced by linearly polarized radiation
is given by

jy = (�l P̃lin − SlqzPlin )Bx|E|2,
see Sec. IV A, Fig. 3, and Eq. (6). As a result, the MPGE has
about 2.5 larger magnitude (�l ) as compared to the MPDE
one (Slqz).

MPGE is shown microscopically to be based on the terms
in the scattering probability, which are linear in both the wave
vector k and the magnetic field B, Eq. (50). These terms
caused by the change of the scattering rates by the magnetic
field result in the photocurrent driven by linear polarizations,
see Eqs. (57) and (58), and the photocurrent driven by circu-
larly polarized radiation, see Eqs. (64) and (65), also detected
in THz experiments, see Fig. 3(c). The magnetophotogalvanic
current is caused by the interband mixing of states by the
magnetic field, see the interband matrix element, Eq. (48).
The k⊥ · B⊥ terms (50) are specific for the D3 symmetry of
Te because they result in the MPGE currents jy ∝ BxP̃l , jy ∝
BxPcirc perpendicular to the magnetic field, while in structure
inversion-asymmetric 2D systems (quantum wells, graphene
on a substrate, etc.) [70,71], a similar mechanism gives MPGE
photocurrents parallel to the magnetic field at the same polar-
izations.

The MPDE driven by linearly polarized radiation (linear
MPDE) is caused by the simultaneous action of the spa-
tially varying electric field of radiation and the Lorentz force,
see Eqs. (81) and (83). A major contribution of this pho-
tocurrent is manifested in THz experiments as a phase shift
in the azimuthal angle dependence, see Figs. 4(b) and 4(c)
and the inset in this figure. The linear MPDE current is al-
lowed in systems of any symmetry. Note that the circular
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magnetophotocurrent solely due to the MPGE and the circular
MPDE are forbidden by symmetry in the investigated experi-
mental arrangement; see Eq. (6).

Finally, we note that the frequency dependence of all mag-
netophotocurrents induced by THz radiation is given by that
of the Drude absorption, see Eqs. (77) and (85), which is in
agreement with experimental results (not shown).

VII. SUMMARY

Our studies of photocurrents excited by infrared/THz ra-
diation show that, depending on the experimental conditions,
the radiation induces a series of phenomena caused by pho-
togalvanics and, in THz range, the transfer of linear photon
momentum to free carriers. A rich palette of the microscopic
mechanisms of the observed photocurrents is due to the dif-
ferent photocurrent roots depending on the kind of optical
transitions responsible for the radiation absorption, polariza-
tion state, the presence of an external magnetic field, and
the transfer of linear photon momentum during absorption
of radiation. All observed photocurrents can be described in
terms of the developed phenomenological and microscopic
theories, taking into account a shift of the electron wave
packet in real space and/or asymmetric scattering in a system
without inversion symmetry. The main mechanisms resulting
in the observed photocurrents are summarized in Table II.
We believe that the results of this paper will be useful in
future studies of Te-based materials such as tellurene and
Weyl fermions with surface Fermi arcs, which are expected
in Te crystals under high pressure.
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APPENDIX A: PHENOMENOLOGY OF PGE
AND PDE CURRENTS AT NORMAL INCIDENCE

Tellurium is a chiral semiconductor with the point-
symmetry group D3. We use the coordinate system (x, y),
where x is parallel to one of three C2 rotation axes. We study
photocurrents at light propagation along z ‖ c when the unit
vector in the light propagation direction ê ‖ z. The PGE cur-
rent components in the presence of magnetic field B are given
by

jx = [χPlin + �BzP̃lin + �l (BxPlin + ByP̃lin )

+ �cByPcircêz + �Bx]|E|2, (A1)

jy = [−χ P̃lin + �BzPlin + �l (BxP̃lin − ByPlin )

− �cBxPcircêz + �By]|E|2, (A2)

jz = [γ Pcircêz + �′(ByPlin + BxP̃lin ) + �̃Bz]|E|2. (A3)

Here the zero-field current jz = γ Pcirc|E|2 is the longitudinal
CPGE and j+ = χE2

− is the trigonal LPGE. The polarization-

independent components along the magnetic field jx,y ∝
�Bx,y, jz ∝ �̃Bz and polarization-dependent currents j+ =
�lB−E2

+, j⊥ = �c(B × κ)|E|2 are due to an absence of re-
flection planes in the D3 group (κ = Pcircê is the photon
angular momentum). The currents j+ = �iBzE2

− and jz =
�′i(B−E2

− − B+E2
+)/2 describe the trigonal MPGE current

which requires both absence of reflections and trigonality.
The PDE current which, by definition, accounts for qz �= 0,

reads

jx = [T̃ P̃lin + SBzPlin + Sl (BxP̃lin + ByPlin )

+ ScBxPcircêz + RBy]qz|E|2, (A4)

jy = [T̃ Plin − SBzP̃lin − Sl (BxPlin + ByP̃lin )

+ ScByPcircêz − RBx]qz|E|2, (A5)

jz = [T + S̃BzPcircêz + S′(BxPlin − ByP̃lin )]qz|E|2. (A6)

The polarization-independent PDE currents jz = T qz|E|2,
j⊥ = R(B × q)|E|2 and helicity-dependent magneto-induced
currents jz = S̃Bzκzqz|E|2, j⊥ = ScB⊥κzqz|E|2, j+ =
Sl iqzB−E2

+ are allowed in any symmetry. The currents j+ =
T̃ iqzE2

−, j+ = SBzE2
− and jz = S′(B+E2

+ + B−E2
−)qz|E|2/2

are allowed in D3 symmetry due to both trigonality and
absence of reflection planes.

APPENDIX B: INTERSUBBAND ABSORPTION
COEFFICIENT

The absorption coefficient for direct optical transitions
K (ω) is defined as follows:

K (ω)I

h̄ω
= 2

∑
k

2π

h̄
|V21|2δ

[
2
√

�2
2 + (βkz )2 − h̄ω

]
( f1 − f2).

(B1)

Here the factor of 2 accounts for two valleys of tellurium, I =
cn⊥|E|2/(2π ) is the light intensity, f1,2 are occupations of the
initial and final states, and the optical matrix element is given
by Eq. (22). For Boltzmann statistics, we have f1 − f2 = [1 −
exp(−h̄ω/kBT )] f1. Since the hole concentration p = 2

∑
k f1,

we obtain

K (ω) = 8π2e2|L|4�2
2

√|A1|kBT

h̄cE4
g h̄ω|A2β| p

1 − exp(−h̄ω/kBT )

J1

√
1 − (2�2/h̄ω)2

× exp −
{ |A1|[(h̄ω)2 − (2�2)2]

4|β|kBT
+ h̄ω/2 − �2

kBT

}
,

(B2)

where J1 was introduced in Ref. [57]:

J1 =
∫ ∞

0
dx exp

⎡
⎣−x2 − �2

kBT
+

√(
�2

kBT

)2

+ x2β2

|A1|kBT

⎤
⎦.

(B3)
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APPENDIX C: MICROSCOPIC CALCULATION
OF PDE CURRENT

We solve iteratively the kinetic Eq. (69). First, we find the
linear in E correction to the distribution function:

f (E ) = eτω(− f ′
0)(E⊥ · v⊥). (C1)

Then, depending on the contribution under study, we iterate
the kinetic equation in small parameters qz, E∗

⊥, or B̃⊥.
Accounting for qz yields the correction f (Eq), which satis-

fies the following kinetic equation:

−iω f (Eq) + iqzvz f (E ) = − f (Eq)

τ
. (C2)

It yields

f (Eq) = −iqzvzτω f (E ) = ieqzτ
2
ω f ′

0vz(E⊥ · v⊥). (C3)

If we then account for the second power of E⊥, we find the
time-independent correction f (EqE ):

e

h̄
E∗

⊥ · ∂ f (Eq)

∂k⊥
+ c.c. = − f (EqE )

τ̃
. (C4)

Here, depending on the anisotropic/isotropic part of the field
term on the left-hand side of this equation, the relaxation
time τ̃ equals to either τ or to the energy relaxation time τε.
Splitting the field term to the isotropic and anisotropic in k
parts, we obtain

f (EqE ) = 2e2qzvzIm

{
τ
(
τ 2
ω f ′

0

)′
(

|E⊥ · v⊥|2 − |E⊥|2 v2
⊥
2

)

+ τε|E⊥|2
[
v2

⊥
2

(
τ 2
ω f ′

0

)′ + τ 2
ω f ′

0

m

]}
. (C5)

For linearly polarized radiation, we can rewrite this expression
as follows:

f (EqE ) = e2qzvz|E⊥|2Im

{
τ
(
τ 2
ω f ′

0

)′[
2vxvyPlin + (

v2
x − v2

y

)
P̃lin

]

+ τε

[
v2

⊥
2

(
τ 2
ω f ′

0

)′ + τ 2
ω f ′

0

m

]}
. (C6)

Let us now take into account the last perturbation, the
scattering by wedges, and find the current-carrying part of
the distribution function f (EqEw). The asymmetric scattering
enters the kinetic equation as an incoming term:

∑
k′

W w
kk′ f (EqE )

k′ = f (EqEw)
k

τ
. (C7)

Solving this algebraic equation, we calculate the EqEw con-
tribution to the PDE current which flows in the (xy) plane in
this geometry:

j (EqEw)
⊥ = 2e3qz|E⊥|2

∑
k

v⊥τ 2[Im(
τ 2
ω

)
f ′
0

]′ ∑
k′

W w
kk′vz(k′)

× {
2vx(k′)vy(k′)Plin + [

v2
x (k′) − v2

y (k′)
]
P̃lin

}
.

(C8)

Here we took into account that the isotropic part of f (EqE ) ∝
τε does not contribute to the current because in D3 symmetry:〈∑

k′
W w

kk′vz(k′)v⊥(k)

〉
= 0. (C9)

The nonzero average allowed in D3 point-symmetry group is
the following dimensionless value:

ξw = τ

〈∑
k′

W w
kk′vz(k′)vy(k)

[
v2

x (k′) − v2
y (k′)

]〉

= 2τ

〈∑
k′

W w
kk′vz(k′)vx(k)vx(k′)vy(k′)

〉
. (C10)

Then we obtain a contribution to the PDE constant T̃ ,
Eqs. (68), which reads

T̃EqEw = 2e3
∑

k

τξw

[
Im

(
τ 2
ω

)
f ′
0

]′
. (C11)

Since the density of states is ∝ √
εk , we can rewrite this

expression as

T̃EqEw = −2e3
∑

k

(ξwτ
√

εk )′√
εk

Im
(
τ 2
ω

)
f ′
0. (C12)

Now we calculate EqwE contribution to the PDE current.
We find the time-dependent correction f (Eqw):

∑
k′

W w
kk′ f (Eq)

k′ = f (Eqw)
k

τω

. (C13)

The solution of this equation reads

f (Eqw)
k = ieqzτ

3
ω f ′

0τ
∑

k′
W w

kk′vz(k′)[E⊥ · v⊥(k′)]. (C14)

The static correction f (EqwE ) yielding the contribution to the
current satisfies the equation

e

h̄
E∗

⊥ · ∂ f (Eqw)

∂k⊥
+ c.c. = − f (EqwE )

τ
. (C15)

Solving this equation, we get the current:

j (EqwE ) = 2e2
∑

k

f (Eqw)

[
τ

m
E∗ + τ ′v(E∗

⊥ · v⊥)

]
+ c.c.

(C16)

Substituting here f (Eqw), we see that the first term here does
not contribute because f (Eqw) is zero on average, but the
second term yields a contribution to the current Eqs. (68) with

T̃EqwE = −2e3
∑

k

τ ′ξ̃w

Im
(
τ 3
ω

)
τ

f ′
0. (C17)
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Here we introduced another wedge-scattering efficiency con-
stant ξ̃w which is linearly independent of ξw:

ξ̃w = τ

〈∑
k′

W w
kk′vz(k′)vy(k′)

[
v2

x (k) − v2
y (k)

]〉

= 2τ

〈∑
k′

W w
kk′vz(k′)vx(k′)vx(k)vy(k)

〉
. (C18)

Let us turn now to the EwqE contribution to the PDE
current. For its calculation, we account for wedge scattering in
the kinetic equation at the second step and find the correction
f (Ew): ∑

k′
W w

kk′ f (E )
k′ = f (Ew)

τω

. (C19)

Solution of this equation reads

f (Ew) = −eτ 2
ω f ′

0

∑
k′

W w
kk′[E · v(k′)]. (C20)

Then we should take into account qz and then E. In the next
step, we find f (Ewq), which satisfies

iqzvz f (Ew) = − f (Ewq)

τω

, (C21)

and we get

f (Ewq) = iqzvzeτ
3
ω f ′

0

∑
k′

W w
kk′[E · v(k′)]. (C22)

Then we search for the correction f (EwqE ):

e

h̄
E∗

⊥ · ∂ f (Ewq)

∂k⊥
+ c.c. = − f (EwqE )

τ
. (C23)

It allows for calculation of the corresponding contribution to
the PGE current:

j (EwqE )
⊥ = 2e

∑
k

v⊥ f (EwqE ). (C24)

Substituting f (EwqE ) and integrating by parts, we obtain

j (EwqE )
⊥ = 2e2

∑
k

vτ ′(E∗ · v) f (Ewq) + c.c. (C25)

Substituting here f (Ewq), we get

j (EwqE )
⊥ = 2iqze

3
∑
kk′

τ ′τ 3
ω f ′

0v(E∗ · v)vzW
w

kk′[E · v(k′)] + c.c.

(C26)

This yields a contribution to the PDE constant T̃ :

T̃EwqE = 2e3
∑

k

τ ′ξw

Im(τ 3
ω )

τ
f ′
0. (C27)

Now we put qz = 0 and take into account the radiation
magnetic field B̃. If we do this after accounting for E and w,
then we get a steady-state correction f (EwB̃) which satisfies the
equation

e

h̄c
(v × B̃

∗
) · ∂ f (Ew)

∂k
+ c.c. = − f (EwB̃)

τ
. (C28)

Solving this algebraic equation and calculating the current
j (EwB̃) = 2e

∑
k v⊥ f (EwB̃), integrating by parts, we get

j (EwB̃) = 2e2

mc

∑
k

τ (v × B̃
∗
) f (Ew). (C29)

Substituting f (Ew), we see that this contribution is zero be-
cause it is proportional to an average Eq. (C9).

Finally, we have one more contribution to the PDE current
coming from the correction to the distribution function f (EB̃w)

obtained by account for E , B̃⊥, and then w. It is found from
the equation

∑
k′

W w
kk′ f (EB̃)

k′ = f (EB̃w)

τ
, (C30)

where the steady-state correction f (EB̃) is given by

f (EB̃) = e2

mc
vzττω f ′

0(B̃
∗ × E ) + c.c. (C31)

We see that f (EB̃) ∝ qz|E|2, i.e., it is polarization independent.
Moreover, this contribution to the PDE current is zero because
it is also proportional to the value Eq. (C9).

We obtained that the PDE current is described by the phe-
nomenological Eqs. (68), where the constant T̃ is given by

T̃ = T̃EqEw + T̃EqwE + T̃EwqE , (C32)

which yields Eq. (71) from the main text.

APPENDIX D: MICROSCOPIC CALCULATION
OF MLPDE CURRENT

We consider the geometry with q ‖ z, when the electric
and magnetic fields of the radiation, E⊥ and B̃⊥ are perpen-
dicular to the z axis, and the external magnetic field B ‖ x.
The hole distribution function f (k) satisfies the Boltzmann
kinetic equation where the field term contains the forces of
the radiation electric field and two Lorentz forces of the static
magnetic field Bx and the ac radiation magnetic field B̃⊥:

∂ f

∂t
+ iqzvz f + e

h̄
E⊥(t ) · ∂ f

∂k⊥

+ e

h̄c
[v × (B + B̃⊥(t ))] · ∂ f

∂k
= St[ f ]. (D1)

Here B̃⊥(t ) = B̃⊥ exp(−iωt ) + c.c., St[ f ] stands for the
elastic collision integral describing isotropization of the dis-
tribution over the isoenergetic surface εk = const. In what
follows, we account either for qz �= 0 or B̃ �= 0 in the kinetic
equation because they give contributions to the the PDE cur-
rents of the same order.

First, we find the linear in E correction to the distribution
function Eq. (C1). Then, depending on the contribution under
study, we iterate the kinetic equation in small parameters qz,
E∗

⊥, or B̃⊥.
Accounting for qz yields the correction f (Eq) Eq. (C3). If

we then account for the second power of E⊥, we find the time-
independent correction f (EqE ) Eq. (C5). Let us now take into
account the last perturbation, the magnetic field Bx, and find
the current-carrying part of the distribution function f (EqEB).
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The magnetic field enters the kinetic equation via the Lorentz
force:

e

h̄c
(v × B) · ∂ f (EqE )

∂k
= − f (EqEB)

τ
. (D2)

The solution reads

f (EqEB) = −mωcτ

h̄

(
vz∂ky − vy∂kz

)
f (EqE ), (D3)

where ωc = eBx/(mc) is the cyclotron frequency. Then we
calculate the EqEB contribution to the MLPDE current which
flows in the (xy) plane in this geometry:

j (EqEB)
⊥ = 2e

∑
k

v⊥ f (EqEB). (D4)

Substituting f (EqEB) from Eq. (D3) and integrating by parts,
we obtain that this contribution is zero:

j (EqEB)
⊥ = 0 (D5)

(the simplest way to see this is to calculate the x component
of the current).

Now we calculate EqBE contribution to the MLPDE cur-
rent. We find the time-dependent correction f (EqB):

e

h̄c
(v × B) · ∂ f (Eq)

∂k
= − f (EqB)

τω

. (D6)

The solution of this equation reads

f (EqB) = −ieqzωcτ
3
ω f ′

0

[(
v2

z − v2
y

)
Ey − vxvyEx

]
. (D7)

The static correction f (EqBE ) yielding the contribution to the
current satisfies the equation

e

h̄
E∗

⊥ · ∂ f (EqB)

∂k⊥
+ c.c. = − f (EqBE )

τ
. (D8)

Solving this equation, we get for the y component of the
current

j (EqBE )
y = 2e2

∑
k

f (EqB)

[
τ

m
E∗

y + τ ′vy(E∗
⊥ · v⊥)

]
+ c.c.

(D9)

Substituting here f (EqB) and averaging over directions of k,
we obtain

j (EqBE )
y = 2ie3qzωc

∑
k

τ 3
ω f ′

0τ
′ v

4

15
(2|Ey|2 + |Ex|2) + c.c.

(D10)

Noting that |Ex,y|2 = |E|2(1 ± Plin )/2, and introducing
r = d ln τ/d ln εk , we get a contribution to the polarization-
dependent MLPGE current Eqs. (77), j (EqBE )

y =
−Bxqz|E|2S(EqBE )

l Plin, where S(EqBE )
l is given by

S(EqBE )
l = − 8re4

15m3c

∑
k

Im
(
τ 3
ω

)
f ′
0τεk . (D11)

At ωτ � 1, we have Im(τ 3
ω ) = −1/ω3. This gives

S(EqBE )
l = 8re4

15m3cω3

∑
k

f ′
0τεk = −8r�(r + 5/2)pe4τT

15
√

πm3cω3
.

(D12)

Let us turn now to the EBqE contribution to the MLPDE
current. For its calculation, we account for the Lorentz force in
the kinetic equation at the second step and find the correction
f (EB) ∝ E⊥Bx:

e

h̄c
(v × B) · ∂ f (E )

∂k
= − f (EB)

τω

. (D13)

Solution of this equation reads

f (EB) = eωcτ
2
ω f ′

0Eyvz. (D14)

Then we should take into account qz and then E. In the next
step, we find f (EBq), which satisfies

iqzvz f (EB) = − f (EBq)

τ∗
, (D15)

where τ∗ equals τω or i/ω for the anisotropic/isotropic part of
the left-hand side, and we get

f (EBq) = eωcqzEy f ′
0

[
−iτ 3

ω

(
v2

z − v2

3

)
+ τ 2

ω

ω

v2

3

]
. (D16)

Then we search for the correction f (EBqE ):

e

h̄
E∗

⊥ · ∂ f (EBq)

∂k⊥
+ c.c. = − f (EBqE )

τ
. (D17)

It allows for calculation of the corresponding contribution to
the MLPGE current:

j (EBqE )
⊥ = 2e

∑
k

v⊥ f (EBqE ). (D18)

Integration by parts and averaging over directions of k yields

j (EBqE )
⊥ = 2e2E∗ ∑

k

(
τ

m
+ τ ′ v

2

3

)
f (EBq) + c.c. (D19)

We see that only the isotropic part of f (EBq) which contains
a factor 1/ω contributes to the current. Using τ ′ = rτ/εk , we
obtain

j (EBqE )
⊥ = 4e3ωcqz

3m2ω

(
1 + 2r

3

)
E∗Ey

∑
k

f ′
0εkττ 2

ω + c.c.

(D20)

In particular, it means that the EBqE contribution to Sl is
given by

S(EBqE )
l = 4e4

3m3cω

(
1 + 2r

3

)∑
k

f ′
0εkτRe

(
τ 2
ω

)
. (D21)

At ωτ � 1, when Re(τ 2
ω ) = −1/ω2 we have

S(EBqE )
l = 4e4

3m3cω3

(
1 + 2r

3

)∑
k

(− f ′
0)εkτ. (D22)

For Boltzmann statistics, we get

S(EBqE )
l = 4pe4τT

3
√

πm3cω3

(
1 + 2r

3

)
�

(
r + 5

2

)
. (D23)

Now we put qz = 0 and take into account the radiation
magnetic field B̃. If we do this after accounting for E and Bx,
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then we get a steady-state correction f (EBB̃) which satisfies the
equation

e

h̄c
(v × B̃

∗
) · ∂ f (EB)

∂k
+ c.c. = − f (EBB̃)

τ
. (D24)

It solution reads

f (EBB̃) = e2ωcτ

mc
τ 2
ω f ′

0Ey(B̃
∗ × v)z + c.c. (D25)

Calculating the current j (EBB̃) = 2e
∑

k v⊥ f (EBB̃), we obtain

j (EBB̃)
y = 4e3ωc

3m2c
EyB̃∗

x

∑
k

εkτ
2
ω f ′

0τ + c.c. (D26)

Using the relation between the radiation magnetic and electric
fields B̃ = cq × E/ω, we obtain that this contribution yields
Sl in the form

S(EBB̃)
l = − 4e4

3m3cω

∑
k

εkRe
(
τ 2
ω

)
f ′
0τ. (D27)

At ωτ � 1, we have

S(EBB̃)
l = 4e4

3m3cω3

∑
k

εk f ′
0τ. (D28)

For Boltzmann statistics and τ (εk ) ∝ εr
k , we get

S(EBB̃)
l = 4pe4

3
√

πm3cω3
�

(
r + 5

2

)
∝ T r . (D29)

Finally, we have one more contribution to the MPDE cur-
rent coming from the correction to the distribution function
f (EB̃B) obtained by account for E , B̃⊥, and then Bx. It is found
from the equation

e

h̄c
(v × B) · ∂ f (EB̃)

∂k
= − f (EB̃B)

τ
, (D30)

where the steady-state correction f (EB̃) is given by

f (EB̃) = e2

mc
vzττω f ′

0(B̃
∗ × E )z + c.c. (D31)

Calculating the current density, we get

j (EB̃B)
y = 2e

∑
k

vy f (EB̃B) = 2eωc

∑
k

vzτ f (EB̃). (D32)

Substitution of f (EB̃) results in a polarization-independent
contribution only.

For high frequencies ωτ � 1 we obtained Eq. (85), where
the prefactor a is a sum of various contributions summarized
in Table I of the main text. For arbitrary frequencies, the
MLPDE constant Sl = S(EqBE )

l + S(EBqE )
l + S(EBB̃)

l is given by
Eq. (87) of the main text.
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