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Microscopic theory of the magnetic susceptibility of insulators
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We present a general theory of the magnetic susceptibility of insulators that can be extended to treat spatially
varying and finite frequency fields. While there are existing results in the literature for the zero-frequency
response that appear to be in disagreement with each other, we show that the apparent differences between
them vanish with the use of various sum rules, and that our result is in agreement with them. Although our
strategy is based on the use of Wannier functions, we show that our result can be written in a “gauge-invariant”
form involving Bloch functions. We can write it as the sum of terms that involve the diagonal elements of the
Berry connection, and this decomposition is particularly useful in considering the limit of isolated molecules.
But these contributions can be repackaged to give a form independent of those diagonal elements, which is thus
generally more suitable for numerical computation. We consider a hexagonal boron nitride (h-BN) model to
demonstrate the practical considerations in building a model and making calculations within this formalism.

DOI: 10.1103/PhysRevB.108.235206

I. INTRODUCTION

Understanding the magnetization of materials, and the re-
sponse of the magnetization to applied fields, is a fundamental
problem in condensed-matter physics [1–5]. The electronic
contribution to the magnetization, which often dominates,
contains both orbital contributions from the motion of the
electrons and spin contributions from the intrinsic angular
momentum of the electrons. From the “modern theory of
polarization and magnetization” comes the insight that in
an extended system, the orbital contribution to the magnetic
moment consists not only of contributions of “atomiclike”
magnetic moments that one would expect from isolated atoms,
but also of contributions of “itinerant” magnetic moments due
to the motion of electrons between sites within the solid [6–9].

The response of the macroscopic magnetization to an
applied magnetic field is characterized by the magnetic sus-
ceptibility tensor χ . While it might be thought that this
response would be straightforward to calculate, at least in the
independent particle approximation and for applied magnetic
fields that are static and uniform, identifying theoretical ex-
pressions for the magnetic susceptibility and understanding
the various contributions to it has proved to be a difficult
task [10–15]. Early attempts at understanding the magnetic
susceptibility of solid-state systems involved treating the
conduction electrons like a free-electron gas and the core
electrons as effectively bound to the lattice ions [16–18]. The
Landau-Peierls formula was discovered as a modification of
the Landau diamagnetism of a free electron gas, replacing the
bare electron mass with the effective-mass tensor to account
for the effects of the periodic potential. However, in cases in
which the effective mass is small and thus this diamagnetic
contribution is large, interband transitions can also start to

*aduff@physics.utoronto.ca
†sipe@physics.utoronto.ca

have a very large contribution, since even a weak magnetic
perturbation can cause mixing of bands [18].

Thus the Bloch wave functions of electrons in periodic
solids are central to calculating the susceptibility; both their
spectral and geometric properties play a role, and both in-
terband and intraband matrix elements are involved. Various
Bloch function expressions for the magnetic susceptibility
were obtained around the 1960s by Hebborn and Sondheimer
(and Luttinger and Stiles), Kohn, Roth, and Blount [1–5].
From these studies emerged the general consensus that the
expression should contain terms such as the Landau-Peierls
susceptibility and a term that reduces to the atomic diamag-
netism as the lattice spacing is taken to infinity, as well as
additional corrections due to the curvature of the energy bands
and interband mixing, such as the Van Vleck paramagnetism.
Attempts at comparisons between expressions derived by dif-
ferent workers were made at the time, but we find no definitive
agreement in the literature [19].

Very generally, the expressions derived for the suscepti-
bility, which involved Bloch function energies and matrix
elements between Bloch functions, were considered very
complicated—to some, the details were of “repellent com-
plexity” [4]—and so attempts were made to simplify them for
use in addressing real materials. A focus on the orbital mo-
tion of the electrons led to the “Fukuyama formula” [20,21].
Years later, a compact expression for the susceptibility of an
insulator was derived by Mauri and Louie [22], which, how-
ever, involved the numerical evaluation of a double derivative
of a Bloch function expression. This formula only includes
the orbital contribution to the magnetic susceptibility, and it
also appears to be gauge-dependent in the electromagnetic
sense, since the derivation depends on the choice of gauge for
the vector potential. Later a compact formula for the orbital
susceptibility of tight-binding models was obtained [23]. To
compare these formulas and test the intuitive understanding
of the various contributions, a natural approach is to write all
the expressions in the Bloch function basis.
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Written in the Bloch basis, it was shown that the Fukuyama
formula can be divided into four contributions [11]: the
Landau-Peierls susceptibility χLP; an interband contribution,
χinter, that reduces to the Van Vleck susceptibility in the
atomic limit; a contribution from the occupied states, χocc, that
reduces to the atomic diamagnetism from core-level electrons
in the atomic limit; and a contribution from the Fermi surface,
χFS. Generalizations to include the Zeeman and spin-orbit
interactions, and to allow the treatment of systems in which
both inversion and time-reversal symmetry are broken, lead to
two new additions [14]: χFS-P, a contribution from the Fermi
surface related to Pauli paramagnetism; and χocc2, which is
related to the Berry curvature of the cell periodic Bloch func-
tions. Recently there has been particular attention paid to parts
of these expressions that can be considered “geometric,” due
to their connection to the Berry curvature, with interest in how
quantum geometry can influence the magnetic susceptibility
and be probed by it. This has been a focus of the studies by
Gao et al. [10] and Piechon et al. [24]

Within the past decade there have been efforts to find a
consensus among the different expressions for the suscep-
tibility. Ogata and Fukuyama [11] showed that their work
was in agreement with the earlier studies of Hebborn, Lut-
tinger, Sondheimer, and Stiles (see Sec. II and Appendix C
of Ref. [11]), a promising connection to the early literature.
Additionally, while the formula of Mauri and Louie [22] is
implemented numerically, its analytic form can be identified
and be seen to agree with that of Ogata [14] in the insulating
limit, if a symmetric gauge is chosen for the vector potential.

Yet serious disagreements persist. There are seemingly two
camps that arise, and the geometric term is at the heart of
the dispute. Limiting the discussion to insulators, there is a
prefactor of 3/2 multiplying the geometric term in the work
of Blount [3] and Gao et al. [10] when compared to studies
of Ogata [14] and Piechon et al. [24]. Suggested explana-
tions for the discrepancy are the use of a formula derived
for infinite bands in the two-band tight-binding limit, and the
use of a wave-packet approximation in one of the strategies
[3,10,14,24], but ultimately the reason for the difference is un-
known. In addition, there are more subtle differences among
some of the derivations, including the choice of the “mag-
netization matrix element” and the inclusion or removal of
diagonal elements of the Berry connection, and these certainly
complicate comparisons. Furthermore, of all the approaches
mentioned, none are positioned to generalize to a response at
finite frequency.

With this as background, in this paper (i) we introduce a
strategy for determining the magnetic susceptibility of a solid
that can be generalized to finite frequency; (ii) we clarify the
source of the disagreements in the recent literature; and (iii)
we apply this formalism to a simple but realistic model to
show the importance of the various contributions, in particular
the geometric contribution.

Our work is based on a recent extension of a theory of
the microscopic polarization and magnetization of a solid
to include Zeeman and spin-orbit interactions [25–28]. This
approach allows for the determination of susceptibilities not
from a thermodynamic framework, but instead from pertur-
bation theory based on an electrodynamics perspective, and
with generalizations to spatially and temporally varying fields

possible. The method is gauge-independent in the electromag-
netic sense, and it provides physical insight into the different
terms that contribute to susceptibilities. It employs a Wannier
function basis that avoids some of the issues raised by the
unbounded nature of the position operator [6,29].

In this paper, we obtain the response of the magneti-
zation to a uniform and constant magnetic field—that is,
we derive an expression for the magnetic susceptibility in
these limits—using this microscopic theory [25,28]. We
make the independent particle approximation and consider
topologically trivial insulators at zero temperature. Thus,
“free-electron” terms like χLP will not be present, as they
depend on k derivatives of the band filling factors. Despite our
use of Wannier functions, which are not uniquely defined even
if we restrict ourselves to “maximally localized Wannier func-
tions” [30–33], we show that our result can be written in terms
of Bloch functions, and it is independent of the ambiguity in
how those functions are chosen. Thus it is “gauge-invariant”
with respect to the choice of those functions.

We can make a direct comparison to the expressions for
the magnetic susceptibility already present in the literature
[11,14]. At first glance, our result looks qualitatively different
from those of earlier work: there is a different definition of
magnetization matrix element, and extra interband terms ap-
pear, including an additional contribution to the susceptibility
that is quadratic in the Berry curvature. Yet with the use of
sum rules we show that this disagreement is only apparent.
Furthermore, we show how the numerical prefactor difference
mentioned above is only an apparent difference when the
diagonal elements of the Berry connection are treated with
care. So in the course of producing a new derivation of the
susceptibility, we remove the confusion in the earlier litera-
ture. In addition, we can write our expression in a form in
which the diagonal elements of the Berry connection do not
appear, and which is thus amenable to evaluation using Bloch
functions found numerically.

An outline of the paper is as follows. In Sec. II we outline
the microscopic theory and how to apply it to the problem of
finding the magnetic susceptibility. In Sec. III we begin with
the accepted formula for the spontaneous magnetization [6],
and from it we introduce an expression for the “spontaneous
magnetization matrix elements.” These matrix elements are
central to the magnetic susceptibility expression we obtain.

In Sec. IV we show how the linear response can be
partitioned into two types of contributions. We term those
originating from how the magnetic field alters the populations
as “dynamical,” and those originating from how the matrix
elements themselves depend on the magnetic field as “compo-
sitional.” The dynamical contributions are evaluated in Sec. V,
and the compositional contributions in Sec. VI.

In Sec. VII we combine these two contributions; it is this
total susceptibility that is gauge-invariant. We compare our
result to those of earlier studies [3,5,10,14], showing that with
the use of certain sum rules, apparently different expressions
are all equivalent. We rewrite our expression in a form involv-
ing only off-diagonal elements of the Berry connection.

In Sec. VIII we consider our total susceptibility expression
in the “molecular crystal” limit, where the solid is thought
of as molecules on lattice sites but between which electrons
cannot flow. We show how the contributions simplify to
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the regular Van Vleck paramagnetism with the spin angular
momentum and spin-orbit coupling modifications, and the
Langevin atomic diamagnetism. A “geometric” term that is
present in a solid vanishes in the molecular crystal limit, as it
requires matrix elements between different lattice sites.

In Sec. IX we apply this formalism to the calculation of the
magnetic susceptibility of a monolayer of hexagonal boron
nitride as an illustrative example. We outline two approxima-
tion schemes and investigate the effectiveness of some of the
required approximations to the model.

In Sec. X we summarize our results and conclude. Some
of the relevant expressions from earlier work, and details of
expressions derived here, are presented in Appendixes A, B,
and C. Details of the manipulations of some of the terms that
arise are presented in the Supplemental Material [34].

II. OUTLINE OF MICROSCOPIC THEORY

In the Heisenberg picture, the dynamics of the fermionic
electron field operator ψ̂ (x, t ) is governed by

ih̄
∂ψ̂ (x, t )

∂t
= H(x, t )ψ̂ (x, t ), (1)

where ψ̂ (x, t ) is a two-component Pauli spinor operator. We
make the frozen ion and independent particle approximations,
and we begin by taking the electrons to be subject to a po-
tential energy term V (x) that has the same periodicity as the
crystal lattice, V (x) = V (x+R) for all Bravais lattice vectors
R. Often the unperturbed Hamiltonian is then taken as

H0
TRS(x) = − h̄2

2m
∇2 + V (x) + H0

soc(x), (2)

where spin-orbit coupling is included by using

H0
soc(x) = − ih̄2

4m2c2
σ · ∇V (x) × ∇, (3)

where σ is the vector of Pauli matrices that act on spinor
wave functions. We use the subscript TRS to indicate that the
Hamiltonian (2) satisfies time-reversal symmetry. This can be
broken by introducing an “internal” static, cell-periodic vector
potential Astatic(x) [37,38]. Its presence breaks time-reversal
symmetry, but it does not break the translational symmetry
of the Hamiltonian, and thus Bloch’s theorem can still be
applied. The goal of this prescription is to allow for the
possibility that the ground-state eigenfunctions used in the
later calculations do not satisfy time-reversal symmetry con-
straints, while still being of the Bloch form. This can lead to
a nonzero spontaneous magnetization as well as other BZ in-
tegrals that would trivially vanish in the case of time-reversal
symmetry are nonzero. In earlier studies, an effective mag-
netic field, nonuniform but with the periodicity of the lattice,
is explicitly included for a similar purpose [14]. Such a field
can capture a mean-field description of exchange effects; see,
e.g., Kohn and Sham [39]. We do not explicitly implement that
approach here, because we want to simplify the comparison of
our results with earlier calculations that were done with the
more basic independent particle approximation where such
exchange effects are neglected.

The introduction of an applied electromagnetic field de-
scribed by the scalar and vector potentials (φ(x, t ), A(x, t )),

together with the inclusion of the cell-periodic vector potential
Astatic(x), is done with the usual minimal coupling prescrip-
tion, by taking

−ih̄∇ → −ih̄∇ − e

c
(Astatic(x) + A(x, t )), (4)

and by including the usual scalar potential term in the Hamil-
tonian. We also add a Zeeman term

− eh̄

2mc
σ · B(x, t ), (5)

where B(x,t) is the combination of both the applied and
internal field. Setting the applied scalar and vector poten-
tials (φ(x, t ), A(x, t )) to zero, one obtains the unperturbed
Hamiltonian H(0)(x) [28], which extends Eqs. (2) and (3) by
including Astatic(x).

The spinor wave functions can be expanded in a Bloch
basis

ψnk(x) ≡ 〈x|ψnk〉 = 1

(2π )3/2
eik·xunk(x), (6)

where ψnk(x) is an eigenvector of the unperturbed Hamilto-
nian with energy Enk, and unk(x) ≡ 〈x|nk〉 is the associated
cell-periodic function. One can also define a Wannier basis as

|αR〉 =
√

Vuc

(2π )3

∫
BZ

dke−ik·R ∑
n

Unα (k)|ψnk〉, (7)

where Vuc is the volume of the unit cell. Each Wannier ket and
its associated Wannier function WαR(x) ≡ 〈x|αR〉 is labeled
by a type index α and a lattice site R with which it is identified.
The Bloch functions are normalized such that 〈ψnk|ψmk′ 〉 =
δnmδ(k − k′), and likewise 〈βR′|αR〉 = δαβδRR′ . For the class
of insulators we consider, we associate a set of Wannier func-
tions with each isolated set of bands, such that the bands in
each set may intersect among themselves but not with bands
from different sets. The unitary matrix U(k) and the Bloch
eigenvectors are chosen to be periodic over the first Brillouin
zone.

Very different Wannier functions can be constructed using
the freedom in choosing the matrix U(k) [30]. Additionally,
the choice of Bloch functions is not unique since one can
apply an arbitrary k-dependent complex phase and recover
equally valid eigenstates. In the following sections, when
we refer to quantities as being “gauge-dependent,” it is in
this Wannier and Bloch function sense, and when we call a
quantity “gauge-invariant” it is because it does not depend
upon U (k) or its derivatives. An example of a response tensor
that does not depend on the individual phases of the Bloch
functions, but is dependent on the more general unitary trans-
formation that mixes occupied bands, is the Chern-Simons
contribution to the magnetoelectric polarizability [28,40].

In the presence of an applied magnetic field, it is useful
to work with a set of adjusted Wannier functions W̄αR(x, t ).
In the limit of a weak applied magnetic field, a perturbative
expansion for the adjusted Wannier functions yields

W̄αR(x, t ) = ei
(x,R;t )χαR(x, t ), (8)
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where

χαR(x, t ) = WαR(x) − i

2

∑
βR′

WβR′

×
∫

dzW ∗
βR′ (z)�(R′, z, R; t )WαR(z) + · · · .

(9)

Here


(x, R; t ) ≡ e

h̄c

∫
dwsi(w; x, R)Ai(w, t ) (10)

is a generalized Peierls phase factor; the “relator” si(x; y, R)
is

si(w; x, R) =
∫

C(x,R)
dziδ(w − z), (11)

where C(x, R) specifies a path from R to x. The rela-
tors si(x; y, R) and α jk (x; y, R) [see (21) below] have been
introduced and discussed previously [25–27,41], while the
function �(x, y, z; t ) is 
(z, x; t ) + 
(x, y; t ) + 
(y, z; t ),
which is simply a closed line integral of the vector potential.
The rationale for using these adjusted Wannier functions is
given in Sec. II c of Duff and Sipe [28].

We expand the fermionic field operator in terms of the
adjusted Wannier functions and their associated fermionic
creation and annihilation operators,

ψ̂ (x, t ) =
∑
α,R

âαR(t )W̄αR(x, t ), (12)

and associated with this is a single-particle density matrix
(SPDM)

ηαR;βR′ (t ) ≡ 〈â†
βR′ (t )âαR(t )〉ei
(R′,R;t ). (13)

As was argued earlier [25,28], the total microscopic charge
and current densities can generally be written as

ρ(x, t ) = −∇ · p(x, t ) + ρF (x, t ),

j(x, t ) = ∂p(x, t )

∂t
+ c∇ × m(x, t ) + jF (x, t ), (14)

where

ρ(x, t ) ≡ 〈ρ̂(x, t )〉 + ρ ion(x), j(x, t ) ≡ 〈ĵ(x, t )〉 (15)

with ρ ion(x) the charge density associated with fixed ion cores,
and 〈ρ̂(x, t )〉 and 〈 ĵ(x, t )〉 are the expectation values of the
charge density and current density associated with our choice
of Hamiltonian. The microscopic fields jF (x, t ) and ρF (x, t )
are the free current and charge densities, and p(x, t ) and
m(x, t ) are the microscopic polarization and magnetization
fields.

It is the last of these that is of interest here. Like the other
microscopic fields, the microscopic magnetization field can be
decomposed into site contributions, one associated with each
Bravais lattice vector R,

m(x, t ) =
∑

R

mR(x, t ). (16)

The site magnetization fields are further split into three con-
tributions,

mR(x, t ) ≡ m̄R(x, t ) + m̃R(x, t ) + m̆R(x, t ). (17)

These are the “atomic,” “itinerant,” and “spin” contributions,
respectively. The atomic magnetization is related to the site
current density jR(x, t ) in the way that the magnetization of
an isolated atom is related to its current density. The itinerant
magnetization arises because there are corrections to this in a
solid, since the sites are not isolated. The expressions for these
quantities are

m̄ j
R(x, t ) ≡ 1

c

∫
α jk (x; y, R) jp,k

R (y, t )dy, (18)

m̃ j
R(x, t ) ≡ 1

c

∫
α jk (x; y, R) j̃k

R(y, t )dy, (19)

m̆R(x, t ) = eh̄

4mc

∑
α,β,R′,R′′

(δRR′ + δRR′′ )ei�(R′,x,R′′;t )

× χ∗
βR′;j(x, t )σ jiχαR′′;i(x, t )ηαR′′;βR′ (t ), (20)

where the definitions of jpR(x, t ) and j̃R(x, t ) can be found in
Appendix A. The subscript i, j indices denote spinor compo-
nents, and as usual repeated indices are summed over. The
relator α jk (w; x, y) is defined as [25–27,41]

α jk (w; x, y) = ε jmn
∫

C(x,y)
dzm ∂zn

∂xk
δ(w − z). (21)

Turning now to the problem at hand, assuming uniform and
constant fields, the macroscopic magnetization is obtained by
spatially averaging the microscopic magnetization of a site
[(18),(19),(20)],

M = 1

Vuc

∫
dxmR(x). (22)

The SPDM is a central object in calculating this quantity.
For a topologically trivial insulator, before any fields are ap-
plied the SPDM is given by

η
(0)
αR′′;βR′ = fαδαβδR′R′′ , (23)

where fα = 1 if the Wannier function of type α is associated
with the filled bands, and fα = 0 if it is associated with the
empty bands. The first-order response of the SPDM to a uni-
form, static magnetic field is given by [26]

η
(B)
αR;βR′ = e

4h̄c
εlabBl Vuc

(2π )3

∑
mn

fnm

∫
dkeik·(R−R′ )U †

αm(k)Bab
mn(k)Unβ (k)

+ e

4h̄c
εlab Vuc

(2π )3
Bl

∑
mn

fnm

∫
dkeik·(R−R′ )(∂aU

†
αm(k)Unβ (k) − U †

αm(k)∂aUnβ )ξ b
mn(k)

+ Vuc

(2π )3

e

mc
Bl

∑
mn

fnm

∫
BZ

dkeik·(R−R′ ) U
†
αmSl

mnUnβ

Emk − Enk
, (24)

235206-4



MICROSCOPIC THEORY OF THE MAGNETIC … PHYSICAL REVIEW B 108, 235206 (2023)

where

Bab
mn(k) = i

∑
s

(
Esk − Enk

Emk − Enk
+ Esk − Emk

Emk − Enk

)
ξ a

ms(k)ξ b
sn(k)

− 2
∂aEmk + ∂aEnk

Emk − Enk
ξ b

mn(k). (25)

We set fm = 0, 1 if band m is empty or filled, respectively, and
fnm ≡ fn − fm. Here

ξ a
mn ≡ i(mk|∂ank) (26)

is the non-Abelian Berry connection, and

Sa
mn ≡

(
mk

∣∣∣∣ h̄

2
σ ank

)
(27)

are the spin matrix elements, where

(g|h) ≡ 1

Vuc

∫
Vuc

dxg†(x)h(x), (28)

and ∂a is shorthand for ∂/∂ka. The cell periodic Bloch func-
tions obey the orthogonality condition (mk|nk) = δmn. We
use the notation of Eq. (28) since the normalization condition
we have chosen for the Bloch functions [below Eq. (7)] then
follows from the choice of normalization for the cell-periodic
part.

III. SPONTANEOUS MAGNETIZATION
MATRIX ELEMENTS

The “modern theory of polarization and magnetization” [6]
provides an expression for the spontaneous orbital magneti-
zation; the result of our own microscopic theory [25] is in
agreement with that expression. In our approach, it follows
from evaluating the microscopic magnetization contributions
(18), (19), and (20) using the unperturbed SPDM (23), and
putting them in the expression (22) for the macroscopic mag-
netization. The atomiclike and itinerant magnetizations are
individually gauge-dependent, but their sum, the orbital mag-
netization, is gauge-invariant and can be written as

Ml,(0)
Orb = ie

2h̄c
εlab

∑
ms

fm

∫
dk

(2π )3
(Emk + Esk )ξ a

msξ
b
sm. (29)

While in earlier work [1,10] the bands were assumed to be
nondegenerate, here we allow for degeneracies among the
filled valence bands and among the empty conduction bands.
It is then worth noting that the s = m terms in the above
sum make no contribution, so there are no diagonal elements
of the Berry connection in the theoretical expression for the
ground-state orbital magnetization. Indeed, there are only
contributions to the magnetization from the bands s that are
not among the filled valence bands, for if m1 and m2 are two
of the filled valence bands, then the contribution to (29) from
m = m1 and s = m2 will cancel that from m = m2 and s = m1.

The spin contribution to the spontaneous magnetization
can also be written as a single integral over the Brillouin zone
as

Ml,(0)
Spin = e

mc

∑
n

fn

∫
dk

(2π )3
Snn. (30)

We can go further and introduce spontaneous magnetiza-
tion matrix elements. Written such that the matrix is explicitly
Hermitian, they are

Ml
mn = εlab e

4c

( ∑
s

(
vb

msξ
a
sn + ξ a

msv
b
sn

)

+ 1

h̄
∂b(Emk + Enk )ξ a

mn

)
+ e

mc
Sl

mn, (31)

where the velocity matrix elements are defined as

vi
mn ≡

∫
dxψ

†
mk(x)

(
pi(x)

m
+ εi jk h̄

4m2c2
σ l ∂V(x)

∂xm

)
ψnk(x)

= δmn
1

h̄
∂iEnk + i

h̄
(Emk − Enk )ξ i

mn, (32)

where here

p(x) = −ih̄∇ − e

c
Astatic(x). (33)

Note that in general the equal energy elements of the Berry
connection will make a contribution to Eq. (31), where by
the “equal energy elements” of the Berry connection ξ i

mn(k)
we mean those for which Emk = Enk. For a general matrix
element at a given k [like Ml

mn(k)] we also make the dis-
tinction between the case in which band indices m and n
label bands that satisfy Emk = Enk—in the nondegenerate case
these would simply be the diagonal matrix elements—and
the case in which they do not. Thus we will refer to matrix
elements as being either equal energy elements in this sense,
or as being “distinct energy elements.”

The unperturbed macroscopic magnetization Ml,(0)
Orb +

Ml,(0)
Spin can be written as the trace of the matrix defined by Ml

mn
over the filled states, and integrated over the Brillouin zone,

Ml,(0)
Orb + Ml,(0)

Spin =
∑

n

fn

∫
dk

(2π )3
Ml

nn(k). (34)

To get the orbital contribution into the form shown in (29)
requires an additional integration by parts, and only then can
it be seen that there is no dependence on the equal energy
elements of the Berry connection. Nonetheless, (31) is a natu-
ral choice for the spontaneous magnetization matrix elements
for two reasons: First, the orbital part is decomposed into
an “atomiclike” contribution that is effectively a “position
cross velocity” matrix element (angular momentum), and an
“itinerant” contribution that arises due to a deviation from
flat bands. Second, this magnetization matrix element appears
in the expression for the magnetic susceptibility. In fact, the
SPDM response to a magnetic field can be written involving
the matrix element Ml

mn divided by the energy difference of
the bands,

η
(B)
αR;βR′ = BlVuc

∑
mn

fnm

∫
BZ

dk
(2π )3

eik·(R−R′ ) ×
[

U †
αmMl

mnUnβ

Emk − Enk

+ e

4h̄c
εlabξ b

mn

(
∂aU

†
αmUnβ − U †

αm∂aUnβ

)]
. (35)

To avoid any possible confusion, we note that in other studies
[11–14] a different spontaneous magnetization matrix appears
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in expressions for the magnetic susceptibility. The trace of that
different spontaneous magnetization matrix over filled states,
and integrated over the Brillouin zone, leads to the same
result for Ml,(0)

Orb + Ml,(0)
Spin , but the off-diagonal elements of that

different matrix are such that it is not Hermitian. Written in
our notation, the alternative matrix element is (using a stylized
font to distinguish it from ours)

Ml
nm = e

2c
εlab

( ∑
l

ξ a
nlv

b
lm + 1

h̄
∂bEnkξ

a
nm

)
+ e

mc
Sl

nm. (36)

Using the “general effective mass tensor sum rule”

∂ jv
i
nm = h̄

m
δi jδnm + i

∑
l

(
ξ

j
nlv

i
lm − vi

nlξ
j

lm

)
, (37)

a derivation of which can be found in Sec. VI of the
Supplemental Material [34], we can write our spontaneous
magnetization matrix element in terms of (36),

Ml
nm = Ml

nm − e

4h̄c
(Enk − Emk )�l

nm, (38)

where �nm is the curl of the Berry connection,

�l
nm = εlab∂aξ

b
nm. (39)

The definition of the spontaneous magnetization matrix,
Eq. (36), disagrees with that used in yet other earlier papers
[3,10], where the terms that contain the equal energy matrix
elements ξ a

nn′ are explicitly removed in both the equal and
distinct energy matrix elements of expression (36) leading to
a “purified” matrix denoted by an overset ring, with elements

M̊l
nm = e

2c
εlab

( ∑
l 	=n

ξ a
nlv

b
lm + 1

h̄
∂bEnkξ

a
nm

)
+ e

mc
Sl

nm (40)

for n and m labeling distinct energy bands, and

M̊l
nn′ = e

2c
εlab

∑
l 	=n

ξ a
nlv

b
ln′ + e

mc
Sl

nn′ , (41)

when n and n′ are equal energy bands. When we use the
notation l 	= n, we mean that, at a given k, the sum l is only
over distinct energy bands. This is an extension of earlier work
that only considered nondegenerate bands [1,10].

When we later compare our results with those of others, we
will see that the choice of spontaneous magnetization matrix,
along with other differences that arise, will cancel in the final
expression for the susceptibility.

IV. GENERAL FORM OF THE LINEAR RESPONSE

We now turn to the calculation of the response to a static
and uniform magnetic field. In our formalism, there are two
distinct types of contributions to response tensors that arise:
dynamical and compositional. To illustrate this, consider the
response of the site spin magnetic dipole moments to an
applied magnetic field. We begin by writing the expression
(20) for the spin contribution to the site magnetization as the
trace over the matrix product of the site spin matrix and the
single-particle density matrix in the adjusted Wannier function

basis,

m̆R(x) =
∑

αβR′R′′
m̆βR′;αR′′ (x, R)ηαR′′;βR′ , (42)

where we have defined

m̆βR′;αR′′ (x, R) = eh̄

4mc
(δRR′ + δRR′′ )ei�(R′,x,R′′ )

× χ
†
βR′ (x)σχαR′′ (x). (43)

Both these site spin matrix elements and the components of
the SPDM depend on the magnetic field. Thus one contribu-
tion to the linear response is obtained by taking the SPDM
elements to first order and the site matrix elements to zeroth
order; this is dubbed the dynamical contribution. The second
contribution is obtained by taking the SPDM elements to
zeroth order and the site matrix elements to first order; this
is dubbed the compositional contribution.

The dynamical contribution is

m̆Rdyn(x) =
∑

αβR′R′′
m̆(0)

βR′;αR′′ (x, R)η(B)
αR′′;βR′ , (44)

where the spin matrix elements m̆(0)
βR′;αR′′ (x, R) involve the

unperturbed Wannier functions (7). The compositional con-
tribution is

m̆Rcomp(x) =
∑
αR′

fαm̆(B)
αR′;αR′ (x, R), (45)

where we have used the ground-state SPDM (23), and
m̆(B)

αR′;αR′ (x, R) will depend on the magnetic field through the
adjusted Wannier functions, Eq. (9), or expanding the expo-
nential in Eq. (43) to first order in �(R′, x, R′′). There can
be an additional compositional contribution if an operator
depends on the magnetic field, as does the velocity operator.
In particular, in calculating the compositional contribution,
the expression (33) for pi(x), used in the first line of (32), is
replaced by

pi(x) → −ih̄∇ − e

c
(Astatic(x) + A(x, t )), (46)

which results in an additional term appearing in the second
line of (32).

The other two constituents of the site magnetization [see
Eq. (17)] also reveal a decomposition into dynamical and
compositional contributions. So then does the linear response
of the macroscopic magnetization (22), and the resulting sus-
ceptibility,

χ il = ∂Mi

∂Bl

∣∣∣∣
B→0

, (47)

as well as

χ il = χ il
dyn + χ il

comp. (48)

We identify those contributions in the sections below. The de-
tails of deriving the atomic, itinerant, and spin contributions—
both dynamical and compositional—are shown in Sec. III of
the Supplemental Material [34].
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V. DYNAMICAL CONTRIBUTIONS
TO THE SUSCEPTIBILITY

The contributions to χ il
dyn arise from implementing the

expression (24) for the change in the single-particle density
matrix that is first order in the magnetic field in Eqs. (18), (19),
and (20) for the three contributions to the site magnetization
(17), taking the site quantity matrix elements to zeroth order in
the magnetic field, and then using the expression (22) for the
macroscopic magnetization to identify the contributions to it
that result. In Appendix B we construct χ il

dyn from those three
contributions (18), (19), and (20) to the site magnetization,
labeling them χ̄ il

dyn, χ̃ il
dyn, and χ̆ il

dyn, respectively. We find that
their sum can be written as

χ il
dyn = χ il

VV + X il
dyn, (49)

where

χ il
VV =

∑
m 	=n

fnm

∫
BZ

dk
(2π )3

Mi
nmMl

mn

Emk − Enk
(50)

is what we call the “Van Vleck contribution” as it is a
generalization of the atomic Van Vleck paramagnetism to
insulators that includes spin effects; we examine this further
in Sec. VIII. It is very similar to the “interband” contribu-
tion χ il

inter identified by Ogata [14], but with our definition of
the magnetization matrix element. Contributions from all the
terms χ̄ il

dyn, χ̃ il
dyn, χ̆ il

dyn are assembled into the magnetization
matrix elements that appear in (49). The first part of Mil

nm
(31), which can be thought of as a naive cross product of
position with velocity, comes from the atomic contribution.
The additional partial on energy terms that appear in Eq. (31)
arise from the itinerant magnetic dipole contribution, as would
be expected since they vanish in the flat band limit in which
the sites are isolated. The third term is the spin contribution to
the spontaneous magnetization. Note that the Van Vleck term
(50) is what one would naively expect for the linear response
of the magnetization, as characterized by a matrix Mil

nm at each
k, under the action of a Hamiltonian involving the dot product
of the magnetization at each k and the magnetic field.

Unlike χ il
VV, which only involves terms that follow from

the Bloch functions and the band energies, the term X il
dyn also

depends on the unitary matrices that link the Bloch functions
to the ELWFs and their derivatives. The functional form is
shown in Appendix B. We return to it below. An example of its
form when a specific gauge-transformation is chosen is shown
in Sec. V of the Supplemental Material [34].

VI. COMPOSITIONAL CONTRIBUTIONS
TO THE SUSCEPTIBILITY

The compositional contributions to χ il (47) arise from
using the unperturbed single-particle density matrix (23) in
the expressions (18), (19), and (20) for the atomic, itinerant,
and spin compositional contributions to the site magnetiza-
tion, keeping the parts of the resulting expressions linear
in the magnetic field, and using the expression (22) for
the macroscopic magnetization to identify the compositional
susceptibility χ il

comp. Details are shown in Sec. III of the sup-
plemental material [34]. We can organize some of the terms

that result into two sets in such a way as to make them
comparable to theoretical expressions in the literature.

The first set involves contributions from the atomic and
itinerant site magnetizations (18) and (19), and it is given by

χ il
occ = e2

4mc2
εiabεlcd

∑
nm

fn

∫
BZ

dk
(2π )3

Re

[
δbcξ

a
nmξ d

mn

− m

h̄2 ξ a
nmξ d

mn∂b∂cEnk

]
. (51)

The term “occupied” here at first glance does not appear
appropriate; however, using the completeness relation of the
Bloch functions, it can be shown that∑

m

ξ a
nmξ d

mn = (∂aunk|∂d unk ), (52)

and thus (51) can be written so as not to require a sum over all
states.

The second term on the right-hand side of Eq. (51) is an
itinerant contribution. Involving a second derivative of the
band energies, it vanishes in the limit of flat-bands and is as-
sociated with the motion of electrons between different sites.

The first term on the right side of Eq. (51) has a correspon-
dence to the atomic diamagnetism, and as would be expected
it arises from the atomic magnetization. In a free-energy ap-
proach, starting from the minimal coupling Hamiltonian with
a magnetic field in the z direction, and choosing a symmetric
gauge for the vector potential, one gets a term in the Hamil-
tonian proportional to (x2 + y2)B2

z . The first-order correction
to the energy is already second order in the magnetic field, so
it can be considered a contribution to the total susceptibility.
This term also has an appealing semiclassical interpretation,
where if a magnetic field is applied perpendicular to the plane
of the orbit of an electron, the electron will speed up or slow
down so that its magnetic moment opposes the direction of
the applied magnetic field [42]. If instead the magnetic field
is at an angle to the orbit, Larmor precession results, and
the precession can be interpreted as an effective magnetic
moment. In either case, the change in the magnetic moment
due to the magnetic field is

δm = −e2R2

4m
B, (53)

where R is the orbital radius. Moving to a more quantum-
mechanical picture, the radius squared is replaced by the
second moment of the charge density. And still going further,
extending to the necessary quantum-mechanical expressions
for a band insulator, one obtains the first term on the right-
hand side of Eq. (51).

Note that the bare electron mass term 1/m that appears in
Eq. (51) arises from the use of the Schrödinger Hamiltonian
as the starting point of the derivation; the velocity operator
associated with this choice of Hamiltonian is altered by a
magnetic field. However, in an effective tight-binding Hamil-
tonian calculation, or even in a band-structure calculation,
the number of bands must be truncated, and therefore the
effective-mass sum rule, Eq. (37), will be violated to some
degree. To circumvent this, the first term on the right side
of Eq. (37) can be replaced by the Hessian matrix [43]. In
some of the manipulations we make to prove gauge invariance
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and show agreement between the different ways of writing
the magnetic susceptibility, this sum rule must be used. Thus,
numerical agreement may not be assured. To obtain a consis-
tent theory when applied to an effective lattice Hamiltonian, in
both Eqs. (37) and (51) the Hessian matrix substitution should
be employed in place of the bare electron mass.

A second set of terms in the compositional contributions
to the susceptibility lead to a contribution that depends on
the curl of the non-Abelian Berry connection. We call this a
“geometric” contribution,

χ il
geo = − e

2h̄c

∑
nm

fn

∫
BZ

dk
(2π )3

× Re

[
�i

nm

(
Ml

mn + e

8h̄c
(Enk − Emk )�l

mn

)

+
(

Mi
nm + e

8h̄c
(Enk − Emk )�i

nm

)
�l

mn

]
. (54)

Note that this is different from the “geometric” contribution
found from other methods [3,10,14] as it contains interband
matrix elements and a contribution that is quadratic in �

[recall Eq. (39)]. Arising purely from compositional contri-
butions, it is of the form of a matrix multiplication of � and a
modified spontaneous magnetization matrix element.

Similar to the nature of the terms constituting the dynam-
ical contribution χ il

dyn (49), there is an additional contribution
X il

comp to the compositional contribution that depends not
just on the Bloch functions and band energies, but also on
the choice of Wannier functions. This term is discussed in
Appendix B. In all, then, the compositional contribution to
the susceptibility can be written as

χ il
comp = χ il

occ + χ il
geo + X il

comp. (55)

VII. TOTAL ELECTRONIC MAGNETIC
SUSCEPTIBILITY—RESULT AND COMPARISON

The terms X il
dyn and X il

comp depend on the choice of Wan-
nier functions through their dependence on the k-dependent
quantities

Wa
nm = i

∑
α

∂aUnαU †
αm, (56)

where U †
αm ≡ (U †)αm. To indicate this, we write them as

X il
dyn(W ) and X il

comp(W ), keeping their dependence on the
Bloch functions and band energies implicit. Using a gener-
alized inverse effective-mass tensor sum rule, and integration
by parts over the Brillouin zone, we find that

X il
dyn(W ) + X il

comp(W ) = 0, (57)

which is shown in detail in Sec. IV of the Supplemental
Material [34]. Therefore, the full susceptibility (48) can be
written as

χ il = χ il
VV + χ il

occ + χ il
geo, (58)

a main result of this paper. Relation (57) holds not only for
the Wa

nm associated with the exponentially localized Wannier
functions that were involved in defining the magnetization,
but more generally. In fact, Eq. (57) holds for any unitary

transformation Unα that links all the Wannier functions of one
type α either to conduction bands exclusively, or to valence
bands exclusively; in this situation, we have

fnmWa
nm = 0. (59)

We will see below that the splitting in Eq. (58) of the
susceptibility into the three reasonably simple contributions,
χ il

VV, χ il
occ, and χ il

geo, is helpful in identifying the “molecular
crystal limit,” where the crystal can be considered to consist
of molecules at lattice sites between which electrons cannot
flow. However, in general these terms are individually gauge-
dependent. Yet their sum, χ il , is gauge-independent.

To see this, consider

ψnk(x) → ψnk(x)e−iφn (k), (60)

and note that if we introduce a unitary matrix Uns associated
with this change in Bloch functions,

Uns = δnse
−iφn (k), (61)

where here both n and s indicate Bloch functions, and we
introduce a W ′a

nm analogous to that in (56),

W ′a
nm = i

∑
s

∂aUnsU
†
sm, (62)

we find that under the transformation (60) we have

χ il
VV → χ il

VV + X il
dyn(W ′),

χ il
occ + χ il

geo → χ il
occ + χ il

geo + X il
comp(W ′) (63)

(see Sec. V of the Supplemental Material [34]). In fact, this
holds for more general Uns(k) that can mix bands at de-
generate points. Since W ′ trivially satisfies (59), the sum
X il

dyn(W ′) + X il
comp(W ′) vanishes, and so χ il is unchanged.

Of course, the partial integration over the Brillouin zone
necessary to establish (57) (or the corresponding expression
with W ′) involves integration over degeneracy points where
the cell-periodic Bloch functions are discontinuous. However,
as has been shown in Mahon et al. [44], contributions from
these points of degeneracy can be written as proportional to
the Chern number of the bands, and since we are concerned
here with topologically trivial insulators, we can expect such
contributions to vanish, and gauge invariance is assured.

Despite this gauge invariance, the expression (58) for χ il

contains terms with diagonal matrix elements of the Berry
connection, and thus it is not convenient for numerical evalu-
ation. We first make a comparison to Ogata’s work and show
that for insulators our expressions agree. Then, starting from
those expressions we remove the equal energy elements of
the Berry connection. This then allows us to compare to other
works in the literature.

A. Comparison to Ogata

There is a large body of work on magnetic susceptibilities
and their different contributions by Ogata and colleagues (see,
e.g., [11–15]). For low-temperature insulators, their expres-
sion for the total susceptibility is written as the sum of three
terms [14],

χ il = χ il
inter + χ il

occ + χ il
occ2, (64)
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where

χ il
inter = −2

∑
n 	=m

fn

∫
BZ

dk
(2π )3

Re

[Mi
nm

(
Ml

nm

)∗

Enk − Emk

]
, (65)

χ il
occ2 = − e

2h̄c

∑
nn′

fn

∫
BZ

dk
(2π )3

Re
[
�i

nn′Ml
n′n + Mi

nn′�
l
n′n

]
,

(66)

and their term χ il
occ is the same as ours (51). However, their

interband term χ il
inter is written in terms of the non-Hermitian

matrix elements Ml
nm, while our χ il

VV is written in terms of the
Hermitian matrix elements Ml

nm. And their “second occupied
term” χ il

occ2 contains a sum over the filled bands n, as well
as a sum over all bands n′ that have the same energy as
n over the entire BZ [14], here indicated by the n and n′
notation. Note that our χ il

geo contains a different integrand and
the sums are over all bands. Nonetheless, despite what seem
to be significant differences, we show in detail in Sec. VII of
the Supplemental Material that the expressions for the total
susceptibilities are equal [34],

χ il
VV + χ il

occ + χ il
geo = χ il

inter + χ il
occ + χ il

occ2. (67)

B. Removal of equal energy Berry connection matrix elements

We remove the contributions to χ il
inter, χ il

occ, and χ il
occ2 that

involve equal energy matrix elements of the Berry connection,
and we assemble them all in a term we denote by χ il . Then
indicating by an overset ring the portions of terms that remain
when contributions from the equal energy matrix elements of
the Berry connection are removed, we have

χ il = χ̊ il
inter + χ̊ il

occ + χ̊ il
occ2 + χ il . (68)

This situation is reminiscent of one we came across in inves-
tigating optical activity [27,28]. The total optical conductivity
tensor we found was gauge-invariant—i.e., insensitive to an
arbitrary complex phase in defining the Bloch functions, as χ il

is here—and we showed that while individual contributions
to the total optical conductivity tensor did depend on equal
energy matrix elements of the Berry connection, the total did
not. That is, the analog of χ il vanished.

But here χ il does not vanish. In Sec. VIII of the Supple-
mental Material [34] we show that by using integration by
parts, it can be rewritten in a form that does not depend on the
equal energy elements of the Berry connection, but instead on
a matrix element akin to the Berry curvature, and which is in
fact equal to it if there are no degeneracies. We find

χ il = 1
2 χ̊occ2:Orb + χ̊occ2:Spin. (69)

Here χ̊occ2:Orb and χ̊occ2:Spin result from using (41) for M̊l
nn′ in

place of Ml
nn′ in Eq. (66) for χ il

occ2; the “orbital” contribution
χ̊occ2:Orb comes from the first term on the right-hand side of
(41) and the “spin” contribution χ̊occ2:Spin comes from the
second term on the right-hand side of those equations. That
is,

χ̊ il
occ2:Orb,Spin = − e

2h̄c

∑
nn′

fn

∫
BZ

dk
(2π )3

Re
[
�̊i

nn′
(
M̊l

n′n
)

Orb,Spin

+ (
M̊i

nn′
)

Orb,Spin�̊
l
n′n

]
, (70)

where (
M̊l

nn′
)

Orb = e

2c
εlab

∑
l 	=n

ξ a
nlv

b
ln′ (71)

and (
M̊l

nn′
)

Spin = e

mc
Sl

nn′ . (72)

The modified curl of the non-Abelian Berry connection is
defined as [45]

�̊i
nn′ = iεi jk

∑
m 	=n

ξ j
nmξ k

mn′ , (73)

where there is no contribution to the sum in �̊i
nn′ at k points

where bands m and n or n′ are the same or have the same
energy, and so the χ̊ il

occ2:Orb,Spin are indeed completely inde-
pendent of those equal energy elements.

The partitioning (70) into orbital and spin contributions is
necessary here as they contain different numerical prefactors
in the expression (69) for χ il . We can now write the total
susceptibility as

χ il = χ̊ il
inter + χ̊ il

occ + 3
2 χ̊occ2:Orb + 2χ̊occ2:Spin, (74)

where [see the discussion before Eq. (68)]

χ̊ il
inter = −2

∑
n,m 	=n

fn

∫
BZ

dk
(2π )3

Re

[M̊i
nm

(
M̊l

nm

)∗

Enk − Emk

]
(75)

and

χ̊ il
occ = e2

4h̄2c2
εiabεlcd

∑
n,m 	=n

fn

∫
BZ

dk
(2π )3

Re

[
ξ a

nmξ c
mn

×
(

∂b∂d Enk − h̄2

m
δbd

)]
. (76)

We have thus succeeded in removing all dependence of χ il on
the equal energy elements of the Berry connection.

C. Comparisons to work of Roth, Blount, and Gao et al.

Work on the magnetic susceptibility was also done by Roth
[1], Blount [3], Hebborn and Sondheimer [5], and Gao et al.
[10]. Roth’s work is notable in that she gave careful consid-
eration to the dependence of the terms in the susceptibility
on the phases of the wave functions, noting that diamagnetic
and paramagnetic contributions could change but their sum
was independent of those phases. Changing the phases alters
the “diagonal position matrix elements,” where in modern
notation these “position matrix elements” are the Berry con-
nection matrix elements we use in this paper. To eliminate
any dependence on the diagonal elements, and thus on the
Bloch function phases, Roth wrote her expression for the
susceptibility with the diagonal elements explicitly removed,
in the process of which new terms arose. The expressions of
Roth include spin, but they are limited to bands that are at
most twofold degenerate over the whole Brillouin zone. When
we take this limit in our results, we find agreement with Roth.

However, Ogata [14] pointed out some apparent discrep-
ancies between the results of earlier studies and theirs, and
since our expression for an insulator agrees with the low
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temperature insulator expression of Ogata [14], those apparent
discrepancies are also an issue for us.

Our expression—and that of Ogata et al. (67)—seems to
differ from earlier work [1,3,10] in two respects. First, in
terms in the early work analogous to χ il

occ2 and χ il
geo there is

a numerical prefactor different from what both Ogata [14]
and we find. Second, equal energy elements of the Berry
connection are involved in all three contributions χ il

inter, χ il
occ,

and χ il
occ2 (and in χ il

VV and χ il
geo), while in earlier work [1,3,10]

the “purified” matrix elements (40) and (41) that are free of
those equal energy terms are used in the expression for the
susceptibility; in addition, the “quantum metric” [10] used
in earlier work [1,3,10] in a term analogous to χ il

occ does not
contain equal energy elements of the Berry connection.

Yet we have found that these discrepancies are in fact only
apparent. Expression (74) is in fact in agreement with earlier
work [1,3,10], although Gao et al. [10] and separately Blount
[3] only considered the orbital contribution. The details of
the comparison are shown in Sec. IX of the Supplemental
Material [34]. Thus our result (67), which agrees with that of
Ogata et al. [11–15] for the limit of low-temperature insulators
that we consider, is in agreement with earlier work in that
limit. This does not seem to have been previously appreciated,
and it has apparently gone unnoticed that when written in
this explicitly gauge-invariant manner, the spin and orbital
contributions acquire different prefactors.

We emphasize that we have not been cavalier with the
equal energy elements of the Berry connection, and one ev-
idently should not trivially remove them without care. And
while both expressions (67) and (74) are gauge-invariant,
and in agreement with each other, only the second does not
involve equal energy elements of the Berry connection and
thus is suitable for numerical calculations. Both expressions,
however, involve a sum over all bands at each k.

VIII. MOLECULAR CRYSTAL LIMIT

We now consider the “molecular crystal limit” of our result
(58) and (74), where we assume that the “molecule” we asso-
ciate with each unit cell is far enough away from the other
such molecules that electron motion between them can be
neglected. In this limit the bands are flat, with Enk independent
of k. We then associate a Wannier function type α with each
band n, Unα = δnα and Enk → Eα , identifying the Wannier
functions with orbitals of the “molecules.” Taking the limit
using the first (58) decomposition of the total susceptibility
χ il , for the three different contributions we find

χ il
VV → e2

4m2c2Vuc

∑
αβ

fβα

Eα − Eβ

(
Ll

αβ + 2S̄l
αβ

)(
Li

βα + 2S̄i
βα

)
,

χ il
occ → − e2

4mc2Vuc
εiabεblm

∑
αβ

fαxa
αβxm

βα,

χ il
geo → 0, (77)

where Lαβ are the orbital angular momentum matrix elements
between Wannier functions,

Li
αβ = εiab m

2

∫
dxW †

α0(x)(xav̂b(x))Wβ0(x), (78)

with v̂(x) the term in parentheses on the right-hand side of
Eq. (32), and

xi
αβ =

∫
dxW †

α0(x)xiWβ0(x) (79)

are the position matrix elements. Note that the velocity opera-
tor is generalized to include spin-orbit effects [Eq. (32)]. The
molecular crystal limit is as one would expect: In this limit,
χ il

VV describes the Van Vleck paramagnetism, including the
spin magnetic moment contribution,

S̄i
αβ = h̄

2

∫
dxW †

α0(x)σ iWβ0(x), (80)

and the correction to the velocity operator due to SOC, and
χ il

occ describes the molecular diamagnetism. In Eqs. (78), (79),
and (80) the Hermitian adjoint of the Wannier functions is
used since they are spinors.

IX. MODEL HAMILTONIAN: GAPPED GRAPHENE

We now turn to a simple model for which the magnetic sus-
ceptibility can be calculated explicitly. To fit the scope of the
paper, we consider a model for an insulator without inversion
symmetry, the latter condition so that there is a nonvanishing
Berry curvature. A natural choice is a two-band model of
a monolayer of hexagonal boron-nitride (gapped graphene).
This can be seen as a generalization of a model developed by
Ogata [13] for the magnetic susceptibility of graphene. As was
done there, we consider the zz component of the susceptibility
tensor. A principal challenge to any actual calculation with
such a model is the fact that only a finite number of bands are
taken into account. Here this particularly affects the evaluation
of the interband contributions to the magnetic susceptibility,
and as we see below this affects the trustworthiness of the
result.

A. Tight-binding model

A monolayer of hexagonal boron nitride has two atoms
per unit cell. The lattice vectors used in this model are a1 =√

3a(1, 0) and a2 = √
3a(1/2,

√
3/2), where a = 1.45 Å

is the distance between sites. The nearest nitrogen atoms
to a boron atom are at displacements δi from the boron
atom, where δ1 = a(0,−1), δ2 = a(

√
3/2, 1/2), and δ3 =

a(−√
3/2, 1/2); see Fig. 1.

The cell-periodic part of each Bloch wave function is writ-
ten as a linear combination of orthogonal pπ orbitals. These
orbitals are taken to be

φ(x) = 1√
24(a∗

B)5/2

√
3

4π
r cos θ e−r/2a∗

B , (81)

where in this formula alone we take the origin to be at a
nucleus, r = |x|, and θ is the angle between x and the z axis.
With aB the Bohr radius, a∗

B = aB/Zeff is the effective Bohr
radius; Zeff = 2.4214 at a boron site and Zeff = 3.8340 at a
nitrogen site; see Clementi and Raimondi [46]. Henceforth we
use subscripts A and B to refer to boron and nitrogen sites,
respectively. For the overlap s = ∫

φB(x − R)φA(x)dx, where
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FIG. 1. Hexagonal boron nitride lattice. The black dots (one at
the center) are boron atoms and the red dots (to which the three
black arrows point) are nitrogen atoms. The three nearest-neighbor
lattice vectors (black arrows) and the two primitive lattice vectors
(gray arrows) are shown.

here R is a nearest-neighbor nitrogen site to a boron site at the
origin, the orbitals orthogonalized to first order in s are


A(x − RA) = φA(x − RA) − s

2

3∑
i=1

φB(x − RA − δi ), (82)


B(x − RB) = φB(x − RB) − s

2

3∑
i=1

φA(x − RB + δi ), (83)

and the linear combinations of atomic orbitals we use to form
the Bloch functions are

φAk(x) =
√
Vuc

∑
RA

e−ik·(x−RA )
A(x − RA),

φBk(x) =
√
Vuc

∑
RB

e−ik·(x−RB )
B(x − RB), (84)

where the normalization of these functions is chosen to be
consistent with the condition given in the text below Eq. (7)

The Hamiltonian matrix elements in the basis of the wave
functions (84) are

Hk =
(

�
2 −tγk

−tγ ∗
k −�

2

)
, (85)

where � is the gap width, t is the nearest-neighbor hopping
matrix element, and γk = ∑3

i=1 eik·δi . The parameters �, t are
not directly calculated, but reasonable values are � = 6 eV,
t = 3 eV [47], which we adopt here. The dispersion relation
is

ε± = ± 1
2

√
�2 + 4t2|γk|2 (86)

and the two-band cell-periodic Bloch wave functions are

u±
k = c±

A (k)φAk + c±
B (k)φBk, (87)

where the coefficients are given explicitly, with a specified
phase, in Appendix C.

To this point, two key approximations have been made:
(i) we include only nearest-neighbor matrix elements, in the
context of a tight-binding model; and (ii) we neglect terms
of O(s2). Note that the second-order terms that are dropped

are only terms that are explicitly of the form s2. Although the
hopping matrix element t is similar to s in that it involves or-
bitals on neighboring sites, we do not neglect terms involving
the product of t and s. To these two approximations we are
forced to add a third approximation that (iii) the summations
over a complete basis are truncated to a summation over the
two bands of the model, since all three of the expressions (58),
(64), and (74) we have for the susceptibility involve terms that
require a summation over all bands.

We focus here on the expressions (58) and (64) for the
susceptibility, since within a tight-binding model the eval-
uation of the diagonal elements of the Berry connection is
not problematic, and we begin with the first of these (58)
involving the Van Vleck term χ zz

VV, the “occupied” term χ zz
occ,

and the geometric term χ zz
geo. To evaluate the susceptibility, we

must calculate three matrix elements (see Appendix C),

ξμ
nm ≡ i

Vuc

∫
Vuc

dxu†
nk

∂umk

∂kμ

, (88)

∑
s

ξμ
nsξ

ν
sm = 1

Vuc

∫
Vuc

dx
∂u†

nk

∂kμ

∂umk

∂kν

(89)

× 1

Vuc

∫
Vuc

dx
∂u†

nk

∂kμ

∂Hk

∂kν

umk, (90)

where the first of these is the Berry connection (26), the
second appears when evaluating terms that depend on the
quantum metric or the Berry curvature, and the third ap-
pears when evaluating quantities like the orbital angular
momentum.

The calculation of the susceptibility contributions requires
numerical integration over the Brillouin zone; we discretize
by introducing hexagons of length scaled by N−1 from that of
the BZ area. At N = 250 there is a 0.4% error in calculating
the BZ area, establishing the scale of numerical error. Results
show a clear convergence with increasing N and are evaluated
for N = 250. The values are normalized by

χ0 = e2a2μedge

8π h̄2c2
, (91)

where μedge =
√

(3t )2 + (�/2)2 is the band-edge energy.
That is, in quoting values of the susceptibility components,
we give them in multiples of χ0.

We find χ zz
occ = −0.463, χ zz

VV = 0, and χ zz
geo = −0.513.

The results indicate a clear diamagnetism of boron nitride,
with a vanishing Van Vleck term and a significant contribu-
tion from both the geometric term and the occupied states
term. And although the analytic equivalence (67) of the two
expressions (58) and (64) follows from sum rules that involve
all bands, we find that (67) holds to a very good approxi-
mation even with a two-band truncation: For from a direct
calculation using two bands, we find χ zz

inter = 0.008 08 and
χ zz

occ2 = −0.519.

B. Discussion

Although the preceding calculation is straightforward,
there are a number of curiosities regarding the approximation
scheme that we feel are worthy of comment. In the following,
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we refer to the preceding approximation scheme as “approxi-
mation scheme I.”

Instead of treating only terms explicitly of the form s2

as second-order terms to be dropped, one could treat all
nearest-neighbor matrix elements as first-order quantities, dis-
carding their products. This method was employed earlier by
Ogata [13]. Under this approximation scheme (“scheme II”),
terms linear in s are considered first-order, as they were in
scheme I, but in addition t is considered a first-order quan-
tity, as are all matrix elements of any operator between two
orbitals at nearest-neighbor sites. The magnetic susceptibil-
ity contributions can be evaluated exactly as before, keeping
only first-order terms but with this different understanding of
what is meant by such terms. Doing so, we obtain χ zz

occ =
−0.466, χ zz

VV = 0, and χ zz
geo = −0.515. These values differ

only very slightly from scheme I, and suggest that scheme II
is very similar to scheme I.

Nonetheless, there are some issues that arise on closer
examination. For instance, in the treatment of graphene by
Ogata [13], their equations (A · 1) are first-order quantities
with magnitudes of 7a∗2

B and 1.9a∗2
B , while the magnitude of

the corresponding zeroth-order quantity, equation (A · 2), is
6a∗2

B ; a first-order term is larger than the zeroth-order term.
The same calculation can be done for gapped graphene, with
a similar result. In addition, using the expression (64) of χ il

for the gapped graphene model and calculating the contribu-
tion χ zz

inter under scheme II, we obtain a zeroth-order term of
−0.0508 and a first-order term of 0.0672, which again gives
a first-order term larger in magnitude than the zeroth-order
term. Note, however, that this is the only contribution where
this arises; χ zz

occ2, for example, has a zeroth-order term of
−0.640 and a first-order term of 0.113. Yet these two exam-
ples indicate that while scheme II seems a priori reasonable,
it should be treated with caution. Given that schemes I and
II give identical results for χ zz, it seems to appear that the
inconsistencies in scheme II tend to cancel out, but there is no
reason that this should be universally true.

One strong motivation for the use of scheme II is that it
allows for a complete evaluation of the contribution χ il

inter in
the expression (64) for the susceptibility (see Appendix C and
Ref. [13]). This still leaves a summation in the contribution
χ il

occ2 that cannot be exactly evaluated, but it does offer some
insight into the validity of the two-band approximation. We
find χ zz

inter = 0.205 under scheme II with a complete eval-
uation, compared to χ zz

inter = 0.0164 under scheme II with
a two-band truncation. The difference is significant, and
strongly suggests that a two-band truncation is insufficient as
an approximation.

Yet there is one more curiosity to note. The approximation
scheme II is implemented analytically. But in numerical eval-
uations the second-order terms are dropped for consistency,
due to the product of two terms that are taken up to O(s). Of
course, these terms can be calculated and retained, although
these are not the only second-order terms. In the case of
χ zz

inter these second-order terms have a value of −0.207, the
inclusion of which almost entirely cancels the zeroth- and
first-order terms, producing a net small term, as is found from
both scheme I and scheme II with a two-band truncation.
We emphasize that while this is not a complete second-
order evaluation—it excludes terms arising from second-order

terms dropped analytically—it suggests that the higher-order
terms cannot be neglected, and since their inclusion brings
the value of χ zz

inter closer to that found from the two-band
model, perhaps the two-band truncation may not be entirely
unreasonable.

In summary, the major obstacle to calculating the mag-
netic susceptibility with a tight-binding model is the inability
to evaluate the summations over states involving a com-
plete set of bands. The general accuracy of a two-band
truncation, as applied here, is unknown. Another strategy
(“scheme II”), which treats both overlap integrals and ma-
trix elements between nearest-neighbor sites at the same
order, and keeps only first-order terms, allows for part of
the susceptibility to be calculated without band truncation.
But it seems to suffer from certain inconsistencies. These
difficulties reveal the limitations of tight-binding models for
calculations of the susceptibility, and they indicate that full
band-structure calculations should be employed. For such
calculations, the expression (74) that avoids the equal en-
ergy elements of the Berry connection should be the most
useful.

Yet despite the many approximations employed in our h-
BN calculation, as outlined above, we compare our result to an
experimental measurement of the magnetic susceptibility of h-
BN perpendicular to the hexagonal planes. The reported value
is a mass susceptibility of (−0.48 ± 0.02) × 10−6 cm3/g
[48]. Using an approximate spacing between successive h-
BN layers of c = 3.33 Å and a density of ρ = 2.26 g/cm3,
we obtain a theoretical value of −0.976χ0/(cρ) = −0.38 ×
10−6 cm3/g. This is a little less than 80% of the measured
value.

X. CONCLUSIONS

In this paper, we presented the theoretical expression for
the magnetic susceptibility of a topologically trivial insulator
in the independent particle approximation, at zero temperature
but where both time-reversal and inversion symmetry may
be broken. The expression involves a single integral over
the Brillouin zone and depends on the band energies and
various matrix elements in the cell periodic Bloch function
basis. Our result is compared with other theoretical expres-
sions found by very different strategies, including the use
of a wave-packet approximation [10], the application of a
Green-function framework [20], and the employment of a
free-energy expansion [3,14]. We proved that the apparent
differences between the results of the various strategies can
be reconciled with the use of certain sum rules such as a
generalized effective-mass tensor sum rule. Our expression—
and likewise the others [3,10,14] that we have shown are
equivalent to it—is gauge-invariant.

We have also clarified some of the confusion around the
appearance of the equal energy elements of the Berry connec-
tion in the expression for the magnetic susceptibility. While
our first result (58) is gauge-invariant, it contains equal energy
Berry connection matrix elements, and can be rewritten (74)
to be independent of these equal energy elements; this is a
form more suitable for numerical calculations based on full
band-structure models. Interestingly, in crystals where at least
one of time-reversal or inversion symmetry is broken, this
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introduces new orbital and spin contributions involving the
Berry curvature, but with different prefactors.

Our approach employs a natural decomposition of the mag-
netization into atomic, itinerant, and spin contributions. This
makes the link to the molecular crystal limit, where molecules
are identified with lattice sites between which electrons cannot
flow, very clear. We recovered the usual Van Vleck term asso-
ciated with the paramagnetism of the molecules, but including
spin effects, together with a contribution associated with the
molecular diamagnetism.

As a sample calculation, we considered the susceptibility
of hexagonal boron nitride (h-BN), and we examined the con-
sequences of band truncation and the neglect of second-order
terms in the overlap of orbitals used in tight-binding calcu-
lations. In a first calculation (scheme I) the susceptibility of
h-BN was determined with all contributions but one evaluated
using a two-band truncation, while in a second (scheme II) the
interband paramagnetic contribution to the susceptibility can
be evaluated “exactly” upon neglect of second order in the
orbital overlap terms. The second calculation yields a result
about 12 times larger than that of the first scheme, putting
some doubt on the validity of the two-band truncation. How-
ever, in the second scheme the first-order orbital overlap terms
in one contribution are larger than the zeroth-order terms, and
the second-order terms that had to be discarded to make the
complete evaluation are larger still. While this comparison can
only be made for one contribution, it also raises doubts about
the validity of approximate treatments of the orbital overlaps.

Both these issues suggest that full electronic structure calcu-
lations would be in order, and necessary to obtain trustworthy
results.

Also looking to the future, a general benefit of our ap-
proach is that it can be extended to investigate the response
of a material to finite frequency and spatially varying fields,
an extension not easily implemented using other strategies.
When this is done, higher-order multipole moments make
contributions to the induced charge current densities. For ex-
ample, when optical activity was treated with this approach,
it required the identification of the electric quadrupole re-
sponse to the electric field, the electric dipole response to
symmetrized derivatives of the electric field and the magnetic
field, and the magnetic dipole response to an electric field
[27]. These moments combine to form a response of the
charge-current density to applied fields that is gauge-invariant.
The moments and their responses that are responsible for
a generalization of the magnetic susceptibility are easily
identified, and we plan to present the associated response
calculation in a future publication.
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APPENDIX A: RELEVANT FORMULAS FOR DERIVATION

In this Appendix, we present expressions that are important for the derivation of the various contributions to the magnetic
susceptibility. For the derivation of these expressions themselves, see Duff and Sipe [28].

The velocity charge current jpR(x, t ) in Eq. (18) is

jpR(x, t ) =
∑

α,β,R′,R′′
jpβR′;αR′′ (x, R; t )ηαR′′;βR′ (t ), (A1)

with

jp
βR′;αR′′ (x, R; t ) = (

1
2δRR′′ei�(R′,x,R′′;t )χ∗

βR′;j(x, t )
(
Jp

ji (x,p(x, R; t ))χαR′′;i(x, t )
)

+ 1
2δRR′′

(
Jp

ji (x,p∗(x, R; t ))ei�(R′,x,R′′;t )χ∗
βR′ j(x, t )

)
χαR′′ i(x, t )

+ 1
2δRR′χ∗

βR′ j(x, t )
(
Jp

ji (x,p(x, R; t ))ei�(R′,x,R′′;t )χαR′′ i(x, t )
)

+ 1
2δRR′

(
Jp

ji (x,p∗(x, R; t ))χ∗
βR′ j(x, t )

)
ei�(R′,x,R′′;t )χαR′′ i(x, t )

)
, (A2)

where

Jp

ij (x, p(x, y; t )) = e

2m

(
p(x) − e

c
�y(x, t )

)
δij + εabcêc eh̄

8m2c2
σ a

ij
∂V(x)

∂xb
. (A3)

Here sans-serif indices indicate spinor components. The vector potential has been replaced by a relator-dependent quantity

�k
y(x, t ) ≡

∫
αlk (w; x, y)Bl (w, t )dw. (A4)

The itinerant charge current j̃R(x, t ) is defined as

j̃R(x, t ) =
∑

α,β,R′,R′′
j̃βR′;αR′′ (x, R; t )ηαR′′;βR′ (t ), (A5)

with

j̃βR′;αR′′ (x, R; t ) = 1
2 (δRR′′ + δRR′ )j̃βR′;αR′′ (x, t ) (A6)
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and

j̃βR′′′;αR′′ (x, t ) = −
∑

R

∫
s(x; y, R)�αR′′;βR′′′

R (y, t )dy − 1

2

∑
R,R′

s(x; R, R′)ζ αR′′;βR′′′
RR′ (t ), (A7)

where

ζ
αR′′;βR′′′
RR′ (t ) = e

ih̄
(δR′′′RδR′′R′H̄βR;αR′ (t ) − δR′′RδR′′′R′H̄βR′;αR(t )) (A8)

and

�
αR′′;βR′
R (x, t ) = ∇ · jpβR′;αR′′ (x, R; t ) + ∂ρβR′;αR′′ (x, R; t )

∂t
+ 1

ih̄

∑
μ,ν,R1,R2

ρνR2;μR1 (x, R; t )FαR′′;βR′
μR1;νR2

(t ), (A9)

with

F
αR′′;βR′
μR1;νR2

(t ) = δβνδR2R′ei�(R1,R′′,R2;t )H̄μR1;αR′′ (t ) − δαμδR′′R1 ei�(R1,R′,R2;t )H̄βR′;νR2 (t ) − eδβνδαμδR2R′δR1R′′�0
R2

(R1; t ) (A10)

and

H̄αR;λR′′ (t ) = 1

2

∫
dxχ∗

αR;i(x, t )ei�(R,x,R′′;t )(Kik(x, R′′; t )χλR′′;k(x, t ))

+ 1

2

∫
dx(Kki(x, R; t )χαR;i(x, t ))∗ei�(R,x,R′′;t )χλR′′;k(x, t )

− ih̄

2

∫
dxei�(R,x,R′′;t )

(
χ∗

αR;i(x, t )
∂χλR′′;i(x, t )

∂t
− ∂χ∗

αR;i(x, t )

∂t
χλR′′;i(x, t )

− ie

h̄

(
�0

R′′ (x, t ) + �0
R(x, t )

)
χ∗

αR;i(x, t )χλR′′;i(x, t )

)
, (A11)

�0
y(x, t ) ≡

∫
si(w; x, y)Ei(w, t )dw, (A12)

and the operator Kij(x, y; t ) is defined as

Kij(x, y; t ) =
[
p(x) − e

c �y(x, t )
]2

2m
δij + V(x)δij − eh̄

2mc
σ ij · B(x, t ) − eh̄

2mc
σ ij · Bstatic(x)

+ h̄

4m2c2
σ ij ·

[
∇V(x) ×

(
p(x) − e

c
�y(x, t )

)]
. (A13)

APPENDIX B: ATOMIC, ITINERANT, AND SPIN SUSCEPTIBILITY

While in the body of this paper we have divided the magnetic susceptibility into the Van Vleck, occupied, and geometric
terms, the more natural decomposition of the susceptibility in our approach is into atomic, itinerant, and spin magnetizations and
their respective dynamical and compositional contributions. For a derivation of the following expressions, see Sec. III of Duff
and Sipe [34].

Beginning with the dynamical contributions, the atomic magnetization dynamical contribution is

M̄i
dyn = e

4c
εicd Bl

∑
mns

fnm

∫
BZ

dk
(2π )3

(
vd

nsξ
c
sm + ξ c

nsv
d
sm

)
Ml

mn

�mn(k)
+ e

4c
εicd Bl

∑
mns

fnm

∫
BZ

dk
(2π )3

(
Wc

nsv
d
sm + vd

nsWc
sm

)
Ml

mn

�mn(k)

+ ie2

16h̄c2
εicdεlabBl

∑
mnls

fnm

∫
BZ

dk
(2π )3

ξ b
mn

(((
ξ c

nl + Wc
nl

)
vd

ls + vd
nl

(
ξ c

ls + Wc
ls

))
Wa

sm

+ Wa
ns

((
ξ c

sl + Wc
sl

)
vd

lm + vd
sl

(
ξ c

lm + Wc
lm

)))
, (B1)

where

Wa
ns = i

∑
α

∂aUnαU †
αs. (B2)
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The itinerant dynamical contribution is

M̃i
dyn = − e

4h̄c
εicd Bl

∑
mns

fnm

∫
BZ

dk
(2π )3

Re

[
ξ d

nm∂c(Emk + Enk )Ml
mn

�mn(k)

]

− ie

4h̄c
εicd Bl

∑
mns

fnm

∫
BZ

dk
(2π )3

(
(Elk − Enk )Wc

nl

(
ξ d

lm + Wd
lm

) + (Emk − Elk )
(
ξ d

nl + Wd
nl

)
Wc

lm

)
Ml

mn

�mn(k)

− e2

8h̄2c2
εicdεlabBl

∑
mn

fnm

∫
BZ

dk
(2π )3

Re
[
(Enk − Elk )Wc

nl

(
ξ d

ls + Wd
ls

)
Wa

smξ b
mn

+ (Elk − Esk )
(
ξ d

nl + Wd
nl

)
Wc

lsWa
smξ b

mn + i∂c(Enk + Elk )
(
ξ d

nl + Wd
nl

)
Wa

lmξ b
mn

]
, (B3)

and lastly the spin dynamical contribution is

M̆i
dyn = eh̄

2mc
Bl

∑
mn

fnm

∫
BZ

dk
(2π )3

Si
nmMl

mn

�mn(k)
+ ie2

4h̄mc2
εlabBl

∑
mn

fnm

∫
BZ

dk
(2π )3

(
Si

nsWa
sm + Wa

nsS
i
sm

)
ξ b

mn. (B4)

The combination of the three dynamical contributions is

M̄i
dyn + M̃i

dyn + M̆i
dyn = Bl

∑
mn

fnm

∫
BZ

dk
(2π )3

(
e

4c
εicd

(
vd

nsξ
c
sm + ξ c

nsv
d
sm − 1

h̄
ξ d

nm∂c(Enk + Emk )

)
+ eh̄

2mc
Si

nm

)
Ml

mn

�mn(k)

− Bl ie

4h̄c

∑
mn

fnm

∫
BZ

dk
(2π )3

εicd
(
Wc

nlξ
d
lm + ξ d

nlWc
lm

)
Ml

mn

+ Bl ie

4h̄c
εlab

∑
mn

fnm

∫
BZ

dk
(2π )3

Mi
nm

(
Wa

msξ
b
sn + ξ b

msWa
sn

)

− Blεicdεlab e2

8h̄2c2

∑
mn

fnm

∫
BZ

dk
(2π )3

Re
[
(Enk − Emk )Wc

nlξ
d
lmWa

msξ
b
sn + (Enk − Emk )Wc

nlξ
d
lmξ b

msWa
sn

]
,

= Bl
∑
mn

fnm

∫
BZ

dk
(2π )3

Mi
nmMl

mn

�mn(k)
+ X il

dynBl

= (
χ il

VV + X il
dyn

)
Bl . (B5)

The compositional contributions are more compactly written in the Wannier function basis. To convert to the Bloch function
basis, one has to implement the following relationships:

ṽa
αβ =

∑
mn

U †
αnv

a
nmUmβ, ξ̃ a

αβ =
∑
mn

U †
αn

(
ξ a

nm + Wa
nm

)
Umβ, S̃a

αβ =
∑
mn

U †
αnSa

nmUmβ. (B6)

The atomic magnetization compositional contribution can be written as

M̄i
comp = − e2

8h̄c2
εicd Blεlab

∑
αβ

fαRe

[ ∫
BZ

dk
(2π )3

(
ξ̃ c
αγ ṽd

γ β + ṽd
αγ ξ̃ c

γ β − i∂cṽ
d
αβ

)
∂aξ̃

b
βα

]
− εicdεdabBa e2

4mc2

∑
αβ

fα

∫
BZ

dk
(2π )3

ξ̃ c
αβ ξ̃ b

βα,

(B7)

the itinerant magnetization compositional contribution is

M̃i
comp = e2

4h̄2c2
Blεiabεlcd

∑
αβγ

fαRe

[ ∫
BZ

dk
(2π )3

ξ̃ d
αγ ξ̃ b

γ β∂a∂c(U †
βnEnkUnα )

]

+ e2

8h̄2c2
εiabεlcd Bl

∑
fαRe

[ ∫
BZ

dk
(2π )3

(
∂cξ̃

d
αβ ξ̃ b

βμ + ξ̃ b
αβ∂cξ̃

d
βμ

)
∂a(U †

μnEnkUnα )

]

− e2

8h̄c2
εiabεlcdBl

∑
α

fα

∫
BZ

dk
(2π )3

Re

[
∂aξ̃

b
αμ

(
ξ̃ c
μγ ṽd

γα + ṽd
μγ ξ̃ c

γα − 1

h̄

(
ξ̃ d
μβ∂c(U †

βnEnkUnα ) + ∂c(U †
μnEnkUnβ )ξ̃ d

βα

)]

− e2

2h̄mc2
εiabBl

∑
fαRe

[ ∫
BZ

dk
(2π )3

∂aξ̃
b
αμS̃l

μα

]
, (B8)
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and the spin magnetization compositional contribution is

M̆i
comp = − e2

2mh̄c2
εlabBl

∑
fαRe

[ ∫
BZ

dk
(2π )3

S̃i
αβ∂aξ̃

b
βα

]
. (B9)

In the following, the conversion to the Bloch function basis has been done, but the details are omitted as they are very involved;
they can be found in Sec. III of the Supplemental Material [34]. Noting that the curl of the Berry connection is the non-Abelian
(and non gauge-covariant) Berry curvature �i

nm (39), we can combine all the terms with the “ith” or “lth” component of �nm:

M̄i
comp + M̃i

comp + M̆i
comp = e

2h̄c
Bl

∑
mns

fn

∫
BZ

dk
(2π )3

Re

[
�i

nm

(
e

4c
εlcd

(
vc

msξ
d
sn + ξ d

msv
c
sn + 1

h̄
ξ d

mn∂c(Enk + Emk )

)
− e

mc
Sl

mn

)]

− e

2h̄c
Bl

∑
mns

fn

∫
BZ

dk
(2π )3

Re

[
�l

mn

(
e

4c
εiab

(
ξ a

nsv
b
sm + vb

nsξ
a
sm − 2

h̄
∂aEnkξ

b
nm + i∂av

b
nm

) + e

mc
Si

nm

)]

− e2

4mc2
Bl

∑
mn

fn

∫
BZ

dk
(2π )3

Re

[
εiabεlcd

(
δbdξ

a
nmξ c

mn − m

h̄2 ξ b
nmξ d

mn∂a∂cEnk

)]
+ X il

comp, (B10)

where X il
comp depends on Wa

nm; it thus tracks the dependence of the total expression on the Wannier function basis, and also
characterizes how that total expression depends on the Bloch bundle gauge freedom. Inside the brackets of the first line, we see
the spontaneous magnetization matrix element; see Eq. (31). In the second line, the appearance of the spontaneous magnetization
matrix elements is not immediately apparent; we must take the derivative of the velocity matrix element to find(

e

4c
εiab

[
ξ a

nsv
b
sm + vb

nsξ
a
sm − 2

h̄
∂aEmkξ

b
nm − 1

h̄
∂a

(
(Enk − Emk )ξ b

nm

)] + e

mc
Si

nm

)

=
(

e

4c
εiab

(
ξ a

nsv
b
sm + vb

nsξ
a
sm − 1

h̄
∂a(Enk + Emk )ξ b

nm

)
+ e

mc
Si

nm − εiab e

4h̄c
(Enk − Emk )∂aξ

b
nm

)

= Mi
nm − e

4h̄c
(Enk − Emk )�i

nm. (B11)

With this identification, we can write the total compositional response as

M̄i,(B,I ) + M̃i,(B,I ) + M̆i,(B,I ) = − e

2h̄c
Bl

∑
mns

fn

∫
BZ

dk
(2π )3

Re
[
�i

nmMl
mn + Mi

nm�l
mn

]

− e2

8h̄2c2
Bl

∑
mn

fn

∫
BZ

dk
(2π )3

Re
[
(Enk − Emk )�i

nm�l
mn

]

− e2

4mc2
εiabεlcd Bl

∑
mn

fn

∫
BZ

dk
(2π )3

[
δbdξ

a
mnξ

c
nm − m

h̄2 ξ b
mnξ

d
nm∂a∂cEnk

]
+ X il

comp

= (
χ il

geo + χ il
occ + X il

comp

)
Bl . (B12)

APPENDIX C: DETAILS OF H-BN MODEL CALCULATIONS

The coefficients for the wave functions are related by

c±
A /c±

B = α±(k), (C1)

where

α±(k) = tγk
�
2 − ε± . (C2)

The relative phase of the coefficients is the same as that in graphene, which experiences a discontinuity at the Dirac points.
However, in boron nitride the coefficients also have different magnitudes, and at points of phase discontinuity (the Dirac points
of graphene), one of the coefficients goes to zero: cB in the conduction band, cA in the valence band. The coefficients themselves
are well defined if the complex phase is put entirely on the coefficient that vanishes at the point of phase singularity. Thus the
coefficients are given by

c+
A = 1√

1 + |1/α+|2 , c−
A = α−√

1 + |α−|2
, (C3)

where the c±
B coefficients are found from using Eqs. (C3) and (C1).
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The magnetic susceptibility expressions require the evaluation of matrix elements of unk. This is done by reducing these
matrix elements to expressions in terms of the orthogonal atomic orbitals, and then evaluating those matrix elements explicitly
by calculating the integrals. Matrix elements are defined as

〈Ô(x)〉R
AB =

∫
dx
∗

A(x − R)Ô(x)
B(x), (C4)

and we obtain expressions for Eqs. (88), (89), and (90), using Eqs. (84) and (87):

−iξμ
nm = (

cn
A

)∗(
∂μcm

A

) + (
cn

B

)∗(
∂μcm

B

) − i
(
cn

A

)∗
cm

B

∑
R=RA−RB

e−ik·R〈xμ〉R
AB − i

(
cn

B

)∗
cm

A

∑
R=RB−RA

e−ik·R〈xμ〉R
BA, (C5)

∑
s

ξμ
nsξ

ν
sm = (

∂μcn
A

)∗(
∂νcm

A

) + (
∂μcn

B

)∗(
∂νcm

B

) + (
cn

A

)∗(
cm

A

)〈xμxν〉AA
0 + (

cn
B

)∗
cm

B 〈xμxν〉BB
0

− i
(
∂μcn

A

)∗
cm

B

∑
R=RA−RB

e−ik·R〈xν〉R
AB + i

(
cn

B

)∗
∂νcm

A

∑
R=RB−RA

e−ik·R〈xμ〉R
BA

− i
(
∂μcn

B

)∗
cm

A

∑
R=RB−RA

e−ik·R〈xν〉R
BA + i

(
cn

A

)∗
∂νcm

B

∑
R=RA−RB

e−ik·R〈xμ〉R
AB

+ (
cn

A

)∗
cm

B

∑
R=RA−RB

e−ik·R(〈xμxν〉R
AB − Rμ〈xν〉R

AB

) + (cn
B)∗cm

A

∑
R=RB−RA

e−ik·R(〈xμxν〉R
BA − Rμ〈xν〉R

BA

)
, (C6)

∫
dx

∂u†
nk

∂kμ

∂Hk

∂kν

umk = −t
(
∂μcn

A

)∗(
∂νγkcm

B

) − t
(
∂μcn

B

)∗
∂νγkcm

A − it
(
cn

B

)∗
∂νγkcm

B

∑
R=RA−RB

e−ik·R〈xμ〉R
AB

− it
(
cn

A

)∗
∂νcm

A

∑
R=RB−RA

e−ik·R〈xμ〉R
BA. (C7)

Under the nearest-neighbor assumption, this means evaluating matrix elements when R = 0,± δi. The nearest-neighbor
matrix elements of interest have the form

〈Ô(x)〉RAB
AB =

∫
dx
∗

A(x − RAB)Ô(x)
B(x) (C8)

and

〈Ô(x)〉RAB
AB(0) =

∫
dxφ∗

A(x − RAB)Ô(x)φB(x), (C9)

where RAB = RA − RB = −RBA. By substituting in the definitions of the orbitals orthogonal to first order in s [(82) and (83)],
the matrix elements are

〈Ô(x)〉0
AA = 〈Ô(x)〉0

AA(0) − sRe
∑
RAB

〈Ô(x − RAB)〉RAB
AB(0), (C10)

〈Ô(x)〉0
BB = 〈Ô(x)〉0

BB(0) − sRe
∑
RAB

〈Ô(x)〉RAB
AB(0), (C11)

〈Ô(x)〉RAB
AB = 〈Ô(x)〉RAB

AB(0) − s

2
〈Ô(x)〉0

BB(0) − s

2
〈Ô(x + R)〉0

AA(0), (C12)

where Ô(r) represents any of the relevant operators such as components of the position operator or products of them (x or xy,
etc.). It suffices to consider the coordinate directions perpendicular and parallel to the displacement R of the orbitals; these are
calculated in closed form using a prolate spheroidal coordinate transformation [49]. By a simple change of variables,

〈xμ〉RBA
BA = 〈xμ〉RAB

AB , 〈xμxν〉RBA
BA = 〈xμxν〉RAB

AB + RBAν〈xμ〉RAB
AB + RBAμ〈xν〉RAB

AB . (C13)

1. Complete evaluation of χinter

This section is a direct generalization of the method applied by Ogata [13]. By applying the order of s assumption, Lzφpz = 0,
and writing ∂Hk

∂kμ
directly as an operator in real-space coordinates acting on the wave functions, we can write

∂Hk

∂ky

∂u±
k

∂kx
− ∂Hk

∂kx

∂u±
k

∂ky
=

(
ζ±

1x

∂Hk

∂kx
+ ζ±

1y

∂Hk

∂ky

)
u±

k +
(

ζ±
2x

∂Hk

∂kx
+ ζ±

2y

∂Hk

∂ky

)
u∓

k , (C14)

where the ζ ’s are given below in Eq. (C19). Then using the definition of the velocity matrix element,

1

Vuc

∫
Vuc

dxu†
lk

∂Hk

∂kμ

ul ′k = i(εl − εl ′ )ξ
μ

ll ′ + ∂εl ′

∂kμ

δll ′ , (C15)
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the non-Hermitian spontaneous magnetization matrix element can be evaluated as

Mz
−,l = − ie

2h̄c

[
2iε+ζ−∗

2x ξ x
+,l + 2iε+ζ−∗

2y ξ
y
+,l + i(ε− − εl )

(
ζ−∗

1x ξ x
−,l + ζ−∗

1y ξ
y
−,l + ζ−∗

2x ξ x
+,l + ζ−∗

2y ξ
y
+,l

)

+ ζ−∗
1x

∂ε−
∂kx

δl,− + ζ−∗
1y

∂ε−
∂ky

δl,− + ζ−∗
2x

∂ε+
∂kx

δl,+ + ζ−∗
2y

∂ε+
∂ky

δl,+ + ∂ε−
∂kx

ξ
y
−,l − ∂ε−

∂ky
ξ x
−,l

]
. (C16)

Since terms of the form (∂με)2/(ε− − εl ) for l 	= + are dropped as second order, the absolute square can be evaluated using the
identities ∑

l ′ 	=−
ξν

n,l ′ξ
μ

l ′,m =
∫

dx
∂u†

nk

∂kν

∂umk

∂kμ

− ξ
μ
n,−ξν

−,m (C17)

and∑
l ′ 	=−

(ε− − εl ′ )ξ
ν
n,l ′ξ

μ

l ′,m =
∫

dx
∂u†

nk

∂kν

(ε− − Hk )
∂umk

∂kμ

= (ε− − εm)
∫

dx
∂u†

nk

∂kν

∂umk

∂kμ

+
∫

dx
∂u†

nk

∂kν

∂Hk

∂kμ

umk − i
∂εm

∂kμ

ξν
nm. (C18)

Note that in graphene the energy is directly proportional to t by ε = tγk, and since t is an overlap integral, this is a first-order
quantity in the sense of scheme II. Adding the band gap � means that this proportionality no longer holds, so the energy in boron
nitride is no longer strictly a first-order quantity in the sense of scheme II.

The definitions of the four ζ ’s are

ζ±
1x = 1

c±
A c∓

B − c∓
A c±

B

(
c∓

B

(
−∂yc±

A + s

2
c±

B ∂yγk

)
− c∓

A

(
−∂yc±

B + s

2
c±

A (∂yγk )∗
))

,

ζ±
1y = 1

c±
A c∓

B − c∓
A c±

B

(
c∓

B

(
∂xc±

A − s

2
c±

B ∂xγk

)
− c∓

A

(
∂xc±

B − s

2
c±

A (∂xγk )∗
))

,

ζ±
2x = 1

c±
A c∓

B − c∓
A c±

B

(
−c±

B

(
− ∂yc±

A + s

2
c±

B ∂yγk

)
+ c±

A

(
−∂yc±

B + s

2
c±

A (∂yγk )∗
))

,

ζ±
2y = 1

c±
A c∓

B − c∓
A c±

B

(
−c±

B

(
∂xc±

A − s

2
c±

B ∂xγk

)
+ c±

A

(
∂xc±

B − s

2
c±

A (∂xγk )∗
))

. (C19)
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