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Strange metal behavior from incoherent carriers scattered by local moments
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We study metallic transport in an effective model that describes the coupling of electrons to fluctuating
magnetic moments with full SU(2) symmetry, exhibiting characteristic behavior of metals at the approach of
the Mott transition. We show that scattering by fluctuating local moments causes a fully incoherent regime of
electron transport with T -linear resistivity. This strange metal regime is characterized by almost universal, nearly
Planckian slope and a finite zero-temperature intercept, that we can associate respectively with the amplitude
fluctuations and with the random orientations of local magnetic moments. Our results indicate a route for
understanding the microscopic origin of strange metal behavior that is unrelated to quantum criticality and does
not rely on the existence of quasiparticles.
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I. INTRODUCTION

One of the open theoretical challenges in quantum mate-
rials is the explanation of strange metal behavior: in many
complex metals the resistivity increases approximately lin-
early with temperature over an extended temperature range, as
ρ(T ) � ρ0 + BT instead of the expected quadratic behavior,
therefore contradicting the very foundations of Fermi liquid
theory. The slope of ρ(T ) has been the subject of thorough
investigation, and is now often interpreted as an indication
of a fundamental “Planckian” bound for inelastic scattering
[1–5]. The residual term ρ0 has received less attention. Both
numerical studies [6,7] and experiments [8] indicate that the
latter amounts to a T -independent shift of the resistivity
curves upon tuning the interaction strength, which is strongly
reminiscent of the effects of elastic disorder scattering [9]. The
precise origin of such intrinsically generated disorder is still
unclear [10].

In order to pinpoint the microscopic origin of the re-
ported strange metal phenomenology, we introduce here a
microscopic model that considers the coupling of electrons
to fluctuating local moments while setting aside all the more
complex many-body effects contained in the Hubbard model.
This reductionist approach captures the key aspects of the
previously calculated resistivity of correlated metals at the ap-
proach of the Mott transition in the high-temperature regime,
revealing the essential microscopic transport processes at play.

In qualitative agreement with available numerical treat-
ments of correlated electron transport in the framework of
the Hubbard model [11–16] we find a resistivity that varies
linearly with temperature with a slope that is qualitatively
compatible with Planckian bounds.

Our formulation of the problem demonstrates that the ubiq-
uitous T -linear behavior as well as the finite intercept both
originate from the scattering by local magnetic fluctuations,
in a regime where the current is not carried by individual
quasiparticles. The theory draws a direct connection between

the anomalous electronic transport properties and the SU(2)
nature of the scatterers, through their ability to fluctuate both
in size and in orientation. Finally, the addition of even modest
disorder scattering in the scalar charge sector can stabilize lin-
ear resistivity down to the lowest temperatures, as is observed
in a variety of correlated metals.

II. MODEL AND METHOD

We consider a model of electrons moving on a lattice and
that are coupled with local magnetic fluctuations. These arise
in Mott systems when electronic correlations constrain the
electrons to single occupancy on atomic sites. In full general-
ity, our model can also mimic other types of local fluctuations
(e.g., of stripe order) scattering the electronic carriers [17]. We
consider the action S = S0 + Sint + Sb with

S0 =
∫

dτ
∑
i, j,σ

c̄i,σ (τ )[δi, j (∂τ − μ) − ti j]c j,σ (τ ′), (1)

Sint =
∫

dτ
∑
σ,ρ

∑
ν,i

gν c̄i,σ (τ )σν
σ,ρci,ρ (τ )X ν

i , (2)

Sb = β

2

∑
ν,i

kν

(
X ν

i

)2
. (3)

S0 describes tight binding electrons moving on a lattice with
intersite transfer integrals ti j defined as Grassman variables
ciσ , c̄i,σ at lattice site i and with spin σ . Throughout this work
we set the particle density to half filling.

The interaction term, Sint, describes the local coupling
of the electrons with classical variables of bosonic origin,
X ν

i , governed by the harmonic term Sb. The vector part
(ν = 1, 2, 3) represents the interaction with fluctuating local
moments. Formally, a SU(2) symmetric spin-boson interac-
tion can be rigorously derived by linearizing the Hubbard
model via a Hubbard-Stratonovich transformation and then
taking the high-temperature limit, yielding gν = 1 and kν =
3/U [18,19]. The scalar part of Sint (index ν = 0) nominally
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represents a local coupling with the charge, and has been thor-
oughly studied elsewhere [20]. In a broader sense, the latter
can also serve as a proxy for retarded, longer-ranged Coulomb
interactions between electrons. All along this work we con-
sider an isotropic spin coupling g1,2,3 = gs preserving SU(2)
symmetry; in this case the relevant quantity that couples to
the electron spin is the energy fluctuation associated with the
radial bosonic variable v = gsr = gs

√∑3
ν=1(X ν )2, with λs =

g2
s/2ksD the corresponding dimensionless coupling strength,

where D is the half bandwidth for the no-interacting model
S0 (see [21] for a real-space implementation of the theory,
and [22] for a related approach for Ising spins). Connecting
to the original Hubbard model via the Hubbard-Stratonovich
derivation yields (U/D) = 6λs [18].

Because we are interested in high-temperature transport,
we have deliberately omitted the boson dynamics in Eq. (3)
[18]. This approximation, that is consistently validated by our
results shown next, is appropriate to the problem at hand as it
applies in regimes where the relevant bosonic (spin and/or
charge) fluctuations are slow, a situation that is favored by
the presence of strong many-body correlations. Crucially to
the remainder of this work, this setup explicitly shows how
the bosons can act as a thermalized disordered environment
for the electrons whenever the temperature is larger than
the relevant bosonic energy scale. To derive all quantities
of interest from the action Eqs. (1)–(3) we use single-site
dynamical mean field theory (DMFT) [23] in a nonmagneti-
cally ordered phase, assuming a semicircular density of states
(DOS) for the noninteracting electrons (see Appendix A). For
static bosons the impurity model can be solved exactly. The
local Green’s function G can then be calculated as a statistical
average over the thermal distribution P (v) of local boson
energy fluctuations. The corresponding electron self-energy 


is obtained via the usual self-consistency condition, 
(ω) =
ω − D2

4 G(ω) − G−1(ω) for the chosen semicircular DOS. The
electrical conductivity is calculated via the Kubo formula:

σ (T ) = 2σ̄π

∫
dε �(ε)

∫
dωA2(ε, ω)

(
− df

dω

)
, (4)

where A(ε, ω) = − Im[ω − ε − 
(ω)]−1/π is the spectral
function, f is the Fermi function and �(ε) is the transport
function of the lattice model, given by the DOS of the squared
velocity along a given direction. This treatment explicitly
ignores vertex corrections; these are known to moderately
suppress the resistivity without however altering the form of
its temperature dependence, that is our main interest here. [7].
Conductivity units are set by σ̄ = e2a2/h̄� with a the lattice
parameter in the relevant direction and � the unit cell volume
(see Appendix B).

III. CORRELATED BEHAVIOR AND MOTT TRANSITION

Figure 1 shows resistivity vs temperature curves for
increasing values of the coupling parameter λs. At all temper-
atures higher than the Fermi liquid temperature, our results
reproduce the essential features observed at the approach
and across the Mott transition in the Hubbard model [6,7].
Incidentally, the metal-insulator transition (MIT) is found
here at λc

s = 0.36, corresponding to (U/D)c = 2.2, in good

FIG. 1. (a) Temperature dependent resistivity calculated for
equally spaced λs = 0.04 → 0.36, in units of ρMIR. Dashed lines
are the results of the incoherent approximation (see text and Ap-
pendix C). (b) Temperature coefficient of the resistivity B at low
(T = 0.05, green) and high temperature (T = 0.5, brown) as a func-
tion of λs in quadratic scale, together with the prediction of the
incoherent approximation (dashed). (c) The zero temperature inter-
cept ρ0 (residual resistivity) extrapolated from high temperatures.

agreement with the single-site continuous-time quantum
Monte Carlo (CTQMC) result in the half-filled Hubbard
model, (U/D)c = 2.3 [24].

We find two fundamentally different T -linear resistivity
regimes. At low temperatures, only states near the Fermi en-
ergy contribute to transport. In this “resilient quasiparticle”
regime [25], one can tentatively apply the weak-scattering,
low-T limit of Eq. (4), namely ρ/ρMIR = �/2D [with the
resistivity at the Mott-Ioffe-Regel limit given by ρMIR =
(3π/2)/σ̄ ; see Appendix B]. Observing that the coupling to
thermal bosons yields � ∝ λsT [26] leads to a resistivity that
is trivially linear in temperature, with a large variability in
slopes upon varying λs and a common intercept ρ0 = 0. This
indeed agrees with what is seen in Fig. 1(a) at low T . The
slopes shown in Fig. 1(b) (green), however, markedly contra-
dict this weak-scattering prediction, as they increase with λ2

s
[27] instead of λs.

For sufficiently large λs still within the metallic phase
the system enters a second linear regime upon increasing
the temperature: here the slope B is similar for all curves,
while the ρ0 intercept is nonzero and is strongly param-
eter dependent [Figs. 1(a) and (c)]. The slope itself is of
order of unity when expressed in the natural units of the
model, i.e., B = d (ρ/ρMIR)/d (T/D) � 1.5–2 [Fig. 1(b) and
map Fig. 2(f)], in quantitative agreement with numerical stud-
ies on the Hubbard model [11–16] as well as with recent
transport measurements of correlated organic metals as a
function of pressure [8]. If we were to interpret this result
within the weak-scattering/low-temperature Drude picture, as
is customarily done in experiments [2–4,28], we would obtain
d�/dkBT = 2B, yielding d�/dT of order of a few kB, with a
clear Planckian flavor. The overall behavior found in this high-
temperature regime is very reminiscent of the phenomenology
observed in strange metals.

Emergence of local moments. We now show that the
strange metal behavior found at high T is a direct consequence
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FIG. 2. (a) Symmetrized distributions P(v) of the SU(2) bosonic
variable for T = 0.25 and λs = 0.20, decomposed into the singly
occupied, spin up (right Gaussian), spin down (left) and empty or
doubly occupied sites (center). (b) Mean square fluctuation s2 =
〈v2〉/3 as a function of temperature for λs = 0.20 (green), com-
pared with the residual term v2

0 (yellow) and the fluctuations �s2

(red) extracted from the multicomponent fits of P(v). (c) Local spin
susceptibility (green) compared with its analogous decomposition
into χ0 (yellow) and �χ (red). (d) Residual resistivity ρ0 showing
almost perfect correlation with the magnitude of the local moments
v2

0 obtained at high temperature. (e) Map of the resistivity and (f)
of the slope B in the (λs, T ) plane. In (e) the black dashed curve
is the MIR limit ρ = ρMIR, the blue curve locates the existence of
a well formed pseudogap in the spectrum (see Appendix F), and the
yellow square is the location of the MIT (estimated at T = 0.01). The
left legend indicates the magnitude of the charge compressibility κ

and diffusivity D entering the Nernst-Einstein relation [+ (−) stands
for values >1 (<1); see Appendix D]. In (f) the black dashed curve
locates the formation of local moments, and the blue curve is the
point where the boson distribution becomes bimodal.

of scattering from fluctuating local moments. Figure 2(a)
shows a typical radial distribution of the bosonic spin vari-
able v, in the high-temperature metallic regime at moderate
λs = 0.2 (U/D = 1.2). While at first sight the distribution
seems Gaussian as predicted by perturbation theory, closer
inspection reveals a hidden internal structure. The distribu-
tion obtained numerically can be perfectly described as the
sum of three Gaussians of center ±v0, 0 and variance �s,
originating respectively from singly occupied and empty or

doubly occupied sites; v0 and �s represent the average mag-
nitude and the magnitude fluctuations of the corresponding
magnetic moments (see Appendix E).

Figure 2(b) shows the calculated mean square fluctuation
s2 = 〈v2〉/3 that determines the total scattering strength. The
result can be written as s2 = �s2 + v2

0/2, separating explicitly
the contributions to scattering originating from magnitude and
angular fluctuations (because the orientation of the moments
is undetermined, the impact of angular fluctuations is pro-
portional to the magnitude v0). The magnitude fluctuations
closely follow the classical thermal dependence, �s2 � 2λsT .
More interestingly to us, v2

0/2 reveals the angular fluctuations
kicking in due to the emergence of local moments in the
correlated metal phase. The residual resistivity of electrons
scattered by randomly oriented moments is readily evaluated
to ρ0 ∝ v2

0 . As reported in Fig. 2(d), this behavior is fully
compatible with the resistivity data of Fig. 1, showing that
the zero-temperature intercept of the resistivity is caused by
the angular fluctuations of the local moments.

Finally, from the knowledge of s2 we can derive the local
spin susceptibility [29] shown in Fig. 2(c). The latter ap-
pears to be dominated by the preformed moments, exhibiting
the familiar Curie form χs ∼ 1/T even at high temperatures
where the thermal fluctuation part �s is much larger than the
mean v0.

IV. TRANSPORT PHASE DIAGRAM

The relation between the statistical properties of the
spin variable and the transport mechanism is illustrated in
Figs. 2(d) and 2(e), showing maps of the resistivity and its
derivative in the (λs, T ) plane. Figure 2(e) shows a progressive
evolution of the resistivity as a function of the interaction
strength λs, with values steadily increasing from the metal
(left) to the Mott insulator (right). Bad metal behavior occurs
in the intermediate coupling regime, where the resistivity rises
above the Mott-Ioffe-Regel (MIR) limit (blue line). The bad
metal regime defined by this condition is seen to coincide with
the region where the momentum-integrated spectral density
A(ω) = − Im G(ω)/π shows a well-formed pseudogap [21]
[dashed line, A(0) equal to half of its maximum value; see
Appendix A].

Figure 2(f) shows a map of the slope B in the same param-
eter range. Confirming the insights gained in the preceding
sections, we see large variations of the slope upon varying λs

at low T . At high T , however, the slope is essentially constant
in a very broad region of parameters, that we associate with
the fluctuating local moments phase. This is delimited by the
dashed line, defined as the temperature at which the amplitude
v0 of the local moments stabilizes above 80% of its high-T
saturation value; the color map shows that it coincides with
the end of the resilient quasiparticle regime and the onset
of strange metal transport, where the resistivity is T linear
with almost universal slope. Also shown is the line beyond
which the boson distribution becomes bimodal (blue); this
coincides with the change of sign of the resistivity slope at
high temperature and merges into a polaronic transition at
T = 0 (this is a precursor of the T = 0.0 MIT, similar to the
case of scalar coupling to the charge; see Appendix E and
[20,30]).
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V. ORIGIN OF STRANGE METAL TRANSPORT

We now show that the character of the charge trans-
port mechanism in the high-temperature regimes presented
here is markedly non-Drude: the resistivity is not pro-
portional to the scattering rate and it cannot be ascribed
to (even ill-defined) quasiparticle carriers. To this aim we
make a drastic simplification and rewrite the Kubo for-
mula (4) by neglecting the band dispersion altogether.
This corresponds to replacing the spectral function with
its local (momentum integrated) equivalent A(ω), lead-
ing to σinc = 2πσ̄

∫
dε �(ε)

∫
dω[A(ω)]2(−df /dω), with∫

dε �(ε) = D2/4 for the semicircular DOS (see Ap-
pendix C). The incoherent resistivity obtained through this
formula accurately describes the numerical data up to a con-
stant that is readily determined from the noninteracting limit
by enforcing ρ(T = 0) = 0 (Fig. 1, dashed). Notably, the
agreement extends down to the resilient quasiparticle regime,
where it reproduces the correct λ2

s dependence of the slope
[standard weak-coupling approaches instead break down; see
Fig. 1(b) and discussion].

With this paradigm shift at hand we can better understand
the origin of the almost universal slope observed in the strange
metal regime. In contrast to the low-T limit, where the con-
ductivity is determined by the value of the spectral function
at the Fermi level, at high T excitations throughout the entire
electronic spectrum are involved in the transport process. The
leading T dependence of the resistivity can be understood
by taking the high-temperature limit of the Fermi function,
−df /dω → 1/4T , showing that, as long as the temperature is
comparable or larger than the range of variation of the spectral
function A(ω), the resistivity is linear in T with an almost
universal slope of order 1, B = d (ρ/ρMIR)/dT � (16/3π2)/I
being controlled by the global integral I = ∫

dω[A(ω)]2, a
quantity that depends only weakly on model parameters.
Indeed, magnetic fluctuations affect the integral via a mild
increase of the effective bandwidth, D∗ > D [31] resulting
in B � D∗/D = 1 + O(λsT/D). Figure 1(b) shows that the
slope for incoherent transport stabilizes around B ≈ 1.5–2 in
the whole range where strange metal is observed. Because it
follows from global properties of the electronic spectrum, this
result is largely independent on dimensionality, it does not rely
on the existence of a quantum critical point, and it is robust
upon combining different sources of scattering, as we show
next.

VI. INTERPLAY WITH DISORDER
AND PHONON SCATTERING

Figure 3(a) shows that the addition of even a modest
amount of scalar disorder (here taken to be Gaussian distri-
bution of site energies with standard deviation σ ) tends to
erase the clear distinction between the resilient quasiparticle
regime and the strange metal found in the absence of disorder.
The resistivity curves at different values of σ mainly differ
by the value of their zero temperature intercept, but otherwise
have a common slope that is largely unaffected by disorder.
This agrees with what is observed in transport experiments of
correlated systems under irradiation [9,32,33].

FIG. 3. (a) Resistivity vs T for λs = 0.2 and different amounts of
Gaussian scalar disorder with mean square fluctuation σ 2 = 0.0 →
0.5 and (b) different values of the charge coupling λc = 0.00 → 0.32
(from green to brown). (c) Map of the slope at T = 0.5 in the (λs, λc )
plane; the black dashed line marks the MIT (estimated at T = 0.01).

Figure 3(b) shows the resistivity calculated in the presence
of an added scalar electron-boson coupling, λc = g2

0/2kD.
Such interaction in the charge sector competes with the
electronic correlations, shifting the Mott transition to higher
values of λs. This competition is illustrated in the phase dia-
gram of Fig. 3(c), showing the locus of the MIT (dashed line)
superimposed on the map of the high-temperature slope B.

VII. CONCLUDING REMARKS

The incoherent scattering of electrons from fluctuating lo-
cal moments is able to explain the high-temperature strange
metal behavior often observed in correlated electron systems.
At odds with the normal Fermi liquid picture, in this regime
the electrical conduction involves all states in the electronic
spectrum instead of being governed by quasiparticle states
near the Fermi energy alone: this leads to high-T -linear re-
sistivities with almost universal slopes that are insensitive to
microscopic model details and qualitatively compatible with
Planckian theoretical estimates. The microscopic mechanism
unveiled here relies entirely on local physics, and is therefore
alternative to existing hydrodynamic approaches to strange
metals [34,35]. We also identify the primary sources of scat-
tering to bosonic thermal excitations coupled spin degree of
freedom, whereas scattering with overdamped bosonic excita-
tion was recently put forward [36] to explain resonant x-ray
scattering experiments in cuprates.

Interestingly, the “no quasiparticle” viewpoint helps in un-
derstanding the origin of the mysterious compensation of the
T dependences of diffusivity and compressibility observed in
previous numerical studies of correlated metals, with these
two quantities seemingly conspiring to provide an overall ρ ∝
T behavior [11,27,37]: our results show that in the strange
metal regime the resistivity itself is the relevant physical quan-
tity embodying the linear temperature dependence.

Remarkably, the inclusion of other sources of disorder in
addition to the considered fluctuating local moments stabilizes
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strange metal behavior down to the lowest temperatures, as
observed in a variety of correlated metals. While identifying
the precise nature of this missing randomness goes beyond
the scope of this work, the generality of the experimental
observations would hint at an intrinsic origin. Nearly frozen,
self-generated disorder brought about by frustrated (magnetic
[38] or charge [37,39–41]) interactions and surviving down to
the lowest temperatures could be a plausible candidate.

Finally, due to its modest computational cost the approach
introduced here could serve as a meaningful starting point for
realistic simulations of correlated materials, as well as in all
these systems (interfaces, mesoscopic devices and disordered
systems) where the effects of spatial inhomogeneity beyond
single- and few-site clusters are crucial.
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APPENDIX A: DERIVATION
OF THE DMFT RECURSION SCHEME

The action shown in Eqs. (1)–(3) can be derived by the
following Hamiltonian within single site DMFT [23]:

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ +
∑
i,σ,ρ

3∑
ν=0

gνc†
i,σ σν

σ,ρc j,ρX ν
i

+ 1

2

∑
ν

kν

(
X ν

i

)2
, (A1)

where c†
i,σ are creation operators of electrons at site i and

spin-component σ , σν are the Pauli matrices with ν = 0, 3
(σ0 = 1), and X ν

i are the classical boson displacement oper-
ators. Electrons can hop with hopping integral t and interact
with the classical bosons through their charge (ν = 0) and
spin (ν > 0).

The impurity propagator can be derived by averaging the
matrix

Ĝ(ω) = 1

G−1
0 (ω) − ∑3

ν=0 gνσν
σ,ρX ν

(A2)

over the classical phonon bath. G0 is propagator associated
to the Weiss field resulting from the integration of the lattice
electrons [23], that we take to be independent on spin indices
σ since we do not consider symmetry broken phases. The
classical distribution functions for the bosons can be derived
by integrating out the Gaussian electronic degree of freedom
using the action equations (1)–(3) of the main text:

P(X ν ) ∝ exp(−Sb) �n det

(
G−1

0 (iωn)1−
3∑

ν=0

gνσ
νX ν

)
.

(A3)

In the nonordered phase the impurity propagator obtained by
averaging the matrix (A2) with probability distribution (A3)

is spin independent and equal to

G(ω) =
〈

G−1
0 (ω) + g0X 0 + �v(X ν ) · σ(

G−1
0 (ω) − g0X 0

)2 − |�v(X ν )|2

〉
, (A4)

where �v is a three-dimensional vector of components vν =
gνX ν (ν = 1, 3). The average over the classical boson vari-
ables restores translational invariance. The self-consistency
condition is obtained by equating the impurity propagator
with the local lattice propagator. Taking into account that in
the paramagnetic case the self-energy is spin independent, we
can write G(ω) = G−1

0 (ω) − 
(ω) and

G(ω) =
∫

dε N (ε)
1

ω + μ − ε − 
(ω)
, (A5)

where N (ε) is the noninteracting density of states (DOS) and
μ the chemical potential.

In the DMFT calculation of the optical conductivity via the
Kubo formula, vertex corrections are absent. In the paramag-
netic charge disordered case we obtain the usual expression
[23]

Re σ (ω) = 2σ̄π

∫
dε

∫
dν �(ε)A(ε, ν)A(ε, ω + ν)

× f (ν) − f (ω + ν)

ω
, (A6)

where A(ε, ν) = − Im 1
π

[ω + μ − ε − 
(ω)]−1 is the spec-
tral function, �(ε) = ∑

k |vk|2δ(ε − εk ) is the transport func-
tion in a given direction [vk = ∂ε(k)/∂k], f (ν) is the Fermi
function, and σ̄ = e2a2/�h̄ is the unit of conductivity with a
the lattice spacing in the chosen direction and � the volume
of the unit cell. The DC conductivity is readily obtained as the
zero frequency limit of the expression above,

σ (T ) = 2σ̄π

∫
dε �(ε)

∫
dω A2(ω, ε)

(
− df

dω

)
. (A7)

We consider an isotropic spin coupling preserving SU(2)
symmetry (gν ≡ gs for ν = 1, 3) and half filling (μ = 0).
In this case the distribution of the bosonic fields depends
only on two variables: X 0, coupled to the charge, and the
modulus of the boson displacement coupled to the spin, r =√∑3

ν=1(X ν )2. Integrating out the electrons gives

P(X 0, r) ∝ exp

(
−β

2
[k0(X 0)2 + ksr

2]

)

× �n>0

∣∣G−1
0 (iωn) − g0X 0 − gsr

∣∣2

× ∣∣G−1
0 (iωn) − g0X 0 + gsr

∣∣2
, (A8)

where we have used the fact that G−1
0 (−iωn) = [G−1

0 (iωn)]∗.
This probability distribution is even in the variable X 0 and

depends on the variables coupled to the spin only through
the modulus r. The averages appearing in Eq. (A4) therefore
simplify to

G(ω) =
〈

G−1
0 (ω)(

G−1
0 (ω) − g0X 0

)2 − g2
sr

2

〉
, (A9)
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where we have defined the average appearing in Eq. (A9) as

〈(· · · )〉 = 4π

∫
dX0

∫
dr r2(· · · ).

Two dimensionless coupling constants can be defined in
this problem: the charge coupling λc = g2

0/2k0D and the spin
coupling λs = g2

s/2ksD. Accordingly we introduce two en-
ergy variables u = g0X 0 and v = gsr. Since from Eq. (A8)
P(X 0, r) = P(X 0,−r), we can redefine the probability distri-
bution of v by extending it to both positive and negative values
of v as

P(u, v) ∝ exp

[
−

(
u2

4λcDT
+ v2

4λsDT

)]

× �n>0

∣∣G−1
0 (iωn) − u − v

∣∣2

× ∣∣G−1
0 (iωn) − u + v

∣∣2
. (A10)

Equation (A9) can now be rewritten in a more compact
form as

G(ω) =
〈

1

G−1
0 (ω) − u − v

〉
, (A11)

where the average is taken on the two-variable distribution
(4πv2)P(u, v).

All calculations presented here are performed on a Bethe
lattice with an infinite coordination number z → ∞ and half
bandwidth D = √

zt , taking D as the energy unit. The corre-
sponding DOS and transport function appearing in Eqs. (A5)
and (A6) read [42]

N (ε) = 2

πD2

√
D2 − ε2, (A12)

�(ε) = 2

3πD2
(D2 − ε2)3/2, (A13)

with
∫

�(ε)dε = D2/4. On the Bethe lattice G−1
0 (iωn) =

iωn − D2

4 G(iωn) is known analytically. Equations (A11) and
(A8) form a set of closed equations for the local Green’s func-
tion G(iωn) that can be easily solved numerically by recursion.

APPENDIX B: RESISTIVITY AT THE MIR LIMIT

By replacing −df /dω = δ(ω − EF ) as appropriate at low
temperatures and taking the weak scattering limit �(EF ) =
−2 Im 
(EF ) � D, one obtains σ = 2σ̄�(EF )/�(EF ); cf.
[25]. Observing that 2σ̄�(EF ) = ne2/m for a parabolic dis-
persion in any dimensions recovers the Drude formula, σ =
ne2τ/m, with τ = 1/�.

Defining the Mott-Ioffe-Regel limit through the condition
kF � = 1 corresponds to � = 2EF , yielding

σMIR = σ̄�(EF )/EF (B1)

on the parabolic band, with σ̄ = e2a2/h̄�. This allows us to
define ρMIR = 1/σMIR = (3π/2)/σ̄ for the chosen semicir-
cular density of states, if we set EF = D at half filling. In
these units, the low-temperature limit of Eq. (A7) acquires the
simple expression

ρ/ρMIR = �/2D. (B2)

FIG. 4. The TCRs of ρ∞ (closed symbols) and �ρ (open sym-
bols) compared. The coupling ranges from λs = 0.10 (green) to
λs = 0.24 (dark brown).

APPENDIX C: THE INCOHERENT SCATTERING REGIME

In the incoherent scattering regime we start with the Kubo
formula and implement the following high-temperature de-
coupling in the derivative of the Fermi function appearing in
Eq. (4): (

− df

dω

)
= 1

4T
[1 − tanh2(ω/2/T )]. (C1)

Correspondingly the conductivity can be written as σ = σ∞ −
�σ , where

σ∞(T ) = 2σ̄π
1

4T

∫
dε �(ε)

∫
dω A2(ε, ω). (C2)

By defining ρ∞ = 1/σ∞ we can decouple the resistivity in a
similar fashion as ρ = ρ∞ + �ρ. Figure 4 shows that at high
temperatures the variation with temperature of �ρ is negligi-
ble with respect to (w.r.t.) that of ρ∞. We now evaluate the
temperature coefficient of the resistivity (TCR, B = dρ/dT )
by considering the temperature variation of ρ∞. To provide an
analytical estimate we take the incoherent approximation for
the conductivity bubble,∫

dε �(ε)
∫

dω A2(ε, ω) � D2

4

∫
dω A2(ω), (C3)

where A(ω) is the (momentum-integrated) spectral density.
Within this approximation we obtain

dρ∞/dT = 8

πσ̄D2
∫

dωA2(ω)
(C4)

Using Eq. (B1) we can write more generally

dρ∞/ρMIR

d (T/D)
= C(T ) (C5)

with C(T ) a dimensionless coefficient given by

C(T ) = 2�(0)/
∫

�(ε)dε

π
∫

dω A2(ω)
(C6)

for any lattice model and dimensionality.
The weak temperature dependence of this factor comes

from the temperature dependence of the spectral function, due
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FIG. 5. (a) Conductivity, (b) compressibility, and (c) diffusivity as functions of temperature for λc = 0.0 and λs spanning from 0.0 to 0.4
(from green to red).

to interactions with the thermal bosons. In the classical limit
the coupling with the bosons provides an effective disorder
potential that broadens the original DOS [31]. Since A(ω)
is normalized to 1, the integral appearing in Eq. (C6) is of
the order of 1/D∗(T ), where D∗ � D

√
1 + 8λsT/D as can

be estimated in the Gaussian limit [31], therefore provid-
ing only a moderate preasymptotic temperature dependence.
The order of magnitude of C can therefore be estimated us-
ing free-electron DOS: on the Bethe lattice �(0) = 2D/3π ,∫

�(ε)dε = D2/4, and the integral in Eq. (C6) is 16/3π2D,
leading to C = 1.

The fact that the function �, that embodies the specific
properties of the lattice, appears both in the numerator and
in the denominator of Eq. (C6) makes this estimate quite
robust. For example, repeating the same calculation for a
boxlike DOS mimicking the two-dimensional lattice yields
C = 0.995.

APPENDIX D: NERNST-EINSTEIN ANALYSIS

The Nerst-Einstein relation

σ = e2κD (D1)

relates the conductivity σ to the compressibility κ and the
diffusivity D. In Eq. (D1), σ is known from the Kubo formula
[Eq. (4), main text] whereas the compressibility can be derived
by differentiating the particle number

n =
∫

dν f (ν)A(ν) (D2)

w.r.t. μ. The diffusivity is obtained from these two quantities,
via Eq. (D1).

The temperature dependence of the quantities σ , κ and D
is shown in Fig. 5 for λc = 0.0, enabling a qualitative under-
standing of the different transport regimes. At weak coupling
both diffusivity and compressibility are large and the tempera-
ture dependence of the conductivity is driven by the diffusivity
[11,13]. At strong coupling both the compressibility and the
diffusivity are suppressed, leading to low-temperature insulat-
ing behavior.

Interestingly, the strange metallic regime at high tempera-
ture and moderate λs � 0.2–0.3 is characterized by a sizable
compressibility in comparison to the insulating phase, to-
gether with a suppressed diffusivity. The + and − signs in
the legend of Fig. 2(e) of the main text indicate the qualitative
amplitude of the components κ and D in the different regimes

of the phase diagram; the symbols + and − indicate sizable
and suppressed values respectively.

We note that in the strange metallic regime the 1/T behav-
ior of the conductivity cannot be ascribed individually to κ or
D. Here the conductivity itself is the key quantity that carries
the strange metal properties (ρ ∼ T ), while κ and D show no
obvious power law behavior.

Figure 6 reports the λs dependence of σ , κ , and D at a
fixed temperature T = 0.2. At weak coupling the compress-
ibility is close to 1; the variation of σ is dominantly driven
by a reduction of the diffusivity with λs. Upon entering the
strange metallic regime the reduction of conductivity results
from a concomitant, yet weaker, decrease of both κ and D.
Importantly, the diffusivity does not seem to saturate to any
lower bound, in contradiction with recent proposals based on
hydrodynamics [43].

APPENDIX E: THE ATOMIC LIMIT, BOSON
DISTRIBUTION, AND LOCAL SPIN SUSCEPTIBILITY

In the atomic limit D → 0 we can rewrite the
Hamiltonian as

H = Hb(X0, r) + (g0X0 − μ)n + g�σ · �X (E1)

FIG. 6. Logarithms of conductivity, compressibility, and diffu-
sivity as functions of λs at T = 0.2. All quantities are expressed in
units where a = D = e = 1
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where the boson part of the Hamiltonian is Hb(X0, r) =
1
2 k0X 2

0 + 1
2 kr2, r2 = ∑3

ν=1 X 2
ν , and n = n↑ + n↓. The half-

filling condition is μ = μ0 = −g0/k0. Upon shifting the
chemical potential as μ′ = μ + g0/k0 and the displacement
coupled to the charge X ′

0 = X0 + g0/k0, the four electronic
states for any given value of classical displacements Xν have
the following energies:

|0〉 : �0 = Hb(X ′
0, r) − g0X ′

0, (E2)

|+〉 : �1,+ = Hb(X ′
0, r) − μ′ + gr, (E3)

|−〉 : �1,− = Hb(X ′
0, r) − μ′ − gr, (E4)

|↑,↓〉 : �2 = Hb(X ′
0, r) − 2μ′ + g0X ′

0 (E5)

[here Hb(X ′
0, r) is the Gaussian part rewritten in terms of the

shifted X ′
0].

By introducing the variables u = g0X ′
0 and v = gr, the

partition function reads

Z =
∫

du dv 4πv2e−βHb (eβu + 2 cosh(βv)eβμ′ + eβ(2μ′−u) )

(E6)

with Hb = u2/4λcD + v2/4λsD. We can now define a distri-
bution function for the variables coupled to the spin (v) and
to the charge (u), that we write at half filling for sake of
simplicity:

4πv2P(u, v) = 4πv2

Z
exp

(
− βu2

4λcD
− βv2

4λsD

)

× [cosh(βu) + cosh(βv)]. (E7)

In the expression above, the Jacobian 4πv2 accounts for the
the SU(2) nature of the spin fluctuations, and v extends to
the whole −∞,∞ range. The cosh βu term in Eq. (E7) is
the contribution from empty and doubly occupied sites. When
multiplied by the exponential prefactor it gives rise to two
Gaussians in the variable u peaked around u0 = ±2λcD. The
term proportional to cosh βv comes from the singly occupied
sites and and again gives rise to two Gaussians in the vari-
able v, peaked around v0 = ±2λsD. In the case of a pure
spin coupling only three Gaussian contributions remain in the
variable v: one peaked around v = 0 coming from doubly
occupied and empty sites, and two peaks at symmetric values
of v = ±v0 arising from singly occupied sites. The fitting
procedure of Fig. 2(a) is based on this result.

When generalized to include both spin- and charge-
coupled fields with displacements v0, u0 and general variances
σ 2

s , σ 2
c the distribution Eq. (E7) reads

4πv2P(u, v) = 4πv2

Z
exp

(
− u2

2σ 2
c

− v2

2σ 2
s

)

×
[

cosh

(
u0u

σ 2
c

)
+ cosh

(
v0v

σ 2
s

)]
. (E8)

In the case of pure spin coupling Eq. (E8) simplifiy to

4πv2P(v) = 4πv2

Z
exp

(
− v2

2σ 2
s

)

×
[

1 + cosh

(
v0v

σ 2
s

)]
, (E9)

which is the form from which the DMFT data were fitted in
Fig. 2 of the main text. Using the distribution Eq. (E8) one can
derive the following results:

〈v2〉 = 3σ 2
s

(
x4

0/3 + 2x2
0 + 1

)
e

x2
0
2 + 1(

x2
0 + 1

)
e

x2
0
2 + 1

, (E10)

〈u2〉 = σ 2
c

(
x2

0 + 1
)
e

x2
0
2 + 1

e
x2
0
2 + 1

, (E11)

valid respectively in the case of pure spin [Eq. (E10)] and in
the case of pure charge [Eq. (E10)] couplings. In Eq. (E10)
x0 = v0/σs and in Eq. (E11) x0 = u0/σc. In the limit x0 �
σ we obtain from Eq. (E10) s2 ≡ 〈v2〉/3 = σ 2

s + v2
0/2 for

λc = 0 as reported in the main text. For λs = 0 we have
instead 〈u2〉 = σ 2

c + u2
0.

Using the general result derived in Ref. [29] we can relate
the variance of the centroid distribution of Stratonovich-
Hubbard bosons to the local spin (or charge) susceptibility.
Using Eq. (9) of Ref. [29] we have

χ loc = 1

2λνD

( 〈�2Xν〉
〈�2Xν〉0

− 1

)
, (E12)

where χ loc is the local susceptibility to an external field which
couples to the charge (ν = 0) or to the spin (ν = 1, 2, 3), λν is
the coupling (spin or charge), and 〈�2Xν〉 is the mean-square

FIG. 7. Spectral function vs temperature at λs = 0.20 and λc =
0.00; T ranges from 0.02 to 0.50. The blue dot indicates the pseudo-
gap value at T = 0.25.
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displacement of the bosonic field whereas 〈�2Xν〉0 is the same
evaluated in the noninteracting system.

In the limit v2
0 < σ 2

s [see Eqs. (E10) and (E12)] the local
spin susceptibility can be decomposed into χ loc = χ0 + �χ ,
where

χ0 = 1

2λsD

v2
0

2σ 2
0

(E13)

is the term associated with the local moments and σ 2
0 =

2λsDT . The contribution associated with fluctuations reads

�χ = 1

2λsD

(
σ 2

s

σ 2
0

− 1

)
. (E14)

Notice that approaching the atomic limit, Eq. (E13),
gives rise to the Curie 1/T behavior for the local spin
susceptibility.

APPENDIX F: SPECTRAL FUNCTION AND MIT

Figure 7 illustrates the opening of a pseudogap in the
spectral function for λs = 0.20 as a function of temperature.
The blue dot marks the pseudogap value at the temperature
T = 0.25 corresponding to the distribution P depicted in
Fig. 2(a). While the radial distribution of the spin variable v

does not show a well-defined peak, a pseudogap is formed in
the spectral function as consequence of the SU(2) nature of
the spin fluctuations, via the Jacobian 4πv2 that effectively
splits the distribution into two separate peaks. In the local
moment regime a pseudogap forms gradually in the spectral
function upon increasing λs, eventually leading to a genuine
MIT at T = 0.0 at a critical value of the spin coupling. The
pseudogap also arises upon increasing T , without however
inducing a MIT; at high temperatures the system behaves as a
strange metal as described in the preceding sections and in the
main text.
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[35] J. Vučičević, S. Predin, and M. Ferrero, Charge fluctuations,
hydrodynamics, and transport in the square-lattice Hubbard
model, Phys. Rev. B 107, 155140 (2023).

[36] G. Seibold, R. Arpaia, Y. Y. Peng, R. Fumagalli, L. Braicovich,
C. Di Castro, M. Grilli, G. C. Ghiringhelli, and S. Caprara,
Strange metal behaviour from charge density fluctuations in
cuprates, Commun. Phys. 4, 7 (2021).

[37] C. H. Mousatov, I. Esterlis, and S. A. Hartnoll, Bad metallic
transport in a modified Hubbard model, Phys. Rev. Lett. 122,
186601 (2019).

[38] M. Frachet, I. Vinograd, R. Zhou, S. Benhabib, S. Wu, H.
Mayaffre, S. Krämer, S. K. Ramakrishna, A. P. Reyes, J.
Debray, T. Kurosawa, N. Momono, M. Oda, S. Komiya, S. Ono,
M. Horio, J. Chang, C. Proust, D. LeBoeuf, and M.-H. Julien,
Hidden magnetism at the pseudogap critical point of a cuprate
superconductor, Nat. Phys. 16, 1064 (2020).

[39] S. Mahmoudian, L. Rademaker, A. Ralko, S. Fratini, and V.
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