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Understanding the role of Hubbard corrections in the rhombohedral phase of BaTiO3
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We present a first-principles study of the low-temperature rhombohedral phase of BaTiO3 using Hubbard-
corrected density-functional theory. By employing density-functional perturbation theory, we compute the onsite
Hubbard U for Ti(3d) states and the intersite Hubbard V between Ti(3d) and O(2p) states. We show that applying
the onsite Hubbard U correction alone to Ti(3d) states proves detrimental, as it suppresses the Ti(3d)–O(2p)
hybridization and drives the system towards a cubic phase. Conversely, when both onsite U and intersite V are
considered, the localized character of the Ti(3d) states is maintained, while also preserving the Ti(3d)–O(2p)
hybridization, restoring the rhombohedral phase of BaTiO3. The generalized PBEsol+U+V functional yields
good agreement with experimental results for the band gap and dielectric constant, while the optimized geometry
is slightly less accurate compared to PBEsol. Zone-center phonon frequencies and Raman spectra are found to be
significantly influenced by the underlying geometry. PBEsol and PBEsol+U+V provide satisfactory agreement
with the experimental Raman spectrum when the PBEsol geometry is used, while PBEsol+U Raman spectrum
diverges strongly from experimental data highlighting the adverse impact of the U correction alone in BaTiO3.
Our findings underscore the promise of the extended Hubbard PBEsol+U+V functional with first-principles U
and V for the investigation of other ferroelectric perovskites with mixed ionic-covalent interactions.
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I. INTRODUCTION

BaTiO3 (BTO) holds a prominent position among the ex-
tensively studied ABO3 perovskite materials due to its wide
range of technological applications in electronics, electrome-
chanical energy conversion, nonlinear optics, and nonvolatile
data storage [1–7]. It possesses a paraelectric cubic perovskite
structure with no net polarization at high temperatures and un-
dergoes a series of three ferroelectric phase transitions as the
temperature decreases [8,9]. Between 394 K and 278 K, BTO
adopts a tetragonal structure with the polarization along the
〈100〉 crystal direction; as the temperature further decreases
between 278 K and 183 K, it transforms into an orthorhombic
structure with polarization along 〈110〉; finally, below 183 K,
BTO adopts a rhombohedral structure with the R3m space
group with the polarization along 〈111〉 [8–11]. These phase
transitions have been the subject of extensive experimental
and theoretical investigations inspiring both the displacive
[9,12] and order-disorder [13,14] models of ferroelectric tran-
sitions.

Computational studies based on density-functional the-
ory (DFT) [15,16] have been instrumental in exploring the
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structural, electronic, optical, and vibrational properties of
various phases of BTO. These studies have employed di-
verse exchange-correlation functionals, such as local-density
approximation (LDA), generalized-gradient approximation
(GGA), hybrid, and meta-GGA functionals [17–33]. Despite
many results in good agreement with experiments, none of
the aforementioned functionals provide an overall quantitative
description of BTO. Consequently, the pursuit of even more
accurate functionals has persisted. For instance, the PBEsol
functional [34] has shown high accuracy in predicting the
structure of the rhombohedral phase of BTO; however, it un-
derestimates the band gap [30,31]. On the other hand, hybrid
functionals like PBE0 [35] and HSE06 [36,37] improve the
band-gap prediction, but they overestimate the lattice constant
and the atomic distortions associated with ferroelectricity
[20,27]. As a result, any physical property dependent on
atomic distortions (e.g., phonons) is significantly influenced
by the choice of the functional [38]. In turn, this affects
the accuracy of vibrational properties, leading to shifts in
computed Raman spectral peaks or incorrect intensities as
compared to experiments. Hence, there is a pressing need to
search for novel functionals capable of providing an accurate
characterization of the structural, electronic, and vibrational
properties of BTO simultaneously.

One of the widely used approaches to model transition-
metal oxides is DFT + U [39–41], where the Hubbard U
correction is applied to selected states (typically to partially
filled d states) to alleviate self-interaction errors [42–44]. The
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application of DFT + U to BTO has only gained prominence
in the last decade [27,45–52]. The reluctance to apply this
approach with the Hubbard U correction on Ti(3d) states in
BTO in early DFT-based works was primarily due to the fact
that Ti ions are in the 4+ oxidation state (OS), resulting in
a d0 electronic configuration. Thus, in BTO the 3d states of
Ti are nominally empty, suggesting that the application of
Hubbard U would have a negligible effect. Conversely, in
BTO with oxygen vacancies or in BTO oxyhydrides, some
Ti ions undergo reduction to 3+ OS with a d1 configura-
tion, which provides a stronger motivation for the use of
Hubbard corrections [45,47,50]. However, earlier DFT studies
of the pristine BTO employing LDA and GGA revealed a
significant hybridization between Ti(3d) and O(2p) states,
indicating that the four electrons of the Ti(3d) states are not
entirely transferred to the neighboring O(2p) states (see, e.g.,
Ref. [23]). In fact, this hybridization plays a crucial role in
the covalency of the Ti–O bonds, which is essential for the
manifestation of ferroelectricity [17,23,53–55]. Therefore, the
effect of the U correction on Ti(3d) states should not be
presumed to be exactly zero. In fact, applying the Hubbard
U correction to the Ti(3d) states localizes them more on
Ti ions and erroneously suppresses hybridizations with the
O(2p) states (see Fig. 6 in Ref. [51]). Consequently, the
rhombohedral distortion disappears, and instead, the cubic
phase of BTO becomes more stable (see Fig. S6 in Ref. [27]).
This unequivocally demonstrates that the effect of onsite U
corrections on Ti(3d) states is detrimental in pristine BTO
and underscores the crucial importance of preserving hy-
bridizations with O(2p) states. In this regard, the extended
DFT + U + V formulation [56] proves highly attractive as
it allows for the application of an onsite U correction to
the Ti(3d) states to reduce self-interaction errors while en-
suring the intersite Ti(3d)–O(2p) hybridizations thanks to
the V corrections, thereby preserving the fundamental co-
valency of the Ti–O bonds essential for ferroelectricity in
BTO [53].

The main challenge of the DFT + U approach is the lack of
a priori knowledge of the value for U . Even though there are
various first-principles methods to compute it [57], U is still
often determined empirically. Despite numerous DFT + U
studies of BTO [27,45–52], no consensus has been reached
regarding which states should undergo the Hubbard correction
and which value of U should be used. Additionally, differ-
ences between various types of Hubbard projector functions
are often overlooked when comparing the U values from
different DFT + U studies of various materials [58,59]. For
example, in previous DFT + U investigations of BTO, Ti(3d)
states were corrected using the Hubbard U value of 3 eV [50]
or 4.49 eV [27,45,47], while in Refs. [46,49] the Hubbard U
correction was applied to O(2p) states with the value of 8 eV.
Furthermore, in Ref. [52] the U correction of 8 eV was applied
to both Ti(3d) and O(2p) states. Additionally, the choice of
Hubbard projector functions also varied in these works: Most
studies employed projector-augmented wave (PAW) Hubbard
projector functions, except for Ref. [45] where a different
type of projector was utilized (not reported in that paper but
either nonorthogonalized or orthogonalized atomic orbitals
[60]). Moreover, the value of U was determined empirically

in all the aforementioned DFT + U studies, with only one
exception [45], where it was computed using linear-response
theory [61]. As a result of this large variation in U values and
the ambiguity surrounding the correction of Ti(3d) or O(2p)
states or both, there exists a wide spread of results that of-
ten contradict both each other and experimental observations.
Furthermore, as of now, no DFT + U + V studies of BTO
have been conducted to investigate the significance of intersite
Hubbard V corrections between Ti(3d) and O(2p) states.

In this study, we present a comprehensive first-principles
investigation of the low-temperature rhombohedral phase of
BTO, focusing on its structural, electronic, and vibrational
properties using three functionals: PBEsol, PBEsol+U , and
PBEsol+U+V . To determine the onsite U and intersite V
Hubbard parameters, we employ a rigorous first-principles
approach based on linear-response theory [61], recast in terms
of density-functional perturbation theory (DFPT) [62,63]
in a basis of Löwdin-orthogonalized atomic orbitals (Hub-
bard projector functions). This approach eliminates any
empirical input and potential ambiguities typically present
in Hubbard-corrected DFT studies. Furthermore, the self-
consistent procedure is employed for computing the Hubbard
parameters [63] to ensure the mutual consistency of the crystal
and electronic structures. In agreement with Ref. [27], we
find that applying the onsite U correction solely to Ti(3d)
states results in a pronounced suppression of hybridization
with neighboring O(2p) states, driving the system into a
cubic phase. However, our DFT + U calculations, utilizing
first-principles U value, provide the cubic structure that still
exhibits dynamical instability with imaginary phonon modes
around the � point, in contrast to the results of Ref. [27].
Conversely, the introduction of intersite Hubbard V inter-
actions between the Ti(3d) and O(2p) states dramatically
alters the overall picture by restabilizing the rhombohedral
phase thanks to the restored covalency of the Ti–O bonds.
The optimized geometry obtained from PBEsol+U+V is
found to be somewhat less accurate than that from PBEsol,
whereas the projected density of states (PDOS) is qualitatively
very similar in both cases. In addition, the Born effective
charges (BEC) are slightly smaller for certain components
within PBEsol+U+V as compared to PBEsol, while the di-
electric constant and band gap from PBEsol+U+V exhibit
good agreement with experimental data, surpassing the ac-
curacy of PBEsol predictions by a significant margin. On
the contrary, all predictions obtained from PBEsol+U are
systematically less accurate compared to the PBEsol+U+V
case. Last, the zone-center phonon frequencies and Raman
spectra are found to be highly sensitive to the underlying
geometry. The PBEsol and PBEsol+U+V Raman spectra
are found to be in satisfactory agreement with experiments
provided that the PBEsol geometry is used, while the Ra-
man spectrum from PBEsol+U differs dramatically from the
experimental one.

The remainder of this paper is organized as follows: Sec-
tion II presents the computational details; Sec. III contains an
in-depth analysis of the results, encompassing the structural
properties, PDOS, BEC, the dielectric tensor, phonon disper-
sions, and Raman spectra; and, finally, Sec. IV contains the
concluding remarks.
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FIG. 1. Crystal structure of BTO in the (a) cubic and (b) rhombo-
hedral perovskite structures with the Ba, Ti, and O atoms represented
in green, gray, and red, respectively. While the cubic structure is
nonpolar, the rhombohedral phase exhibits a polarization along the
〈111〉 direction, denoted by the dark blue arrow. (c) Schematic illus-
tration of the Ti and O atomic displacements in the rhombohedral
structure relative to the cubic one projected onto the ab plane.
The total displacements are depicted with yellow arrows, while the
components relative to the cubic structure are indicated with black
arrows: Dashed lines for �Ti and solid and dotted lines for the two
O displacements �O and �O′ . For clarity, Ba atoms are omitted. The
rotational symmetry around the 〈111〉 direction results in identical
displacements when viewed in the ac and bc planes.

II. COMPUTATIONAL DETAILS

All calculations are performed using the plane-wave
pseudopotential method as implemented in the QUANTUM

ESPRESSO distribution [64–66]. We use the exchange-
correlation functional constructed using GGA with
the PBEsol parametrization [34], and we employ the
following pseudopotentials from the Pslibrary v1.0.0
[67]: Ba.pbesol-spn-rrkjus_psl.1.0.0.UPF, Ti.pbesol-spn-
rrkjus_psl.1.0.0.UPF, and O.pbesol-n-rrkjus_psl.1.0.0.UPF.
The Kohn-Sham wave functions and potentials are expanded
in plane waves up to a kinetic-energy cutoff of 80 and 800 Ry,
respectively. The first Brillouin zone is sampled using uniform
k-point meshes of size 8 × 8 × 8 and 18 × 18 × 18 centered
at the � point for the ground state and PDOS calculations,
respectively. PDOS is obtained using the tetrahedron method
[68].

The low-temperature rhombohedral phase of BTO is de-
scribed by its lattice constant, rhombohedral angle, and
symmetry-preserving internal atomic displacements along the
〈111〉 direction. The atomic positions of the rhombohedral
crystal structure can be expressed based on those in the cubic
structure (in crystal coordinates) as follows:

Ba : (0.0 + �Ba, 0.0 + �Ba, 0.0 + �Ba ),

Ti : (0.5 + �Ti, 0.5 + �Ti, 0.5 + �Ti),

O1 : (0.5 + �O, 0.5 + �O, 0.0 + �O′ ),

O2 : (0.5 + �O, 0.0 + �O′ , 0.5 + �O),

O3 : (0.0 + �O′ , 0.5 + �O, 0.5 + �O),

where �Ba, �Ti, �O, and �O′ represent the displacements
of the Ba, Ti, and O ions from their atomic positions in
the cubic phase (see Fig. 1). We perform a full structural

TABLE I. Comparison of the optimized lattice parameter a, the
rhombohedral angle α, and the atomic displacements (in crystal
coordinates) �Ti, �O, and �O′ (see Fig. 1) computed in this work
using PBEsol, PBEsol+U , and PBEsol+U+V and as obtained in
previous computational studies [20,31,100,101] and in experiments
at 15 K [102]. �Ba = 0 in all cases. The Hubbard U correction is
applied only to the Ti(3d) states while V is applied between Ti(3d)
and O(2p).

a (Å) α (deg) �Ti �O �O′

PBEsol 3.998 89.87 −0.012 0.011 0.018
PBEsol+U 3.990 90.00 0.000 0.000 0.000
PBEsol+U+V 4.017 89.77 −0.014 0.012 0.020
LDA [100] 3.931 89.92 −0.007 0.010 0.014
PBE [20] 4.073 89.71 −0.015 0.014 0.025
PBEsol [31] 3.998 −0.012 0.012 0.019
PBE0 [20] 4.029 89.73 −0.015 0.013 0.024
B1-WC [101] 3.991 89.86
Expt. [102] 4.004 89.84 −0.013 0.011 0.019

relaxation to calculate these displacements using three
functionals (PBEsol, PBEsol+U , and PBEsol+U+V ). The
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [69]
is employed for geometry optimization with convergence
thresholds set to 10−8 Ry, 10−5 Ry/bohr, and 0.01 Kbar for
the total energy, forces, and pressure, respectively.

For the PBEsol+U and PBEsol+U+V calculations, we
determine the onsite U and intersite V Hubbard parameters
self-consistently using DFPT [62,63], implemented in the HP
code [70] of QUANTUM ESPRESSO [64–66]. The reader is
invited to check Refs. [62,63] for the detailed explanations
on how the Hubbard parameters are defined and computed
using DFPT. As Hubbard projector functions, we employ the
Löwdin-orthogonalized atomic orbitals [60,71,72]. We use
uniform �-centered k- and q-point meshes of size 6 × 6 × 6
and 4 × 4 × 4, respectively, in computing the Hubbard param-
eters with an accuracy of ∼0.01 eV for U and ∼0.001 eV
for V . Employing a self-consistent procedure [63], our cal-
culations encompass cyclic iterations that involve structural
optimizations and successive recalculations of Hubbard pa-
rameters for each new geometry. By doing so, we obtain
structural parameters that are optimized using PBEsol+U and
PBEsol+U+V using the respective self-consistent Hubbard
parameters and that are listed in Table I. This methodology
has demonstrated its efficacy in yielding accurate results for
various transition-metal compounds [73–80]. The computed
values of the Hubbard parameters are as follows: U = 4.52 eV
for Ti(3d) states within PBEsol+U and U = 5.21 eV for
Ti(3d) states with intersite V values ranging from 1.17 to
1.37 eV (depending on the interatomic distance) between
Ti(3d) and O(2p) states within PBEsol+U+V . These values
are consistent with previous studies of SrTiO3 using the same
approach [81].

It is important to note that Hubbard parameters are not
universal [62,63,70]: Their values depend on the chemi-
cal environment of transition-metal elements, oxidation state
[43], spin configuration [74,76], and other factors. When it
comes to the material phase’s influence on computed Hub-
bard parameters, variations can arise, especially if distinct
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phases trigger notable changes in the chemical environment
of transition-metal elements. For instance, in the case of the
tetragonal phase of BTO, we obtain the following values:
U = 4.50 eV for Ti(3d) states within PBEsol+U , and U =
5.25 eV for Ti(3d) states with intersite V values ranging
from 1.29 to 1.32 eV between Ti(3d) and O(2p) states within
PBEsol+U+V . As can be seen, the differences between the
Hubbard parameters of tetragonal and rhombohedral phases
are very small (< 1%), which is not surprising since the
crystallographic differences between these two phases are
small. Consequently, our computed Hubbard parameters for
the rhombohedral phase are transferrable to other phases of
BTO, provided identical computational setups, like pseudopo-
tentials and Hubbard projector functions, are used. They can,
at the very least, serve as very good starting point when refin-
ing these parameters for other phases using DFPT. However,
in general it is important to recompute Hubbard parameters
for different phases of the same material and verify how
significant are the changes.

To compute the phonon frequencies, we utilize the frozen-
phonon method implemented in the PHONOPY package [82],
using atomic displacements of 0.01 Å. The 3 × 3 × 3 super-
cell is employed to calculate the interatomic force constants.
We verified that adopting larger supercells of size 4 × 4 × 4
does not significantly alter the phonon dispersions. The first
Brillouin zone is sampled using a uniform 4 × 4 × 4 k-point
mesh centered at the � point. To correct for the nonanalyt-
icity of the dynamical matrix as q → 0 we include up to
dipole-dipole interactions which depend on the BEC and the
dielectric tensor [83]. We note that Royo et al. [32] investi-
gated the effect of higher-order corrections, which we discuss
but ultimately neglect in the results presented here. For the cal-
culation of the BEC and the dielectric tensor, we employ two
approaches: the finite electric field method [84–86] and DFPT
[83,87–89]. The method of Refs. [84–86] for computing BEC,
dielectric, Raman, and nonlinear optical susceptibility ten-
sors is used as implemented in the aiida-vibroscopy [90]
package, exploiting AiiDA [91,92]. The directional-sampling
technique described in Ref. [90] is used to effectively sample
the Brillouin zone with two sets of k-point distances, namely
the “parallel” and the “orthogonal” (referring to the direction
of the applied electric field). For the parallel and orthogonal
distances, we set values of 0.1 Å and 0.3 Å, respectively
(we note that 0.1 Å corresponds to the 16 × 16 × 16 uniform
k-point mesh). The BEC and the dielectric tensor are defined
in the real-space rhombohedral BTO reference system with
the z axis parallel to the C3 rhombohedral axis (i.e., the 〈111〉
direction), while the x axis is perpendicular to it. The zone-
center phonons and the phonon dispersions are computed for
phonon wave vectors q defined in reciprocal space of the
rhombohedral BTO reference system.

To calculate the nonresonant Raman intensities, we adopt
the Placzek approximation (first-order processes) [93]. In
order to compare with experiments from Refs. [94,95], for
Raman spectrum calculations we use the real-space tetragonal
BTO reference system with the z axis being parallel to the
c tetragonal axis, and the x axis is perpendicular to it. Within
this framework, we consider the backscattering geometry with
a parallel polarization configuration, namely the z(xx)z̄ setup
in Porto notation [96]. This entails that the incident light’s

propagation direction aligns with z, while the scattered light
follows z̄. Both the incident and scattered light’s polarization
direction align with x. The Raman scattering amplitude for a
phonon mode ν is expressed as [97]

Iν ∝ (ωL − ων )
nν + 1

ων

|ei ·
↔
Aν · es|2, (1)

where nν represents the Bose-Einstein occupation,
↔
Aν denotes

the Raman susceptibility tensor, ωL is the incident laser fre-
quency, ων denotes the frequency of the phonon mode ν,
and ei and es are the polarization vectors of the incident and
scattered light, respectively. The temperature relevant for the
Bose-Einstein occupation and the laser frequency are adjusted
to match the experimental conditions. For the z(xx)z̄ setup,
ei and es are parallel to each other, both lying along the x
direction. While the propagation directions of the incident (ki)
and scattered (ks) light do not appear explicitly in Eq. (1), their
difference q = ks − ki is utilized to specify the direction for
the limit q → 0 when computing the nonanalytic component
of the dynamical matrix and the Raman susceptibility tensor
[98]. To model the experimental backscattering geometry, q
is chosen to be parallel to the z axis in reciprocal space of the
tetragonal BTO reference system, as the photon propagates
back and forth along this direction. To generate the Raman
spectra, we employ a Lorentzian smearing function with a
constant broadening parameter of 8 cm−1.

The data used to generate the results presented in this paper
are accessible in the Materials Cloud Archive [99].

III. RESULTS AND DISCUSSION

A. Structural properties

In this section, we present the results of structural op-
timizations for the low-temperature rhombohedral phase of
BTO using PBEsol, PBEsol+U , and PBEsol+U+V func-
tionals. A summary of our findings and a comparison
with previous computational studies based on DFT with
(semi-)local and hybrid functionals [20,31,100,101], as well
as experimental data [102], are presented in Table I. It is well
known that LDA underestimates the lattice parameters [100],
while PBE tends to overestimate them [20], which is also ob-
served in the case of BTO. Our PBEsol results are consistent
with previous PBEsol studies [31], showing very good agree-
ment with the experimental lattice parameter a, rhombohedral
angle α, and atomic displacements. On the other hand, previ-
ous DFT studies using PBE0 [31] and B1-WC [101] hybrid
functionals either significantly overestimate or underestimate
a, respectively, while α is closer to the experimental value.
As mentioned in Sec. I, the PBEsol+U and PBEsol+U+V
predictions for structural properties are in stark contrast to
each other: The former drives the structure towards the cu-
bic phase, while the latter preserves the rhombohedral phase
(see Table I). The PBEsol+U and PBEsol+U+V structural
parameters are discussed in more detail in the following. Let
us compare the accuracy of the structural parameters obtained
using PBEsol and PBEsol+U+V . As can be seen in Table I,
PBEsol underestimates a by only ∼0.2%, and α is overesti-
mated by only ∼0.03%. These results are significantly better
than those obtained with LDA and PBE [20,100]. On the other
hand, PBEsol+U+V overestimates a by ∼0.3% and underes-
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FIG. 2. Optimized lattice parameter a (a) and the rhombohedral
angle α (b) as a function of the Hubbard U parameter applied to
Ti(3d) states using PBEsol+U . The ab initio value of U is 4.52 eV
and it was computed using DFPT, as discussed in Sec. II. Experi-
mental values of the structural parameters are also indicated: For the
rhombohedral phase these are arh

exp = 4.004 Å and αrh
exp = 89.84◦ at

15 K [102], and for the cubic phase these are ac
exp = 4.001 Å and

αc
exp = 90.00◦ at 400 K [103].

timates α by ∼0.08%. Such seemingly minor deterioration in
the accuracy of structural predictions within PBEsol+U+V
compared to PBEsol has a significant impact on the lattice
vibrational properties, as evidenced in Secs. III D and III E.

Motivated by Refs. [46,49], we examine the impact of
applying the Hubbard U correction to O(2p) states. First, we
determine U for the O(2p) states from first principles using
DFPT in a self-consistent fashion, and we find the values
of 8.6 and 8.7 eV within PBEsol+U and PBEsol+U+V ,
respectively. Applying the U correction to both O(2p) and
Ti(3d) states within PBEsol+U and PBEsol+U+V results
in the optimized geometry of rhombohedral BTO adopting a
cubic structure. This occurs as U localizes O(2p) electrons,
diminishes Ti-O hybridization, suppressing covalency, and ul-
timately stabilizing the cubic phase. However, this contradicts
experimental observations where the rhombohedral phase pre-
vails. Consequently, we abstain from computing additional
properties such as electronic structure and vibrational spectra
that involve the U correction on O(2p). In the rest of the paper
we neglect the effect of U on O(2p) states.

The stabilization of the cubic phase of BTO within
PBEsol+U requires further analysis. To investigate this, we
performed structural optimizations starting from the experi-
mental rhombohedral structure while varying the value of U
in the range from 0 to 10 eV. Figure 2 illustrates the variation
of lattice parameter a and rhombohedral angle α as a function
of U . Increasing U from 0 to 4.5 eV leads to decreasing of a
in a quasilinear fashion by ∼0.2% and a quasilinear increase
in α by ∼0.1%, leading it towards 90◦. Further increasing U
beyond 4.5 eV results in a larger a (also quasilinear change),
while α remains stable at 90◦. Hence, a critical value of U
is observed at approximately 4.5 eV, where the cubic phase
becomes stable. Interestingly, our first-principles value of U
is found to be 4.52 eV, which aligns well with this criti-
cal value. It is important to note that these U values were

determined using Löwdin-orthogonalized atomic orbitals as
Hubbard projectors (see Sec. II), and hence they may not be
directly applicable with other types of Hubbard projectors,
necessitating reevaluation for such cases. Therefore, we find
that by increasing U from 0 to 4.5 eV the unit cell volume
is decreasing and the rhombohedral distortion smoothly van-
ishes, while when further increasing U the cubic structure
remains stable and its volume increases. Why is there such
a nonmonotonic behavior of the cell volume as a function of
U? The increase in U results in a more localized nature of
Ti(3d) states and a reduction in their hybridization with the
neighboring O(2p) states, consequently diminishing the cova-
lent character of Ti(3d)–O(2p) bonds. This, in turn, causes the
Ti and O ions to occupy high-symmetry positions of the cubic
phase. As a result of such an interplay between structural and
electronic degrees of freedom, overall the unit cell volume
tends to decrease. However, when U is increased beyond
the critical value, a typical behavior is observed: Larger U
values lead to even stronger localization of Ti(3d) states and a
more pronounced ionic character of interactions, which con-
sequently expands the lattice (increase in a).

As mentioned earlier, the inclusion of intersite Hubbard V
interactions between Ti(3d) and O(2p) states plays a crucial
role in preserving the hybridizations between these states and,
consequently, in maintaining the rhombohedral distortion of
the lattice. As indicated in Sec. II, within PBEsol+U+V ,
the U value on Ti(3d) states is found to be 5.21 eV, which
is higher than the value obtained within PBEsol+U . This
behavior is common and is related to changes in electronic
screening when computing both U and V [63,74,76]. Despite
the fact that the computed U value within PBEsol+U+V
exceeds the critical U value obtained within PBEsol+U , the
cubic phase does not appear. This observation underscores
the strong impact of intersite V interactions in stabilizing
the rhombohedral phase, even though the V values are much
smaller than the U values.

In the next section, we utilize the optimized structural
parameters obtained for each of the considered functionals
(if not otherwise stated) to analyze the effects of Hubbard
corrections on the electronic and vibrational properties of
BTO. This analysis provides further insights into the role of
extended Hubbard functionals with both U and V interactions
in accurately predicting various properties of the rhombohe-
dral phase of BTO.

B. Projected density of states and band gap

Using the optimized structural parameters for each func-
tional, here we analyze the respective PDOS and the band-gap
values. Figure 3 illustrates the total DOS and PDOS for
Ti(3d) and O(2p) states. It can be seen that the valence
band maximum primarily originates from the O(2p) states,
while the conduction band minimum is mainly associated with
the Ti(3d) states. However, due to the hybridization between
Ti(3d) and O(2p) states, there is some contribution from the
Ti(3d) states in the valence band region and, vice versa, the
O(2p) states contribute to the conduction band region. This
hybridization effect is crucial for the covalency of the Ti–O
bonds in BTO, as previously discussed in Sec. I. The non-
vanishing contribution of Ti(3d) states in the valence region
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FIG. 3. Computed total density of states and PDOS for Ti(3d)
and O(2p) states using three functionals: (a) PBEsol, (b) PBEsol+U ,
and (c) PBEsol+U+V . The zero of the energy is set at the top of the
valence bands in all cases.

supports our earlier assertion that applying the Hubbard U
correction to these states will not result in a negligible effect.
As can be seen in Figs. 3(b) and 3(c), the application of Hub-
bard corrections introduces noticeable changes in the PDOS;
the primary impact is on the band-gap value, and additionally
there are some subtle adjustments in the shape of the PDOS.

As discussed earlier, applying the Hubbard U correction
solely to the Ti(3d) states leads to their increased localization
and a reduction in their hybridization with the neighbor-
ing O(2p) states. In the scenario where this hybridization is
strongly suppressed, there would be vanishing energy overlap
between Ti(3d) and O(2p) states. Consequently, the valence
band region would solely consist of O(2p) states, while the
Ti(3d) states would remain entirely unoccupied. Indeed, it can
be noticed in Fig. 3(b) that the application of U does slightly
reduce the Ti(3d) weight in the valence region and increase it
in the conduction band region, and the opposite effect is ob-
served for the O(2p) states. In fact, the integrated intensity of
the Ti(3d) states in the valence region is decreased by ∼10%
when applying our first-principles Hubbard U correction.

Let us now analyze the impact of the Hubbard corrections
on the band gap. It is important to recall that DFT is not
a theory for spectral properties. Importantly, in Ref. [104]
it is shown that DFT + U with the Hubbard U parameter
determined using linear-response theory, can markedly en-
hance agreement with experimental band gaps. This improve-
ment occurs when the Hubbard correction is applied to edge

states (in cases where the system is already insulating at the
DFT level) or states near the Fermi level (in situations where
the system exhibits unphysical metallic behavior in standard
DFT calculations), resulting in a Koopmans-like linearization
[105].

Table II summarizes our results and compares them with
previous studies and experimental data. To the best of our
knowledge, there is no direct experimental data available for
the band gap of the rhombohedral BTO at low temperatures.
However, the experimental band gap for the cubic phase is
known to be 3.2 eV at 420 K, and it increases with decreasing
temperature at a rate of 4.5 × 10−4 eV/K [106], leading to an
extrapolated value of 3.4 eV at 0 K. We employ this extrapo-
lated value for comparisons, noting that precise measurements
of the rhombohedral BTO’s band gap at low temperatures are
required. We note that this extrapolated value was also used
for comparisons in other works, e.g., in Refs. [27,107]. Our
PBEsol calculation yields a band gap that underestimates the
extrapolated experimental value by approximately 33%. This
is consistent with the trends observed in LDA [100] and PBE
[20] calculations. Hybrid functionals, such as HSE06 [27]
and PBE0 [20], overestimate the band gap by approximately
9% and 44%, respectively. Thus, HSE06 has been the most
accurate so far in predicting the band gap of rhombohedral
BTO. Surprisingly, the band gap obtained with PBEsol+U
is very close to the PBEsol band gap. This result can be
attributed to the cancellation of two effects: the decrease in
the gap due to the vanishing rhombohedral distortion and the
increase in the gap caused by the application of the U correc-
tion which generally leads to larger band gaps. To elucidate
this, we performed a PBEsol calculation using the PBEsol+U
geometry (i.e., cubic structure), resulting in a band gap of
1.60 eV, while performing a PBEsol+U calculation using
the PBEsol+U geometry yields a band gap of 2.26 eV. On
the other hand, PBEsol+U+V provides a band gap in ex-
cellent agreement with the extrapolated reference value, with
a deviation of approximately 2%. However, it is important
to remark that the experimental band gap from Ref. [106]
was determined through an optical absorption spectroscopy
experiment, introducing the potential relevance of excitonic
effects. Indeed, Ref. [3] demonstrated that incorporating ex-
citonic effects (via solving the Bethe-Salpeter equation on
top of GW ) in the cubic and tetragonal phases of BTO in-
duces a shift at the optical absorption onset, resulting in a
band-gap reduction of approximately 0.3–0.5 eV compared
to GW calculations. Consequently, a similar order of magni-
tude adjustment in the band gap might be expected for the
rhombohedral phase of BTO due to excitonic effects. All the
theoretical band gaps in Table II exclude excitonic effects, im-
plying an expected reduction on the order of 0.3–0.5 eV. This

TABLE II. Comparison of the band gap (in eV) computed in this work using PBEsol, PBEsol+U , and PBEsol+U+V and in previous works
using (semi-)local and hybrid functionals and as measured in experiments. The experimental band gap was estimated using the extrapolation
technique as explained in the main text.

This work Ref. [100] Ref. [20] Ref. [27] Ref. [20] Ref. [106]

PBEsol +U +U+V LDA PBE HSE06 PBE0 Expt.

2.28 2.26 3.46 2.23 2.7 3.69 4.9 3.4
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TABLE III. Comparison of the computed BEC of Ba, Ti, and
O using PBEsol, PBEsol+U , and PBEsol+U+V and those from
previous studies [22,25,28]. The xx and yy components are equal for
Z∗

Ba and Z∗
Ti, and hence we report only the former. The BEC values in

Refs. [22] and [25] are calculated at experimental lattice parameters
[102], with relaxed atomic positions.

Functional Z∗xx
Ba Z∗zz

Ba Z∗xx
Ti Z∗zz

Ti Z∗
O|| Z∗

O⊥

PBEsol 2.79 2.75 6.61 5.72 −5.11 −1.99
PBEsol+U 2.77 2.77 6.57 6.56 −5.20 −2.07
PBEsol+U+V 2.80 2.74 6.18 5.08 −4.47 −1.95
LDA [22] 2.79 2.74 6.54 5.61 −5.05 −1.98
LDA [25] 2.78 2.74 6.61 5.77 −5.10 −1.99
B1-WC [28] 2.71 2.68 6.41 5.55 −4.94 −1.95

adjustment aligns HSE06 more closely with the experimental
band gap, whereas the PBEsol+U+V band gap is likely to de-
viate more significantly from the experimental value. Overall,
while PBEsol+U+V does not exhibit significant improve-
ments in structural properties compared to PBEsol (which
already shows remarkable agreement with experiments), it
significantly enhances the accuracy in predicting the band-gap
value.

C. Born effective charges and dielectric tensor

In this section, we present and discuss the computed BEC
and dielectric tensor using the three functionals considered
in this work. Table III provides a comparison of our calcu-
lations with previous computational studies [22,25,28]. In the
rhombohedral crystal structure, the computed Z∗

Ti and Z∗
Ba are

diagonal tensors with xx and yy components being equal due
to symmetry, while the BEC of three O atoms have nonzero
off-diagonal components. To simplify the analysis, we di-
agonalize Z∗

O and denote its largest and doubly degenerate
smallest eigenvalues as O|| and O⊥, respectively (which are
the same for three O atoms). O|| represents displacements of
O ions along the Ti–O bond, while O⊥ refers to displacements
perpendicular to the bond. As shown in Table III, for all
functionals, the values of Z∗

Ti diagonal components and Z∗
O||

are substantially larger than their nominal values (+4 and −2,
respectively) [22,30]. This observation is consistent with other
ABO3 perovskites and is a fingerprint of covalency of the Ti–
O bonds [21,22,28,53,108]. In contrast, the computed Z∗

Ba and
Z∗

O⊥ values are not significantly different from their nominal
values (+2 for Ba), suggesting an ionic character of the Ba–O
bonds [21,22,28]. Applying the onsite U correction alone does
not lead to large changes in the BEC for all the elements
as compared to PBEsol (except for Z∗zz

Ti ). When considering
PBEsol+U+V , however, we find that Z∗xx

Ti , Z∗zz
Ti , and Z∗

O|| are
smaller by 7–13% compared to PBEsol. This reduction in the
BEC due to +U + V corrections arises from the redistribution
of electronic charge between Ti and O ions and sensitivity to
changes in structural parameters (see Table I) [22].

Let us now discuss the dielectric constant of the low-
temperature rhombohedral BTO. Again due to symmetry, the
xx and yy components of the dielectric tensor are equal. In
Table IV, we present a comparison of our computed values

TABLE IV. Diagonal components of the dielectric tensor
ε∞

xx and ε∞
zz (note that ε∞

yy = ε∞
xx ) and its average value [〈ε〉 =

(ε∞
xx + ε∞

yy + ε∞
zz )/3] as computed in this work using PBEsol,

PBEsol+U , and PBEsol+U+V and as obtained in previous works
[20,28,30,109,110] and measured in experiments [111]. In Ref. [110]
a scissor � correction was used.

Functional ε∞
xx ε∞

zz 〈ε〉
PBEsol 6.14 5.69 5.99
PBEsol+U 5.88 5.88 5.88
PBEsol+U+V 5.54 5.00 5.36
LDA [109] 6.16 5.69 6.00
LDA [20] 6.05 5.82 5.97
LDA+� [110] 5.57 5.51 5.55
PBE [20] 5.42 4.80 5.21
PBEsol [30] 6.11 5.63 5.95
PBE0 [20] 4.62 4.13 4.46
B1-WC [28] 4.96 4.60 4.84
Expt. [111] 5.20

with those from previous studies [20,28,30,109,110] and ex-
periments [111]. First, we want to remark that quite often
[20,28,101,112] in the literature the theoretical components of
the dielectric tensor of the rhombohedral BTO are compared
with the following experimental values: ε∞

xx = 6.19 and ε∞
zz =

5.88 [113]. However, as was rightly pointed out in Ref. [26],
the experimental data of Ref. [113] corresponds to the room-
temperature tetragonal phase of BTO, and thus it should not
be used for comparisons with the low-temperature rhombo-
hedral phase. On the other hand, we follow Ref. [110] and
use an average experimental dielectric constant 〈ε〉 = 5.20
which was obtained from the average refractive index of 2.28
[111]. However, it is crucial to emphasize that more accurate
measurements of the dielectric tensor components for the low-
temperature rhombohedral phase of BTO are needed. As can
be seen in Table IV, our PBEsol dielectric tensor shows good
agreement with previous LDA [22] and PBEsol [30] studies.
The average dielectric constant obtained using PBEsol overes-
timates the experimental value by ∼15%. When including the
+U correction, 〈ε〉 slightly decreases, but it still overestimates
the experimental value by ∼13%. However, it is essential to
consider that the PBEsol+U geometry corresponds to the cu-
bic phase at 0 K, making this comparison less straightforward.
We note in passing that the experimental 〈ε〉 of the cubic
phase of BTO is 5.40 [114]. The PBEsol+U+V functional
yields 〈ε〉 that is in substantially closer agreement with the
experimental value, overestimating it by only ∼3%. Hence,
PBEsol+U+V provides the most accurate prediction for 〈ε〉
compared to PBEsol and PBEsol+U . Finally, we note that
hybrid functionals PBE0 [20] and B1-WC [28] underestimate
〈ε〉 by ∼14% and ∼7%, respectively, while 〈ε〉 from PBE
[20] is by chance in excellent agreement with the experimental
value.

D. Phonons

Here we explore the lattice vibrational properties of BTO
using the three considered functionals. A group-theory anal-
ysis reveals that the zone-center phonon frequencies of
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TABLE V. Phonon frequencies of the rhombohedral BTO (in cm−1) at the Brillouin zone center computed using PBEsol on top of
the PBEsol geometry (PBEsol@PBEsol), and PBEsol+U+V on top of the PBEsol geometry (PBEsol+U+V @PBEsol) and on top of the
PBEsol+U+V geometry (PBEsol+U+V @PBEsol+U+V ). The results from previous computational studies are also shown. The symmetry
of the phonon modes is specified in the first column, while the common labeling [25] of the TO and LO modes is specified in the second
column. The label “q” denotes the direction of the phonon wave vector q, which is either along the x or z axis in reciprocal space of the
rhombohedral BTO reference system (see Sec. II). The 3E (TO3) and 2E (LO2) modes are degenerate, while the A2 mode is silent.

Mode Label q PBEsol PBEsol+U+V PBEsol+U+V Ref. [20] Ref. [25] Ref. [20] Ref. [20] Ref. [101]
@PBEsol @PBEsol @PBEsol+U+V LDA LDA PBE PBE0 B1-WC

TO
1E TO1 x, z 166 168 162 145 163 165 180 125
1A1 TO1 x 170 171 165 191 167 167 181 192
2E TO2 x, z 207 243 264 191 210 264 264 217
3E TO3 x, z 294 290 288 306 293 299 319 318
2A1 TO2 x 262 292 310 200 259 309 332 285
4E TO4 x, z 472 483 478 489 470 474 493 497
3A1 TO3 x 516 537 548 508 512 544 571 542
LO
1E LO1 x 176 180 177 190 174 176 190 193
1A1 LO1 z 180 186 183 193 178 182 197 199
2E LO2 x, z 294 290 288 306 293 299 319 318
3E LO3 x 441 443 437 460 441 441 468 472
2A1 LO2 z 460 464 463 471 461 467 498 491
3A1 LO3 z 681 705 701 707 676 689 739 740
4E LO4 x 691 714 711 713 687 705 750 730
A2 x, z 277 275 270 297 277 279 301 307

rhombohedral BTO can be decomposed as �opt = 3A1 + A2 +
4E [112], where both A1 and E modes are infrared and Raman
active, while the A2 mode is silent. The zone-center phonon
frequencies obtained from PBEsol and PBEsol+U+V are
compared with previous computational studies [20,25,101] in
Table V.

In order to scrutinize the impact of lattice geome-
try (a and α) on phonon frequencies, we present the
outcomes of PBEsol+U+V phonon calculations for both
the PBEsol+U+V optimized geometry (referred to as
PBEsol+U+V @PBEsol+U+V ) and the PBEsol optimized
geometry (PBEsol+U+V @PBEsol). It is worth noting
that in both cases, atomic positions are optimized using
PBEsol+U+V to ensure that forces acting on atoms are
vanishing. Conversely, PBEsol+U is omitted from this com-
parison due to its inability to sustain the rhombohedral
phase of BTO (refer to Sec. III A). The nonanalytic com-
ponent of the dynamical matrix up to the dipolar order is
taken into account, which leads to the splitting between
the longitudinal optical (LO) and transverse optical (TO)
modes [83]. This nonanalytic component is derived using
the BEC and dielectric tensor, as discussed in Sec. III C.
In the case of PBEsol+U+V @PBEsol, the BEC and di-
electric tensor are not recalculated; instead, those from the
PBEsol+U+V @PBEsol+U+V case are used.

The phonon mode data presented in Table V demonstrate
distinctive behaviors among the considered functionals in this
study and in previous works. We have not compared our
zone-center phonons to the experimental data taken on single
crystals in Refs. [94,95] as these samples are polydomain with
the z axis oriented along the c axis of the tetragonal BTO
reference system. This reorientation leads both to a mixing of

the phonon modes listed in Table V (see Secs. II and III E for
more details) and to potential differences in the resulting LO-
TO splitting. Experimental data for rhombohedral BTO single
crystals with a single ferroelectric domain, specifically for q
directions along the x and z axes in reciprocal space of the
rhombohedral BTO reference system (where, in real space,
z is parallel to the C3 rhombohedral axis), would be highly
desirable for evaluating the accuracy of computational data
obtained from various functionals, as presented in Table V.

Let us now shift to the phonon dispersion of the
rhombohedral BTO lattice. In Fig. 4, we present a
comprehensive comparison of the computed phonon
frequencies as a function of the phonon wave vector q along
high-symmetry directions in the Brillouin zone obtained
from PBEsol@PBEsol, PBEsol+U+V @PBEsol+U+V ,
and PBEsol+U+V @PBEsol. It can be seen that there is a
discontinuity in the phonon dispersion near � for certain
optical phonon modes, due to the LO-TO splitting that
depends on the direction of the phonon wave vector q in
the long-wavelength limit (q → 0) [83]. The three acoustic
branches display remarkable congruence across all cases,
except in proximity to the � point. This correspondence
stems from the fact that, up to around 150 cm−1, the primary
contribution to the vibrational density of states (vDOS) can
be attributed to the motion of Ba ions [100], which remains
largely unaffected by the Hubbard corrections. However,
above ∼150 cm−1, the vDOS is mainly influenced by
both Ti and O atoms, leading to pronounced differences
in the phonon bands due to the Hubbard corrections.
Specifically, within PBEsol+U+V @PBEsol+U+V
and PBEsol+U+V @PBEsol, the highest phonon
bands are shifted to higher frequencies (compared
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FIG. 4. (a) Phonon dispersion of the rhombohedral BTO computed using PBEsol and PBEsol+U+V and using different optimized
geometries. (a) PBEsol+U+V calculation using the PBEsol+U+V lattice geometry (PBEsol+U+V @PBEsol+U+V ) and (b) PBEsol+U+V
calculation using the PBEsol lattice geometry (PBEsol+U+V @PBEsol). On both panels the PBEsol results are exactly the same and were
obtained using the PBEsol lattice geometry.

to PBEsol@PBEsol), consistently with similar obser-
vations in other materials [115,116]. The effect of
the lattice parameters on the PBEsol+U+V phonon
calculations can be seen by comparing Figs. 4(a) and
4(b). Although PBEsol+U+V @PBEsol+U+V and
PBEsol+U+V @PBEsol phonon dispersions exhibit
qualitative similarity, notable quantitative disparities exist.
It is important to pay special attention to the behavior
of the acoustic phonon bands near the � point. As
previously noted in Ref. [32], piezoelectric materials like
BTO exhibit imaginary phonon frequencies around �

when considering the nonanalytic part of the dynamical
matrix only up to the dipolar order. To address this issue,
higher multipolar orders of the nonanalytic correction to
the dynamical matrix must be included [32], which are
though not considered in our study. In our calculations,
we find sizable imaginary phonon frequencies along the
�-F high-symmetry direction when using the PBEsol
functional. However, these imaginary frequencies are
substantially reduced when using PBEsol+U+V , becoming
imperceptible on the plot due to the large frequency scale.
Such differences between the PBEsol and PBEsol+U+V
results do not arise from the variations in the lattice
geometry, because both PBEsol+U+V @PBEsol+U+V and
PBEsol+U+V @PBEsol do not have a large negative bump
along �-F like in the PBEsol@PBEsol case. Hence, such
differences between PBEsol and PBEsol+U+V originate
purely from changes in the electronic structure due to
the U and V corrections. Furthermore, both PBEsol and
PBEsol+U+V yield minimal imaginary phonon frequencies
close to � along the �-L direction, although these frequencies
are not readily visible on the large frequency scale shown
in Fig. 4. These observations suggest that higher-order
corrections to the dynamical matrix are essential in BTO and
similar materials, regardless of the functional employed.

As was shown in Ref. [117] for the cubic BTO, there is a
giant LO-TO splitting. Conversely, in the rhombohedral BTO
we find that there is a strong mixing of LO modes when
incorporating the nonanalytic part to the dynamical matrix.
Therefore, there is no one-to-one connection between the

highest LO mode and one of the TO modes, and hence it is
not straightforward how to determine the LO–TO splitting.
Nevertheless, we believe that it is useful to point out what
is the optical phonon bandwidth, i.e., the difference between
the highest LO and lowest TO modes, which is 525 cm−1 in
PBEsol and about 550 cm−1 in PBEsol+U+V .

It is instructive to compare the phonon dispersion for the
cubic phase of BTO using PBEsol and PBEsol+U . Figure 5
shows such a comparison when using the PBEsol+U lattice
geometry for both functionals (i.e., PBEsol@PBEsol+U and
PBEsol+U@PBEsol+U , respectively). In our PBEsol calcu-
lations for the cubic BTO, we observe large imaginary phonon
frequencies at various points in the Brillouin zone, including
the high-symmetry points �, M, and X, which is consis-
tent with previous studies [29,33,118,119]. When employing
PBEsol+U with the first-principles U value, the imaginary
phonon frequencies vanish everywhere in the Brillouin zone
except in the vicinity of the � point. Since soft phonon
modes measure the structural instability, this result shows
that PBEsol+U tends to stabilize the cubic phase at 0 K. A
similar observation was reported in Ref. [27] (see Fig. S6 in
this reference). However, it is worth noting that no imaginary

FIG. 5. Phonon dispersion of the cubic BTO computed using
PBEsol and PBEsol+U , both using the PBEsol+U lattice geometry.
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phonon frequencies were found in that study, even around �.
Despite the fact that the value of the Hubbard U parameter
is extremely similar in both studies (4.52 eV in our case vs
4.49 eV in Ref. [27]), the remaining differences might be at-
tributed to the following factors: (i) we use PBEsol+U in this
study, while PBE + U was used in Ref. [27]; (ii) we employ
Löwdin-orthogonalized atomic orbitals, while in Ref. [27], the
PAW functions were used to build the Hubbard projectors; (iii)
different pseudopotentials were used in both studies; and (iv)
we use the PBEsol+U optimized lattice parameter of 3.990
Å (see Table I), whereas in Ref. [27], a lattice parameter of
4.077 Å was used. Although it is not clear which factor plays
the dominant role, the conclusion remains that soft phonon
modes around � are highly sensitive to numerical details of
calculations. Additionally, we verified that using larger values
of the U parameter (e.g., testing with U = 6 eV) within our
computational setup completely eliminates the soft phonon
modes around �.

Finally, we address the comparison between the tendency
of PBEsol+U to stabilize the cubic phase of BTO at 0 K
and the effect of strain within PBEsol to achieve a similar
stabilization. Previous studies have shown that by compress-
ing the lattice (reducing the lattice parameter by ∼3%), the
cubic phase of BTO can be stabilized at 0 K when using
(semi-)local functionals since no imaginary phonon fre-
quencies are present [28,33,118]. This phenomenon can be
explained as follows: When BTO is compressed, the in-
teratomic distances decrease, altering the energy landscape.
Specifically, the minima of the symmetric double well of
the energy potential move closer together, while the saddle
point becomes lower, resulting in the stabilization of the high-
symmetry cubic phase. On the other hand, when applying
the first-principles U correction, the lattice tends to expand,
as expected (see the discussion in Sec. III A). We found
that the optimized lattice parameter for the cubic BTO using
PBEsol+U is increased only by ∼0.3% compared to PBEsol
[120]. Therefore, from a purely geometrical perspective, it is
not evident why PBEsol+U would stabilize the cubic phase
of BTO. As we discussed earlier, the reason lies purely in
the electronic behavior. The localization of the Ti(3d) states
suppresses the Ti(3d)–O(2p) hybridization that is crucial for
the covalency of the Ti–O bonds and stabilization of the
rhombohedral phase of BTO. Consequently, as the strength
of the Hubbard U correction is increased, the dynamical sta-
bility of the rhombohedral phase diminishes, while that of the
cubic phase increases. Thus, this intricate electronic effect is
responsible for the observed stabilization of the cubic phase
by PBEsol+U .

E. Raman spectra

In this section, we present a comparison between the
computed and experimental nonresonant Raman spectra of
rhombohedral BTO. The spectra were experimentally mea-
sured at 10 K [94] and 80 K [95,121]. Although all these
experimental spectra display similar qualitative features, we
choose to compare with the higher-resolution Raman spec-
trum on single crystals of BTO from Ref. [95]. It is important
to note that the Raman spectrum of single crystals in Ref. [95]
closely resembles the spectrum presented in Ref. [94]. The

FIG. 6. Raman spectra computed using PBEsol, PBEsol+U , and
PBEsol+U+V on top of different optimized geometries. The ex-
perimental Raman spectra were obtained for single crystals at 80 K
[95]. All spectra are shifted vertically for the sake of clarity. Vertical
dashed lines correspond to positions of peaks in the experimental
Raman spectrum, and they are numbered for convenience.

latter reference explicitly states that the measurements were
conducted using the backscattering geometry with the z(xx)z̄
setup, where z is along the c axis of the tetragonal BTO
phase. We use the same setup in our calculations, as de-
tailed in Sec. II. On the other hand, we are aware of only
two theoretical studies of the Raman spectra of the rhom-
bohedral BTO, and they are based on DFPT using the LDA
functional [25,98]. In Ref. [25] the authors considered the
x(zz)y and z(xy)z̄ setups for single crystals with the z axis
aligned along the C3 rhombohedral axis, while in Ref. [98]
the averaged Raman spectra of polycrystalline rhombohedral
BTO were computed. Hence, the computational predictions
of these studies are not directly comparable with our Raman
spectrum calculations for single crystals and the experiments
of Refs. [94,95].

Figure 6 illustrates the computed Raman spectra using
the three considered functionals along with the experimental
spectrum from Ref. [95]. The Hubbard corrections exert a
twofold influence on the Raman spectra: (i) via alterations
in the optimized lattice geometry and (ii) via changes in
the electronic structure. To disentangle these distinct effects,
separate Raman spectrum computations were executed for
PBEsol+U and PBEsol+U+V , each employing two dis-
tinct lattice geometries: one optimized utilizing PBEsol+U
and PBEsol+U+V , correspondingly, and the other using the
PBEsol optimized lattice geometry.
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We begin our analysis of Fig. 6 by comparing the Raman
spectrum obtained from PBEsol@PBEsol with the exper-
imental one. The peak 3 is well reproduced (its position
coincides very well with the experimental one), peak 2 is
red-shifted by 19 cm−1, peak 1 is barely visible and it is
blue-shifted by 5 cm−1, while peak 4 is not visible at all. Next,
peaks 5, 6, and 7 are all blue-shifted by 15, 19, and 28 cm−1,
respectively. We recall that here we use a constant broadening
with the Lorenzian function, hence we do not account for
the various lifetimes of all peaks, which might explain the
differences in the widths of the peaks. The differences in the
positions of peaks between PBEsol@PBEsol and experiments
might be attributed to the following factors: (i) errors stem-
ming from the approximations when using PBEsol@PBEsol
and (ii) our calculations are performed assuming a single
ferroelectric domain while measurements in Ref. [95] were
carried out on a polydomain single crystal sample. Overall,
our PBEsol@PBEsol spectrum looks qualitatively similar to
the experimental spectrum, although some disparities in peak
positions and relative intensities persist.

Let us now delve into the analysis of the Raman
spectra computed employing the Hubbard corrections. As
depicted in Fig. 6, the Raman spectrum computed using
PBEsol+U+V with the PBEsol+U+V optimized lattice
geometry (PBEsol+U+V @PBEsol+U+V ) displays a no-
table deterioration in comparison to PBEsol@PBEsol and
the experiment. Namely, peaks 2 and 3 are red-shifted
even more, peak 5 does not show significant changes,
peak 6 is now red-shifted with respect to the experimen-
tal peak, while peak 7 is now in much closer agreement
with the experimental peak position. A substantial improve-
ment emerges when the Raman spectrum is calculated using
PBEsol+U+V with the lattice geometry optimized using
PBEsol (PBEsol+U+V @PBEsol). More specifically, even
though the peaks 2 and 3 are still more red-shifted com-
pared to experiments than in the PBEsol@PBEsol case,
but now the peaks 5, 6, and 7 are in remarkable agree-
ment with the experimental peaks. Therefore, while some
peaks are more accurately described using PBEsol@PBEsol,
others are better described using PBEsol+U+V @PBEsol,
and hence none of these approximations provides the best
description of all peaks in the Raman spectrum simulta-
neously. In contrast, the Raman spectrum computed using
PBEsol+U on top of the PBEsol+U lattice geometry
(PBEsol+U@PBEsol+U ) diverges dramatically from the
experimental one. To ascertain the influence of the under-
lying lattice geometry on the resulting Raman spectrum,
we conducted a PBEsol+U Raman spectrum calculation
employing the PBEsol lattice geometry. This resultant spec-
trum, denoted as PBEsol+U@PBEsol, still exhibits poor
alignment with the experimental data. This infers that the de-
ficiency in the Raman spectrum of PBEsol+U@PBEsol+U
is not predominantly attributed to the PBEsol+U lattice ge-
ometry, which remains cubic instead of rhombohedral (as
elaborated in Sec. III A). The primary rationale for the
ineffectiveness of PBEsol+U resides in the fact that even
with the adoption of the PBEsol lattice geometry, the atomic
positions regress to the high-symmetry cubic orientations
during the PBEsol+U relaxation, thereby influencing the
electronic structure significantly due to the +U correction.

Consequently, the covalency of the Ti(3d)–O(2p) bonding is
suppressed, leading to a drastic deterioration of the Raman
spectrum.

Overall, we ascertain that PBEsol@PBEsol and
PBEsol+U+V @PBEsol yield the most accurate description
of the Raman spectrum for rhombohedral BTO. The
inclusion of the +U + V corrections tends to red-shift
low-wave-number Raman peaks but yields an excellent
description of the high-wave-number Raman peaks, provided
the PBEsol geometry is used. In stark contrast, the application
of the +U correction alone proves to be highly detrimental,
leading to a Raman spectrum that deviates dramatically from
the experimental data.

IV. CONCLUSIONS

We have presented a detailed first-principles investigation
of the low-temperature rhombohedral phase of BTO, focus-
ing on its structural, electronic, and vibrational properties
using PBEsol, PBEsol+U , and PBEsol+U+V . The onsite
U and intersite V Hubbard parameters were computed using
density-functional perturbation theory in a basis of Löwdin-
orthogonalized atomic orbitals. Our findings reveal that the
application of the Hubbard U correction to Ti(3d) states lo-
calizes them and suppresses the Ti(3d)–O(2p) hybridizations,
thus favoring the stabilization of the cubic phase in agree-
ment with previous studies [27]. The inclusion of intersite
Hubbard V interactions between the Ti(3d) and O(2p) states
preserves covalency of the Ti–O bonds, ultimately leading to
the stabilization of the rhombohedral phase in agreement with
experimental observations.

The optimized geometry in PBEsol+U+V is found to be
slightly less accurate than in PBEsol, resulting in a detri-
mental impact on the lattice vibrational properties. The Born
effective charges for Z∗

Ti components and Z∗
O|| are found to be

smaller by 7–13% compared to PBEsol results. The PDOS
in PBEsol+U+V is qualitatively similar to PBEsol, while
the PBEsol+U+V band gap and dielectric constant show
good agreement with experiments by surpassing the accuracy
of PBEsol predictions. The zone-center phonon frequencies,
representing the positions of Raman peaks, are found to be
very sensitive to the underlying geometry. The PBEsol and
PBEsol+U+V functionals provide the Raman spectra in sat-
isfactory agreement with the experimental one, provided that
the PBEsol geometry is used.

Conversely, PBEsol+U tends to stabilize the cubic BTO
at 0 K due to the suppression of the Ti(3d)–O(2p) hy-
bridizations, resulting in various properties that are in poorer
agreement with experiments compared to PBEsol+U+V .
Strikingly, the Raman spectrum computed using PBEsol+U
differs dramatically from the experimental one. Hence, the
application of the +U correction alone is found to be highly
detrimental in the rhombohedral BTO.

Therefore, our study has uncovered the crucial signif-
icance of intersite Hubbard interactions in preserving the
covalent features present in the rhombohedral phase of BTO.
These findings could potentially extend beyond BTO and have
broader implications for other ABO3 perovskites exhibiting
similar properties. However, further investigations employing
PBEsol+U+V for other materials are needed to fully explore
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the potential of this approach. Thus, our study contributes
to laying the foundation for future research in this direction,
offering new insights into tailoring the properties of these ma-
terials. The predictive power of PBEsol+U+V holds promise
for breakthroughs in perovskite materials, unlocking numer-
ous opportunities for advanced technologies and applications.
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