
PHYSICAL REVIEW B 108, 235170 (2023)

DFT + DMFT study of exchange interactions in cobalt and their implications
for the competition of hcp and fcc phases
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We reconsider magnetic properties of face-centered cubic (fcc) and hexagonal close-packed (hcp) cobalt
within the density functional theory plus dynamical mean-field theory (DFT + DMFT) approach in the param-
agnetic phase. Using the recently proposed approach of calculation of exchange interactions in the paramagnetic
phase, we extract exchange interaction parameters of fcc and hcp cobalt and show that the hcp phase possesses
larger spin stiffness, in agreement with the experimental data, showing stronger tendency to ferromagnetism.
Accordingly, the DMFT Curie temperature of the hcp phase appears to be higher than that of the fcc phase. The
disappearance of magnetic order in the fcc phase well below the cobalt Curie temperature is expected to affect its
structural stability and make this phase energetically unfavorable near the experimental Curie temperature. This
may explain the revival of the hcp phase near the Curie temperature of cobalt, observed in the recent experimental
results of perturbed angular correlation study [Sewak et al., Sci. Rep. 12, 10054 (2022)].
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I. INTRODUCTION

Magnetism of transition metals remains a cornerstone of
the theory of magnetism. On one hand, they are often de-
scribed by Heisenberg theory, but on the other hand, they
remain itinerant, showing fractional magnetic moments [1–4].
While elemental iron represents the case of strong well-
localized magnets, elemental nickel appears to be much more
itinerant due to substantial deviation from half-filling.

In this respect, cobalt, having a magnetic moment only
slightly smaller than iron and Curie temperature TC � 1400 K,
which is even higher than in iron (�1000 K), is interesting for
both theoretical and experimental research. Understanding of
magnetic properties of cobalt is complicated by the structural
transition from hexagonal close-packed (hcp) to face centered
cubic (fcc) phase [5,6] at Thcp-fcc � 700 K. The energies of
these phases are sufficiently close, such that small external
perturbations easily shift this temperature [7–9]. Recent per-
turbed angular correlation study [10] has suggested that, in
fact, a substantial amount of the fcc phase appears only at T ∼
500 K, and at higher temperatures T � 700 K, the hcp phase
reappears, although with suppressed magnetization. Quite in-
terestingly, similar observations, although at somewhat shifted
temperatures, can be also made from the old measurements of
the molar volume (see Ref. [11] for a review), which increases
by �Vm ∼ 2 × 10−8 m3/mol at T ∼ 400 K, and at higher
temperatures T � 1200 K, two different sets of measurements
lead to the molar volumes being different by approximately
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�Vm. These changes of the molar volume may indicate possi-
ble phase transformations (or mixture of different phases) and
require theoretical explanations. The decrease of the content
of the fcc phase at temperatures close to the Curie temperature
was also observed in Ref. [12]. For the transition from the low-
temperature hcp to the higher-temperature fcc phase, it was
suggested that magnetic correlations are important, possibly
in combination with the other (e.g., phonon) contributions,
see, e.g., Refs. [13,14] and references therein. Studying the
stability of fcc and hcp phases of cobalt in the vicinity
of the Curie temperature represents an important theoretical
problem.

Both hcp and fcc phases of cobalt were studied [15–23]
by density functional theory (DFT), which however does not
include correlation effects and meets difficulties in describing
the effect of temperature fluctuations. The combination of
DFT with the dynamical mean-field theory (DMFT) method
[24,25] was recently applied to fcc cobalt [26], yielding
however a Curie temperature which is smaller than the ex-
perimental one, while typically the mean-field approaches
overestimate magnetic transition temperature. Therefore, the
magnetic order in the fcc phase can be destroyed below the
experimental Curie temperature of cobalt. Since the pres-
ence of long-range magnetic order decreases the energy of
the fcc phase by ∼0.2 eV, which is an order of magnitude
larger than the energy difference of fcc and hcp phases in
the ferromagnetic state [14], the fcc phase may also become
thermodynamically unstable due to loss of the long-range
magnetic order.

In this paper, we revisit the properties of the hcp and fcc
phases of cobalt within the DFT + DMFT approach. We use
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the lattice parameters at the experimental Curie temperature
of cobalt to account for thermal expansion of the lattice and
more accurately calculate magnetic transition temperatures.
We furthermore apply the recently proposed technique of cal-
culation of exchange interactions in the paramagnetic phase
within the DFT + DMFT approach [27]. Consideration of the
exchange interaction in the symmetric phase assumes the exis-
tence of well-defined local magnetic moments and provides a
possibility of unbiased evaluation of exchange interactions not
affected by the considered type of magnetic order. Using the
obtained exchange interactions, we also estimate the nonlocal
corrections to the DMFT Curie temperatures and energies of
fcc and hcp phases.

On one hand, we show that using the high-temperature
lattice parameter yields larger Curie temperature in DMFT,
which is closer the experimental data. However, the nonlocal
correlations decrease the Curie temperature of the fcc phase
to TC � 750 K, which is much smaller than the experimental
value but surprisingly close to the temperature of the revival
of the hcp phase according to the experimental data. The
Curie temperature of the hcp phase accounting for nonlocal
correlations appears to be TC � 1300 K, quite close to the
experimental data [10].

Therefore, on the basis of these results, we suggest the
following physical picture, which agrees with recent ex-
perimental data. The hcp phase of cobalt is stable at low
temperatures, being lower in energy in the ferromagnetic state
than the hcp phase. With increase of temperature, the fcc
phase decreases its energy due to vibrational, magnetic, and
electronic degrees of freedom (see Ref. [14]), which first
yields that this phase becomes energetically preferable. How-
ever. this phase becomes paramagnetic at T ∼ 700 K, which
again favors the hcp phase. Therefore, we expect delicate
intertwinning of magnetic and structural properties in cobalt.

The plan of the paper is the following. In Sec. II, we discuss
used methods, particularly the method of calculation of the
magnetic exchange interaction from the inverse momentum-
dependent susceptibility. In Sec. III, we describe the results
of the DFT + DMFT approach. In Sec. IV, we present our
conclusions.

II. METHODS

The DFT calculations of cobalt were performed using
the pseudopotential method implemented in the QUANTUM

ESPRESSO [28] package supplemented by the maximally local-
ized Wannier projection onto 3d , 4s, and 4p states performed
within the WANNIER90 package [29]. To consider the effect
of thermal expansion on Curie temperatures, we use the ex-
perimental volume of the unit cell of fcc cobalt at the Curie
temperature V = 11.66 Å3 (Ref. [11]), corresponding to the
lattice parameter a = 3.60 Å, see also Ref. [5]. For com-
parison, we also perform some calculations for the lattice
parameter a0 = 3.56 Å, accepted in Ref. [26], which is closer
to the zero-temperature lattice constant. For hcp cobalt, we
choose the ratio c/a = 1.63, corresponding to the temper-
atures T ∼ TC . Considering that the experimental unit cell
volume per atom quite weakly changes at the fcc-hcp tran-
sition and fixing the volume equal to that of the fcc phase, we
put a = 2.55 Å in hcp phase. The reciprocal space integration

was performed using a 16 × 16 × 16 k-point grid for the fcc
phase and a 18 × 18 × 18 k-point grid for the hcp phase.

In DMFT calculation, we consider the density-density
interaction matrix, parameterized by Slater parameters
F 0, F 2, and F 4, expressed through Hubbard U and
Hund JH interaction parameters according to F 0 ≡ U
and (F 2 + F 4)/14 ≡ JH, F2/F4 � 0.63 (see Ref. [30]). In
this paper, we take U = 4 eV, JH = 0.9 eV. We use
a double-counting correction HDC = MDC

∑
ir nird in the

around mean-field form [31], MDC = 〈nird〉[U (2norb−1) −
JH(norb−1)]/(2norb), where nird is the operator of the num-
ber of d electrons at the site (i, r), where i is the unit cell
index and r is the site index within the unit cell. For the
low-symmetry hcp phase, we perform the Hamiltonian ro-
tation in the d-orbital space to diagonalize the crystal field,
which considerably reduces the off-diagonal components of
the local Green’s functions with respect to the orbital indexes
and improves applicability of the density-density interaction.

We define the exchange interaction by considering the
effective Heisenberg model with the Hamiltonian H =
−( 1

2 )
∑

q,rr′ Jrr′
q Sr

qSr′
−q, where Sr

q is the Fourier transform of
static operators Sir , the orbital-summed on-site static spin
operators Sir = ∑

m Sirm, Sirm = ( 1
2 )

∑
σσ ′ν c+

irmσνσσσ ′cirmσ ′ν
is the electron spin operator, ν are the Matsubara frequencies,
c+

irmσν and cirmσν are the frequency components of the electron
creation and destruction operators at the site (i, r), d-orbital
m, and spin-projection σ , and σσσ ′ are the Pauli matrices.

To extract the exchange parameters Jq, we relate them to
the orbital-summed nonlocal static longitudinal susceptibility
χ rr′

q = −〈〈Sz,r
q |Sz,r′

−q 〉〉ω=0 = ∑
mm′ χ̂mr,m′r′

q (the hats stand for
matrices with respect to orbital and site indexes; 〈〈..|..〉〉ω is
the retarded Green’s function), considering the generalization
of the approach of Ref. [27] to several atoms in the unit cell,
and express exchange interactions as

Jq = χ−1
loc − χ−1

q , (1)

where the inverse in Eq. (1) is taken with respect to the site
indexes in the unit cell. The matrix of local susceptibilities
χ rr′

loc = −〈〈Sz
ir |Sz

ir〉〉ω=0δrr′ = ∑
mm′ χ̂

mm′,r
loc δrr′ is diagonal with

respect to the site indexes. For the nonlocal susceptibility, we
use (cf. Refs. [27,32–35])

χ̂q = 1
2

[
�̂−1

q − Û s
]−1

, (2)

with the static spin polarization (irreducible static spin suscep-
tibility) �̂q (see Ref. [27] for the procedure of its evaluation),
Û s = Û↑↓ − Û↑↑ is the electron interaction matrix in the spin
channel, and the matrix inversions in Eq. (2) are assumed.

The alternative approach considered in Ref. [27] uses
the inverse of orbital-resolved susceptibilities Jmr,m′r′

q =
(χ̂mm′,r

loc )−1δrr′ − (χ̂mr,m′r′
q )−1 and averages the respective

orbital-resolved exchange interactions over orbitals with the
local susceptibilities Jrr

q = ∑
mm′ Jmr,m′r

q χmm′,r
loc /

∑
mm′ χ

mm′,r
loc .

For many atoms in the unit cell, this approach can be applied
to the diagonal components of magnetic exchange Jrr

q only
since the local susceptibilities are diagonal with respect to the
site index. As it is discussed in Ref. [27], the results of this
approach are expected to be close to those from Eq. (1) if
the local magnetic moments are well formed. We therefore
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(a) (b)

(c) (d)

FIG. 1. (a) and (c) Energy dependence of the momentum-
integrated spectral functions (densities of states) A(ν ) and (b) and
(d) those weighted by the Fermi function A(ν ) f (ν ) in the (a) and
(b) hcp and (c) and (d) fcc phases. Black dashed (solid) lines cor-
respond to the total (partial for d electrons) A(ν ) in DFT + DMFT
approach at β = 10 eV−1; red lines correspond to the DFT approach.
Blue dot-dashed line in (d) shows the photoemission experimental
data in the fcc phase of thin cobalt film [38] (taken at the energy
h̄ω = 16 eV at T = 350 K = 1.1T film

C ). Vertical dashed lines mark
the position of the Fermi level.

analyze the results of this alternative approach too for com-
parison purposes.

The DMFT calculations of the self-energies, nonuniform
susceptibilities, and exchange interactions were performed
within the WAN2MB software package [27], based on the
continuous-time quantum Monte Carlo (CT-QMC) method of
the solution of impurity problem [36], realized in the iQIST
software [37]. In the calculation of vertices, we account for
60–90 fermionic frequencies (both positive and negative).
In the summations over frequencies, the corrections on the
finite size of the frequency box are accounted according to
Refs. [27,35].

III. DFT + DMFT CALCULATION RESULTS

A. Local spectral functions

In Fig. 1, we show the DMFT local densities of states A(ν)
at β = 10 eV−1, together with A(ν) weighted by the Fermi
function f (ν) at the same temperature. The d-states provide
major contribution to the density of states near the Fermi
level. For comparison, we also show the corresponding DFT
densities of states [together with those weighted by f (ν)].
One can see that, in both DFT and DFT + DMFT approaches,
hcp cobalt has a somewhat stronger peak of the density of
states near the Fermi level (see also Ref. [15] for comparison
of the DFT densities of states). The interaction effects lead
to suppression of the peaks of the DFT density of states
below the Fermi level, yielding formation of the maximum at
ν � −1 eV in the hcp phase and the plateau at ν � −0.4 eV
in the fcc phase.

For the fcc phase, we compare the resulting spectral func-
tion with the available experimental data on thin cobalt film

(a)

(b)

FIG. 2. Temperature dependence of the (a) inverse uniform and
(b) local susceptibilities of cobalt within the DFT + DMFT ap-
proach. Solid lines with circles correspond to the fcc lattice with
the lattice parameter a at T = TC � 1400 K, dashed lines show the
result for the fcc lattice with the low-temperature lattice parameter
a0, considered in Ref. [26], solid line with triangles corresponds to
the hcp lattice.

above the corresponding Curie temperature [38]. For com-
parison purposes, we scale the experimental spectral function
(expressed in arbitrary units) to the height of the maximum
of the DFT + DMFT spectral function. The resulting depen-
dence near the Fermi level and the position of the plateau
of the density of states are reproduced in the DFT + DMFT
approach (as it is discussed in Ref. [38], the increase of the
experimental spectral function at ν < −2 eV is due to copper
substrate).

B. Local and uniform susceptibilities

The temperature dependence of the inverse uniform sus-
ceptibility in fcc and hcp phases is shown in Fig. 2 (for the
momentum dependencies, see Appendix). For the chosen lat-
tice parameter a of the fcc phase, the inverse susceptibility for
the fcc structure vanishes at the Curie temperature T DMFT

C,fcc =
1420 K. At the same time, with the low-temperature lattice
parameter a0, we obtain lower T DMFT,0

C,fcc � 1270 K, which is
close to the result of Ref. [26] and remains lower than the
experimental Curie temperature. The decrease of the spin sus-
ceptibility and Curie temperature with decrease of the lattice
parameter is explained by weakening correlation effects due
to increase of hopping parameters, which make the system
more itinerant. For the hcp phase, we obtain larger DMFT
Curie temperature T DMFT

C,hcp = 1620 K. Due to the mean-field
nature, the DMFT approach is known to overestimate the
Curie temperature. Therefore, obtained Curie temperatures
can be considered as upper bounds and corrected below with
account of the nonlocal correlations.

From the slope of temperature dependence of inverse
magnetic susceptibilities, the local magnetic moment can
be extracted. In the fcc phase with the lattice parameter
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FIG. 3. Momentum dependence of the exchange interactions in
the fcc phase of cobalt at β = 7 eV−1 along the symmetric direc-
tions. The red solid line (squares) corresponds to the to the result
from the orbital-summed susceptibilities, given by Eq. (1); the violet
dot-dashed line (circles) corresponds to the orbital averaged ex-
change interaction from the orbital-resolved inverse susceptibilities.
The short-dashed blue line with triangles shows the result of DFT
approach of Ref. [21]. The dashed line without symbols shows the
momentum dependence of the nearest-neighbor exchange. The inset
shows Brillouin zone with the symmetric points.

a = 3.60 Å, we find μ2
loc = 8.7μ2

B; in terms of the effective
spin, defined by g2 ploc(ploc + 1) = μ2

loc (g = 2), this corre-
sponds to ploc = 1.06. From the uniform susceptibility, we
obtain somewhat smaller magnetic moment μ2

loc = 6.6μ2
B.

The Weiss temperature TW of the inverse local magnetic sus-
ceptibility:

χ−1
loc = 3(gμB)2(T + TW )/μ2

loc, (3)

determines the Kondo temperature [39–43] TK ≈ TW /
√

2 �
860 K, which is rather large. For the hcp phase, we obtain
somewhat smaller magnetic moment μ2

loc = 8.22μ2
B, corre-

sponding to ploc � 1, and the respective Kondo temperature
TK � 800 K. The uniform susceptibility in this phase yields
μ2 = 5.47μ2

B. The obtained Kondo temperatures are compa-
rable with those in nickel [27,44]. However, the magnetic
moment in cobalt is relatively well formed [26], and large
Kondo temperature originates from its larger value ploc ≈ 1,
providing at the same time more channels to the screening of
this local magnetic moment.

C. Exchange interactions

We first consider exchange interactions in the fcc phase.
Figure 3 shows the momentum dependence of the obtained
exchange interaction at β = 7 eV−1 near the DMFT Curie
temperature TC. Like the previous study of nickel [27], Eq. (1),
considering the orbital-summed susceptibilities yields smaller
exchange interaction than the average of the orbital-resolved
exchange interactions, although the difference between vari-
ous approaches is not as large as in nickel, which is related
to the presence of well-defined local magnetic moments in
Co. In the following, we consider mainly the exchange in-
teractions obtained from the orbital summed susceptibilities

(a)

(b)

FIG. 4. Momentum dependence of the exchange interactions
(a) J11

q and (b) |J12
q | in hcp cobalt at β = 7 eV−1 along the symmetric

directions. The notations are the same as in Fig. 3. The inset shows
Brillouin zone with the symmetric points.

in Eq. (1) since they produced the most reasonable results for
iron and nickel [27]. The obtained momentum dependence of
the exchange interaction near the 
 point is well described
by the nearest-neighbor approximation, although with some
deviations near X and L points of the Brillouin zone. For
comparison, we also show the result of the DFT approach of
Ref. [21]. One can see that the DFT approach overestimates
the exchange interaction near the 
 point (see also the com-
parison of the magnon dispersion with the experimental data
below in Sec. III D).

Figure 4 shows the momentum dependencies of the ob-
tained exchange interactions at β = 7 eV−1 in hcp cobalt
near the DMFT Curie temperature TC. One can see that the
exchange interaction at zero momentum J11

0 + J12
0 is some-

what larger than the interaction J0 in the fcc phase, which
provides larger Curie temperature. Since the intersublattice
interaction J12

q ∝ cos[(2n + 1)qzd] with integer n and the dis-
tance d = c/2 between planes of cobalt atoms, corresponding
to different sublattices, the exchange interaction J12

q vanishes
at the upper (lower) edge of the Brillouin zone (qz = ±π/c).

The temperature dependencies of exchange interactions
are shown in Fig. 5. At low temperatures, the obtained ex-
change interaction, determined from the inverse magnetic
susceptibility J0 � 0.3 eV for the fcc structure (J11

0 + J12
0 �

0.4 eV for the hcp structure), is relatively weakly temperature
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FIG. 5. Temperature dependence of the exchange interaction J0

in fcc cobalt (solid line with squares for the orbital summed inverse
susceptibility and solid line with circles for the interaction from the
orbital resolved susceptibilities) and J11

0 + J12
0 in hcp cobalt (solid

line with stars). Dashed lines show the result of extrapolation.

dependent. Near the Curie temperature, it is twice (more than
twice for the hcp structure) as large as the corresponding
value for iron [27]. However, the local magnetic moment
of cobalt (ploc � 1) is smaller than that of iron (ploc � 1.5),
see Ref. [27]. Considering also the correction TW = √

2TK in
the mean-field equation TC = J0 ploc(ploc + 1)/3 − TW , which
appears from the paramagnetic Weiss temperature of local
spin susceptibility in Eq. (3), related to the local magnetic
moment screening, the Curie temperature of cobalt in DMFT
is larger than the experimental Curie temperature of iron by
only 1.4 (1.6) times in the fcc (hcp) phase. Therefore, despite
relatively large exchange interaction, the Curie temperature
of cobalt is suppressed because of the smaller local magnetic
moment and its Kondo screening. We note that the extension
of the presented approach to the symmetry-broken phase is
necessary to accurately estimate the exchange interactions in
the low-temperature regime, which is beyond the scope of this
paper.

D. Magnon dispersions and spin-wave stiffnesses

Using the obtained exchange interactions in the tempera-
ture range T � TC , it is useful to consider extrapolation of
the obtained results to the low-temperature region, assuming
that the exchange interactions do not change strongly with
lowering the temperature. In Fig. 6, we show the comparison
of the dispersion obtained from the exchange interactions
as Eq = ploc(J0 − Jq) (the exchange interactions from the
orbital-summed susceptibilities are considered) to the exper-
imental magnon dispersion [45] in the fcc phase of cobalt
at room temperature (FeCo alloy containing 8% of iron was
used to stabilize the crystal structure). One can see that the
magnon dispersion agrees well with the experimental data.
The respective spin-wave stiffness D = 290 meV Å2 is some-
what smaller than the experimental data (D = 360 meV Å2),
which can be attributed to the larger considered temperature.
On the other hand, the DFT approach of Ref. [21] yields much
larger spin-wave stiffness D = 663 meV Å2.

The magnon dispersion in the hcp phase is obtained as
the q-dependent eigenvalues of the matrix of the spin-wave

FIG. 6. Comparison of the experimental magnon dispersion in
fcc cobalt along the [111] direction (Ref. [45]) at room tempera-
ture (symbols) with the results of the DFT + DMFT approach at
β = 7 eV−1 (solid line) and the DFT approach of Ref. [21] (dashed
line).

Hamiltonian:

HSW(q) = ploc

(
J11

0 + J12
0 − J11

q −J12
q

−J21
q J22

0 + J21
0 − J22

q

)
, (4)

shown in Fig. 7. In Fig. 8, we show the comparison of the ex-
perimental magnon dispersion at room temperature [46] to the
low-energy part obtained from the exchange interactions ex-
tracted from the orbital-summed susceptibilities. One can see
that the magnon dispersion agrees well with the experimental
data. The respective spin-wave stiffness D = 405 meV Å2 is
larger than in the fcc phase but also remains smaller than
the experimental value (D = 490 meV Å2) because of larger
considered temperature. The reasonable agreement presented
above shows correctness of the obtained exchange interac-
tions, which are used in the next subsection to estimate the
nonlocal corrections to the Curie temperature.

FIG. 7. Magnon dispersion in hcp cobalt at β = 7 eV−1 (solid
lines) and β = 10 eV−1 (dashed lines).
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FIG. 8. Comparison of the experimental magnon dispersion in
hcp cobalt along the [001] direction (Ref. [46]) at room temper-
ature (symbols) with the results of the DFT + DMFT approach at
β = 10 eV−1 (solid line).

E. Curie temperatures in the spherical model and implication
of the obtained results for hcp-fcc transformations

To estimate the Curie temperatures of fcc and hcp cobalt
beyond DMFT, we consider the effective spherical model
[47–50]:

S = 1

2T

∑
q,rr′

[
λr

∣∣Sr
q

∣∣2
δrr′ − Jrr′

q Sr
qSr′

−q

]
. (5)

Assuming that the sites of the unit cell are equivalent, the
constant λr = λ is determined in paramagnetic phase by the
sum rule:∑

q

〈∣∣Sr
q

∣∣2〉 = 3T

2

∑
q

[λδrr′ − Jq]−1
rr = T χloc. (6)

The Curie temperature is determined by the zero of the lowest
eigenvalue of the matrix λδrr′ − Jq at q = 0, which yields
λ = ∑

r′ Jrr′
0 . Using the temperature dependence of the local

susceptibility in Eq. (3), we find

TC = ploc(ploc + 1)

3
∑

q

[
λδrr′ − Jrr′

q

]−1

11

− TW . (7)

For TW = 0, this result coincides with the result of the RPA
approach [51] for equivalent atoms in the unit cell. Taking
the obtained exchange interactions at β = 10 eV−1, we obtain
TC � 740 K for the fcc phase and TC � 1250 K for the hcp
phase. Therefore, accounting for the nonlocal corrections, the
Curie temperature of the hcp phase remains larger than that of
the fcc phase.

We note that the DFT energy of the magnetic hcp phase
is lower than that of the fcc phase by only ∼0.02 eV/atom.
At the same time, due to magnetic order, these phases gain
the energy ∼0.2 eV/atom in the ground state, see Ref. [14].
Therefore, loss of the long-range magnetic order in the fcc
phase would make it energetically unfavorable in comparison
with the (partly) ferromagnetically ordered hcp phase. This
can lead to the reappearance of the hcp phase at higher tem-
peratures in the vicinity of the Curie temperature.

TABLE I. Various contributions to energies of fcc and hcp phases
of cobalt at β = 10 eV−1 (in units of eV/atom) together with the total
energy (relative to the E hcp

DFT).

EDFT − E hcp
DFT Epot − Edc Esfl Em Etot

fcc −0.02 −2.47 −0.06 0 −2.55
hcp 0 −2.47 −0.04 −0.07 −2.58
fcc-hcp −0.02 0 −0.02 +0.07 +0.03

To estimate the effect of the local and spin correlations,
apart from the DFT energy of nonmagnetic state EDFT, we
also consider the potential energy Epot of the on-site Coulomb
repulsion, determined within CT-QMC and subtracted by the
double counting contribution:

Edc = 〈nird〉2[U (2norb−1) − J (norb − 1)]/(4norb), (8)

the spin fluctuation contribution per atom:

Esfl = −3

2

∑
q,r

J1r
q

[
λδrr′ − Jrr′

q

]−1

r1
, (9)

and finally, the magnetic contribution Em = −∑
r J1r

0 S̄2/2. To
determine the magnetization S̄ per atom, we generalize the
sum rule in Eq. (5) to the ferromagnetic phase:

αS̄2 +
∑

q

〈|Sr
q|2〉 = αS̄2 + 3T

2

∑
q

[λδrr′ − Jq]−1
rr

= T χloc, (10)

where we choose α = T/(T + TW ) to reflect the decrease of
the local magnetic moment due to finiteness of the Weiss
temperature. This yields

S̄2 = μ2
loc

4μ2
B

TC − T

TC + TW
. (11)

The above specified contributions to the total energy are
listed for β = 10 eV−1 in Table I. One can see that, while
the contributions Epot − Edc, corresponding to the effect of
local correlations, are close for both phases, and the spin-
fluctuation contribution leads to the gain of energy of the fcc
phase in comparison with the hcp one due to smaller exchange
interaction, the DFT and Esfl contributions are compensated
by the energy gain of the hcp phase due to its finite magnetiza-
tion, and therefore, the hcp phase becomes more energetically
favorable near the Curie temperature.

As we discussed above, the drop of magnetization, which
is accompanied by reducing the content of the fcc phase at
the temperature T ∼ 700 K, was observed recently in cobalt
in Ref. [10]. At that temperature, the reappearance of the hcp
phase was obtained, albeit with suppressed magnetization. In
this light, the higher Curie temperature of the hcp phase may
correspond to the one observed in the experiment.

IV. CONCLUSIONS

In summary, we have evaluated local magnetic moments
and Curie temperatures in the fcc and hcp phases of cobalt
within the DFT + DMFT approach. The hcp phase has a
larger Curie temperature. To obtain nonlocal corrections to
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FIG. 9. Momentum dependence of the orbital-summed nonlocal
susceptibility χq and its particle-hole irreducible counterpart �q in
fcc cobalt at β = 7 eV−1 along the symmetric directions.

Curie temperatures, we have evaluated exchange interactions
using a recently proposed approach in the paramagnetic phase.
We show that the larger Curie temperature of the hcp phase
originates from larger exchange interaction (J0 � 0.3 eV
in the fcc phase and J0 � 0.4 eV in the hcp phase). This
approach also allows a correct description of the experimental
data for the spin-wave stiffness. The obtained magnon dis-
persions are in reasonable agreement with the experimental
data.

Using the obtained exchange interactions, we have esti-
mated nonlocal corrections to Curie temperatures. We show
that, accounting for nonlocal corrections, the Curie temper-
ature in the fcc phase (TC,fcc � 740 K) remains smaller than
that of the hcp phase (TC,hcp � 1250 K). Therefore, we expect
that, because of the loss of magnetic energy, the fcc phase
becomes unstable at temperatures close to TC,hcp. We confirm
this conjecture by explicit calculation of various contributions
to the energies of the fcc and hcp phases at β = 10 eV−1.

Further experimental studies of crystal structure of cobalt
near the Curie temperature can provide more information on
the possibility of the existence of the hcp phase near the
Curie temperature. The proposed method can be applied to
the other substances experiencing structural transition which
originate from the loss of magnetic order. Also, it can be used
for calculation of nonlocal corrections to magnetic transition
temperatures.

Accurate estimation of the entropy contribution to the free
energy of cobalt is of certain interest. Also, extension of the
considered approach to the SU(2) form of electron interaction
represents an important field of future development.

FIG. 10. Momentum dependence of the orbital-summed nonlo-
cal susceptibility χ rr′

q and its particle-hole irreducible counterpart

�rr′
q in hcp cobalt at β = 6 eV−1 along the symmetric directions.

Top row: r, r′ = 1 component, lower row r = 1, r′ = 2.
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APPENDIX

In this Appendix, we present the momentum dependence of
the nonlocal susceptibility of fcc cobalt at β = 7 eV−1 (Fig. 9)
and hcp cobalt at β = 6 eV−1 (Fig. 10), together with the
orbital-summed polarization operators �q. One can see that
the susceptibilities are strongly peaked at q = 
 = 0, showing
strong ferromagnetic correlations.
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