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We study a class of multiorbital models based on those proposed by Venderbos et al. [Phys. Rev. B 98, 235160
(2018)] which exhibit an interplay of topology, interactions, and fermion incoherence. In the noninteracting limit,
these models exhibit trivial and Chern insulator phases with Chern number C � 1 bands as determined by the
relative angular momentum of the participating orbitals. These quantum anomalous Hall insulator phases are
separated by topological transitions protected by crystalline rotation symmetry, featuring Dirac or quadratic
band-touching points. Here we study the impact of Sachdev-Ye-Kitaev (SYK) type interactions on these lattice
models. Given the random interactions, these models display average symmetries upon disorder averaging,
including a charge conjugation symmetry, so they behave as interacting models in topological class D enriched by
crystalline rotation symmetry. The phase diagram of this model features a non-Fermi liquid at high temperature
and an exciton condensate with nematic transport at low temperature. We present results from the free energy,
spectral functions, and the anomalous Hall resistivity as a function of temperature and tuning parameters. Our
results are broadly relevant to correlated topological matter in multiorbital systems, and may also be viewed, with
a suitable particle hole transformation, as an exploration of strong interaction effects on mean-field topological
superconductors.
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I. INTRODUCTION

Advances in the fields of topological phases and strongly
correlated electron systems have provided exceptions to the
two paradigms proposed by Landau to characterize condensed
matter systems. Landau theory for symmetry-breaking phase
transitions had to be modified to include topological phase
transitions which are not characterized by a local order pa-
rameter. These include classical phase transitions such as the
Berezinskii-Kosterlitz-Thouless transition as well as quantum
transitions involving a change in electronic band topology.
It is expected that gapped topological states of matter are
generically robust to weak many-body interactions that do not
close the single particle gap [1–3]. However, stronger interac-
tions might lead to closing of the gap or to collective modes
induced by interactions, such as excitons, which can become
unstable and drive symmetry breaking. Landau’s concept of
a Fermi liquid (FL) with sharp electronlike quasiparticles is
also often inadequate to describe strongly interacting fluids
which may not exhibit long-lived electronic quasiparticles.
This can happen for systems near quantum critical points or in
systems which have both disorder and strong correlations. Par-
tial progress in understanding such non-Fermi liquids (nFLs)
has come from constructing exactly solvable models like the
Sachdev-Ye-Kitaev (SYK) model in the large-N limit [4–7].

In light of the above efforts, it is worthwhile to study the
interplay between topological transitions and strong corre-
lations. A partial exploration of this idea was discussed in
Ref. [8], where the SYK interaction was shown to renor-
malize the location of topological phase transitions between
Chern insulator and trivial insulator phases and to render
the topological gap less stable to nonzero temperature. Here,
we explore interacting variants of two-orbital models con-
structed by Venderbos, Hu, and Kane [9] (VHK) to describe

Chern insulators with different angular momentums for or-
bitals, which leads to bands with higher Chern numbers.
The trivial and higher Chern insulators in these models are
separated by a quadratic band-touching critical point which
is protected by crystalline Cn rotational symmetry. A repul-
sive interorbital Hubbard interaction is marginally relevant at
this band-touching point in two dimensions, and drives the
formation of nematic order which breaks the Cn rotational
symmetry [10]. In fact, this physics of topological transitions
with quadratic band touching and emergent nematicity was
studied for C =2 Chern insulators with C6 symmetry by Cook
et al. [11]. The broader interplay of interactions and band-
touching points in driving diverse symmetry-broken phases
has received considerable attention in previous work [12–16].

In our paper, we consider a variant of these models with
random multi-orbital SYK interactions in the large-N limit
and study anomalous Hall transport across the phase dia-
gram. Since the SYK interactions are inherently random, the
symmetries of the full Hamiltonian, discussed below in more
detail, are average symmetries, which are present upon dis-
order averaging. While this is obvious for lattice symmetries
like translations, we show that it can also be true for on-site
symmetries like charge conjugation. We note that the role of
average symmetries, both unitary and antiunitary, on noninter-
acting as well as interacting symmetry-protected topological
phases, continues to be of interest [17–21]. Here, we discuss
examples where the microscopic SYK model may not possess
such symmetries, but they appear in the disorder-averaged
action. We show that the phase diagram of the VHK model
with random interactions includes, in addition to the cor-
related trivial and Chern insulator phases, a nematic phase
driven by exciton condensation. The main difference with
respect to the Hubbard model is that the disorder-averaged
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SYK interaction appears to be irrelevant at the band-touching
point, and one needs to exceed a critical SYK coupling to
drive nematic order. If we start from the interacting single-site
limit, our model corresponds to a topological lattice gener-
alization of a coupled two-dot SYK model [22–24], which
hosts a wormhole corresponding to spontaneous breaking
of an axial U (1) symmetry. On the lattice, this wormhole
exciton condensate transmutes into a nematic state which
breaks discrete lattice rotational symmetry. The lattice model
does not retain this U (1) symmetry, although it does de-
velop a nonzero exciton expectation value, so we retain this
language.

The VHK-type models break time-reversal T and do not
need charge conjugation symmetry C or chiral symmetry S ,
and could thus be viewed as an enrichment of class A of
the topological periodic table upon including crystalline Cn

rotational symmetry. For simplicity, however, we endow it in
our work with an additional charge conjugation C symmetry
with C2 = +1, as done in the instances of these tight-binding
models studied by VHK. This ensures that the model has
bulk insulating phases except at critical points corresponding
to topological phase transitions. The Hamiltonians we study
are enrichments of class D, with a particle-hole symmetric
spectrum and an integer Chern invariant.

A distinct viewpoint on this class D VHK model is
obtained by making a particle-hole transformation on one
orbital. The resulting noninteracting phase diagram then de-
scribes, at the level of Bogoliubov–de Gennes (BdG) mean
field theory, a gapped trivial superconductor and a gapped
topological superconductor separated by a quadratic band-
touching critical point. In this language, our work effectively
explores the impact of strong SYK interactions on this BdG
Hamiltonian, and one of the phases we uncover corresponds
to a strongly interacting nematic superconductor.

Recent experiments on hexagonal Bernal bilayer graphene
as well as magic angle twisted bilayer graphene have shown
the wealth of phases arising in Dirac and quadratic band-
touching systems [25–33]. These materials show evidence
for nematic order in the normal and superconducting states,
exhibit anomalous Hall effects, and display nFL behavior at
high temperature via T -linear resistivity [34]. These experi-
ments serve as inspiration for our exploration of the interplay
between topology and interactions.

II. HAMILTONIAN AND SYMMETRIES

A. Noninteracting model

We consider the two-dimensional (2D) VHK model of a
Chern insulator:

H0 =
∑

k

ϕ
†
khkϕk, ϕk =

(
ck,1

ck,2

)
. (1)

Here ck,σ are annihilation operators for electrons in orbitals
σ = 1, 2 with momentum k. For obtaining topological bands
with Chern number C = �, the orbitals should have at least
relative angular momentum �. For C = ±3, this corresponds
to atomic (s, f ) orbitals with ϕT

k = (sk, fk ); we will focus
on this case in the body of the paper. The case with s-p or

s-d orbital pairs for � = 1, 2, respectively, are discussed in
Appendix E.

We study the triangular lattice with D6h symmetry, choos-
ing s to transform as A1g and f to transform as B1u. We
consider the Hamiltonian matrix

hk = εkτz + �1λ
(1)
k τy + �2λ

(2)
k τx , (2)

where λ
(1)
k and λ

(2)
k are basis functions for B1u and B2u repre-

sentations, while εk is the A1g basis function.
For our model, T 2 = +1, and time-reversal corresponds

simply to complex conjugation K. Let us define mirror
operations My : (kx, ky) → (kx,−ky ) and Mx : (kx, ky ) →
(−kx, ky). We can then examine all the symmetries of this
model.

(1) C6: ϕk → τzϕRk, where rotation R ≡ R2π/6. Thus, C6

symmetry implies τzhkτz = hRk, which is satisfied since εk =
εRk, while λ

(i)
k = −λ

(i)
Rk. We later deduce nematic order in

the interacting model by examining whether �k = i�1λ
(1)
k +

�2λ
(2)
k develops additional terms that are not odd under C6

rotation. For the specific case of � = 3, the C6 → C3 nematic
symmetry breaking we observe later can also be thought of as
inversion breaking; for � = 2, nematic order does not imply
inversion breaking.

(2) MyT : ϕk → Kϕk′ , where k′ = My · (−k). We then
expect hk → h∗

k′ . This is satisfied since εk′ = εk, λ(1)
k′ = −λ

(1)
k ,

λ
(2)
k′ = λ

(2)
k , and τ ∗

y = −τy.
(3) MxT : ϕk → Kτzϕk′ , where k′ = Mx · (−k). We then

expect hk → τzh∗
k′τz. This is satisfied since εk′ = εk, λ

(1)
k′ =

λ
(1)
k , λ

(2)
k′ = −λ

(2)
k , and τ ∗

y = −τy.

(4) Charge conjugation C: ϕ†
k → ϕT

−kτx. This leads to hk →
−τxhT

−kτx. This symmetry is obeyed by our Hamiltonian.
Finally, we note that the combination of charge conjugation

and C6 symmetry does not permit a term in hk which is
proportional to the identity matrix.

Working with nearest- and next-nearest-neighbor hop-
pings, we choose basis functions,

εk = t

2

(
z − 2

3∑
i=1

cos ki

)
− δ, (3)

λ
(1)
k =

3∑
i=1

sin ki, (4)

λ
(2)
k = −1

3
√

3

3∑
i=1

sin (ki − ki+1), (5)

where the coordination number z = 6, and δ tunes the band
topology. We have defined ki = k.âi where âi = cos θix̂ +
sin θiŷ with θi = (i − 1)2π/3.

Figure 1 shows the phase diagram of this noninteracting
VHK model when we fix t = �2 = 1 and tune δ and �1. We
find trivial band insulators with C = 0 as well as quantum
anomalous Hall insulators with C = ±3. The band touching
points at the topological phase transitions are also indicated.
The C = 0 → ±3 transitions are driven by a quadratic band-
touching point (QBTP) with winding number ±3 at the �

point or by three winding number ±1 band touchings at the
M points. The C = 3 ↔ −3 transitions proceed via six Dirac
band touchings located at generic incommensurate momenta
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FIG. 1. Noninteracting phase diagram of the �=3 VHK model
upon tuning δ and �1 for fixed t =�2 =1. The C = 0 �→ ±3 tran-
sition at δ = 0 occurs when the gap closes at the � point. The
C = ±3 �→ 0 transition at δ = 4 occurs when the gap closes at M
points. The C = 3 �→ −3 transition occurs via band touchings at
generically incommensurate momenta along � − K high-symmetry
line.

located along the � − K lines. Below we discuss in detail the
impact of interactions on the C = 0 → 3 transition at �1 = 1
as we tune δ. The band structure as we go across this transition
is shown in Fig. 2. Band touchings at the M points or incom-
mensurate momenta might nucleate more complex broken
symmetries associated with spatially modulated orders; given
the numerical complexity of this problem, we defer this explo-
ration to future work. However, a discussion of models with
� = 1, 2 with � point band touchings is given in Appendix E
and shown in Fig. 8, mainly to show that the phenomenol-
ogy in those cases is similar to the � = 3 model explored
here.

B. SYK interactions

We next switch on SYK interactions on each site by gener-
alizing each orbital σ to have additional “flavor” indices, and
consider the Hamiltonian

HSYK =
∑

r

∑
i jkl

∑
σi

Jσ1σ2σ3σ4
i jkl (r)Oσ1σ2σ3σ4

i jkl (r)Oσ1σ2σ3σ4
i jkl (r)

= c†
r,σ1,i

c†
r,σ2, jcr,σ3,k

cr,σ4,l
. (6)

Here σ1−4 take on values 1,2. The flavor indices i, j, k, l
take on values 1 . . . N , and we will be interested in the
limit N → ∞. We denote σ̄ = ¬σ . The random couplings
Ji jkl are (anti)symmetrized to obey Jσ1σ2σ3σ4

i jkl = −Jσ2σ1σ3σ4
jikl =

−Jσ1σ2σ4σ3
i jlk . Hermiticity fixes Jσ1σ2σ3σ4

i jkl = (Jσ4σ3σ2σ1
lk ji )∗. The spa-

tial symmetries C6, MxT , and MyT do not act on the flavor
indices. Furthermore, for the random SYK couplings, these
symmetries (as well as translations) will be assumed to be
present only on average, so they will not relate couplings
on different sites taken into each other under the symmetry
operation.

We consider the following interaction Hamiltonian for the
main body of the text:

HSYK =
∑

r,i jkl,σ

[
Ji jkl (r)

(
Oσσσσ

i jkl (r) + αOσ σ̄σ σ̄
i jkl (r)

)]
, (7)

where Ji jkl is a complex random variable, independent of
σ , which is sampled from a Gaussian distribution with
〈Ji jkl (r)〉 = 0, and 〈J∗

i jkl (r)Ji jkl (r
′)〉 = δrr′J2/(2N )3. We im-

pose that J1111
i jkl = αJ1212

i jkl with a real proportionality constant
α, motivated by potential physical realizations of this model
[24,35]. At the single site level, HSYK preserves a local U (1) ⊗
U (1) symmetry that spontaneously breaks into a single U (1)
symmetry [23,24]. Related models have received considerable
attention [36–41] for their insight into the relation between
quantum information and spacetime geometries. In the present
formulation, this exciton condensation transition corresponds
to an axial U (1) symmetry breaking mechanism. In an alter-
native particle-hole transformed formulation, this is a global
U (1) symmetry breaking which leads to superconducting

FIG. 2. The noninteracting band structure of the � = 3 VHK lattice model. Here, energies are in units of t , and we have set �1 = �2 = t .
The bands are shown for (a) the trivial regime with δ = −1, (b) the quadratic band-touching point for δ = 0, and (c) the topological regime for
δ = 1.
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condensate [35]. The lattice extension of this is discussed
in Appendix B, where, again, although the U (1) symmetry
has already been broken by the lattice pairing terms, the
interactions develop a novel nematic superconducting order
parameter.

Here, we explore the phase diagram and transport for the
model H0 + HSYK as we tune band topology and interaction
parameters J, α. This microscopic interaction HSYK has none
of the point-group symmetries nor the charge conjugation
symmetry of the noninteracting model. However, disorder
averaging via the replica trick, and taking the large N limit,
we find that all symmetries, C, C6, MxT , and MyT emerge
as average symmetries of H0 + HSYK (Appendix A).

III. LARGE-N SOLUTION

A. Dyson equation and self-energy

Starting from the Hamiltonian H0 + HSYK, we derive the
disorder-averaged effective G
 action using the replica trick.
The details of such a procedure have become common [7], so
we defer some pertinent details to Appendix A and proceed by
writing out the Dyson equations for the local Green’s function
and the self-energy:

Gσσ ′ (iω) =
∫

dk
(2π )2

(iω − h(k) − 
(iω))−1
σσ ′ (8)


σσ ′ (τ ) = − J2

(
G2

σσ ′ (τ )Gσ ′σ (−τ ) + αGσσ ′ (τ )

× (Gσ σ̄ ′ (−τ )Gσ̄ σ (τ ) + Gσ̄ σ ′ (−τ )Gσ ′σ̄ (τ ))

+ α2

2
Gσ̄ ′σ̄ (−τ )(Gσ σ̄ ′ (τ )Gσ̄ σ ′ (τ )

+ Gσσ ′ (τ )Gσ̄ σ̄ ′ (τ ))

)
. (9)

Solving these equations self-consistently also gives us the free
energy presented in Appendix A, Eq. (A12), and we use it to
compute order parameters and to study the phase transitions
mentioned below.

B. Anomalous Hall transport

To determine the topological phases, we compute σxy.
The anomalous Hall conductivity is derived from the zero-
momentum paramagnetic current-current correlation func-
tion,

σμν (ω) = − lim
η→0

1

ω
Kμν (Q = 0, ω + iη), (10)

where the correlation function for uniform frequency is given
by [42]

Kμν (iωn) =e2
∑
iνn

∑
k

Tr∂μh(k) · G(k, iνn)

· ∂νh(k) · G(k, iωn + iνn). (11)

This quantity can be computed upon analytic continuation
to real frequency. Here, since we have a matrix expression
for G with general nonzero off-diagonal entries, the spectral

function takes a more general form:

A(k, ω) = i

2π
(GR(k, ω) − GR(k, ω)†). (12)

To perform numerical computations, we analytically continue
the self-consistent Eqs. (A11) themselves, from the Matsubara
frequencies (iωn) to the real frequency line (ω ∈ R) following
the method presented in Refs. [24,43], which is detailed in
Appendix C. The ability to solve self-consistent equations di-
rectly on the real-time axis is a major motivator for the study
of the SYK interactions. The real-time self-consistent equa-
tions provide the matrix retarded Green’s functions GR(ω) and
the matrix retarded self-energies 
R(ω). Additional details
regarding the calculation can be found in Appendix D.

IV. PHASE DIAGRAM

At low temperatures, these SYK interactions construct a
rich phase diagram. We restrict our interest to low tempera-
tures for several reasons. The quantized Chern number and
topological phase transitions are strictly defined only in the
zero-temperature limit T = 0 [1,2]. The higher-dimensional
SYK model also demonstrates a FL-nFL crossover at T �
t2/J , which can be demonstrated from a power-counting argu-
ment that the fermion-hopping term is a relevant perturbation
to the four-fermion incoherent interaction [4]. This means in
the region where the topological aspects of this model are
apparent, there remains a well-defined coherent quasiparticle
picture. The hopping t also serves to reduce the density of
states, which reduces the interaction-induced scattering rate.
This crossover does not exclude the possibility that interac-
tions at finite coupling strength can have dramatic effects on
the low-temperature physics, as we demonstrate here. Finite-
temperature behavior can be seen through the anomalous Hall
response. We begin by considering the fate of the topological
phase transition without the interorbital coupling, i.e., with
α = 0, and then ask about the phase diagram when α �= 0 is
switched on.

A. α = 0 phase diagram

The noninteracting lattice model we study undergoes a
topological phase transition from C = 0 to C = 3 at δ = 0
and another which returns it to the trivial phase at δ = 4. This
transition occurs due to band inversions of the QBTPs. This
QBTP occurs at the � point at δ = 0 in all of the constructed
lattice models. The point is isotropic in k space. We focus
our investigation about this point because the QBTP nature of
point has an enhanced density of states. The recombination
band-touching point at δ = 4 generically occurs at nonzero k,
although the interaction phenomenology remains similar.

To determine the effect of correlated interactions on this
topological transition, we compute the anomalous Hall con-
ductivity σxy using the approach detailed in Sec. III B. This
transition also holds for the C − conjugated superconducting
model. We focus our attention on the Chern insulator because
the Chern number can be extracted through σxy = C/2π ,
which is no longer possible in a superconducting setting where
charge is not conserved. C refers to the homotopy invariant
Chern number that distinguishes the system from a topologi-
cally trivial and nontrivial state.
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FIG. 3. Zero temperature phase diagram as a function of tuning
mass parameter δ and the effective SYK interaction strength J/t
for α = 0. (The numerical solution is obtained at T/t = 10−2.) The
topological transition is impacted by J via a renormalization of
δ. Both phases, the trivial insulator and Chern insulator, preserve
crystalline C6 rotational symmetry.

The anomalous Hall conductivity also serves as a more ro-
bust measure of topological invariants than previously defined
zero-temperature invariants that implicitly rely on single-
particle wave functions or propagators and are limited to zero
temperature [16,44–46]. Figure 3 demonstrates the effect on
these phase boundaries upon tuning J for α = 0. When α = 0,
the effect of the SYK interaction within each orbital serves to
shift the transition boundary. This increases the topological
nontrivial region. The shifted topological phase diagram can
be explained through an effective Hamiltonian [8,11]:

heff (k) = −G−1
R (ω = 0, k). (13)

The C symmetry indicates that for a diagonal G(ω = 0, k),
the matrix structure of 
(0) ∝ 
11(0)τz is such that 
11(0) =
−
22(0). This implies that there is an effective renormaliza-
tion of δ in this picture, given by

δ → δ + 
11(0)

t
. (14)

This renormalization shifts the bare value of δ at which the
band touching occurs and the resulting topological band in-
version takes place [8].

When α �= 0, there is not a simple matrix form of 
(0),
although for 
11,22, J is effectively renormalized by Jeff =
J (1 + α2/2), which in turn contributes to the renormalization
of δ.

B. α �= 0 phase diagram

As described in Sec. II, the noninteracting Hamiltonian is
invariant under lattice point-group symmetries, such as ro-
tation. The introduction of local interaction terms given by
Eq. (7) respect this symmetry in the Hamiltonian on average.

FIG. 4. The zero temperature phase diagram at strong coupling
J/t = 10 (our numerical solutions are for T/t = 10−2). The critical
coupling constant −αc for inducing nematic order decreases as the
band gap is reduced, but reaches its minimum finite value deeper in
the topological phase when the orbital populations are most mixed
so the interorbital interaction can play an important role.

Previous mean-field studies of a marginal Hubbard interac-
tion [9,11], revealed exciton ordering due to the increased
density of states at the QBTPs. This transition is due to an
induced exciton self-energy (
σσ̄ (iω)). The formation of such
particle-hole pairs in the � = 0 channel and their condensation
shifts the coupling of the orbitals as �k → �k + �0, which
breaks the rotational symmetry due to the spontaneously gen-
erated momentum independent contribution. This is distinct
from nematic transitions where anisotropic orbitals (with pre-
ferred directions) develop spontaneous population imbalances
[47].

The order parameter of the transition in our model can be
extracted as

�0 = 1

2N

∫
dk

(2π )2
〈ϕ†

kτxϕk〉=
∫

dk
(2π )2

G12(k, τ = 0).

(15)
An intraorbital SYK interaction does not lead to such spon-

taneous symmetry breaking. Hence, we proceed by asking
whether or not the interorbital α term induces such exci-
ton formation. The 0+1D model spontaneously develops a
nonzero exciton order parameter for α < 0 and for α > 4
[24]. One can show that there exists a duality between α =
0, 4 equivalent only to renormalizing Jeff [24]. For this rea-
son, we explore the stability of this α = 0 transition in the
higher-dimensional 2 + 1 D model. In this 2 + 1 D model, the
thermal nematic transition is typically continuous, although
the low-temperature phase transition upon tuning α is first
order, consistent with the 0 + 1D model.

Figure 4 demonstrates the phase diagram of tuning δ and
α at a large value of J = 10. We focus on the regime of the
phase diagram for α < 0 since the 2+1D theory displays no
spontaneous symmetry breaking for α > 0, at least for 0 <

α < 4, as in the 0+1D theory. We have not explored larger
values α > 4 in this paper since our primary interest is to
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FIG. 5. Low energy frequency integrated spectral weight∫ �c

0 Tr A(k, ω), with �c = 0.05 centered at the � point. We con-
sider the noninteracting theory (a) without and (c) with a mean-field
nematic order parameter �0. We show the interacting theory with
(b) α = 0 without and (d) α = −0.5 with spontaneous symmetry
breaking. All figures are shown at δ = 0.35. The interacting spec-
tral functions demonstrate a clear nematic symmetry breaking down
to C3.

study the physics of the QBTP. A similar phase diagram exists
for fixed α < 0 and tuning J . We discuss this phase diagram
in Appendix E and Fig. 7. The starting point of our analysis
is a strongly interacting theory, dominated by J . α induces
an instability from this strongly interacting theory. This is in
sharp contrast to mean-field Hubbard results, where U is a
marginal interaction that the noninteracting Fermi liquid is
unstable to.

The transition requires nonzero occupation in both orbitals
to spontaneously break rotational symmetry. This means that
the topological phase, with large band inversion, is more sus-
ceptible to the transition since the bands are naturally inverted
after a Chern transition, leading to occupation in both the
bands. The required orbital mixing decreases the critical α as
a function of δ.

We demonstrate nematic order through the low energy
frequency integrated spectral weight

∫ �c

0 Tr A(k, ω) in Fig. 5,
with �c = 0.05. Here we exhibit the effects of intraorbital
SYK interactions on the spectral functions without symme-
try breaking, a mean-field example of the nematic order
parameter, and the fully interacting theory with interorbital
interactions. The intraorbital interactions broaden the spectral
functions, although they retain the symmetry. The interorbital
interactions induce spontaneous symmetry breaking that re-
duces the symmetry to C3.

The effect of these interactions on the anomalous Hall
conductivity, σxy, is explored in Fig. 6 for finite temperatures.
In the topological phase, σxy is unquantized at high temper-
atures but approaches a quantized value (C = 3) as we lower
temperature, typical of a topological phase. A nonzero σxy per-
sists at high temperature, even in the regime with incoherent
quasiparticles, similar to observations in previous work [8].
We attribute this to local contributions from fermions which
hop around elementary triangular plaquettes of the lattice.
This can contribute to the anomalous Hall response even in
the absence of a Fermi surface or well-developed topological
bands as has been shown, for instance, in strongly disordered
ferromagnetic semiconductors [48]. We note that the impact
of the SYK interaction J has shifted the trivial-topological
phase boundary away from δ = 0; this is also visible at fi-
nite temperatures. Increasing J , however, serves to broaden
the spectral functions which reduces the Hall gap. The inter-
actions therefore destabilize the quantized Hall conductivity
to temperature fluctuations. This provides an explanation for
the observed behavior in Ref. [8]. At larger δ, as we go
deeper into the topological phase, a nonzero σxy persists to
even higher temperature. This behavior contrasts with the fact
that, for sufficiently large α and low temperature, interorbital

FIG. 6. A plot of the anomalous Hall conductivity σxy as a function of the mass δ and temperature T for the interorbital correlation
(a) α = −0.1, (b) α = −0.4, and (c) α = −0.5. The Chern transition has been shifted away from δ = 0 by intraorbital J/t = 10 with � = 1.
Figure 5(b) demonstrates that a clear nematic dome suppresses the onset of quantized anomalous Hall conductivity given by a Chern number.
The reduction of the anomalous Hall conductivity for the larger α occurs at a much higher temperature. The red lines indicate nematic order
from free-energy calculations. At sufficiently low T , the critical δ becomes T independent and ends in a first-order transition point.
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interactions suppress the anomalous Hall conductivity, and re-
sult in a trivial C = 0 state. Upon increasing α, the anomalous
Hall conductivity therefore decreases much more rapidly upon
heating.

V. OUTLOOK

In this paper, we have considered a strongly correlated
model where topological phase transitions and Chern num-
bers can be computed without reference to band structure
and wave functions or much of the framework for nonin-
teracting or weakly interacting topological insulators. This
paper extends the notions of average symmetries that have
been considered in relation to topological phases. We have
demonstrated the role that strong interactions have on the
excitations of a general class of these insulators and how
they shape both symmetry-broken and topological phase tran-
sitions. The exciton pairing interaction at α �= 0 induces a
spontaneous rotational broken symmetry from C6 �→ C3. This
induced nematic order shifts the phase boundaries of the topo-
logical phase transition and, at sufficiently large interactions,
preempts the topological phase transition. This model can
also serve to describe nematic superconducting order parame-
ters in topological superconductors. As compared to marginal
mean-field results with Hubbard-like interactions, the density
population of both orbitals play a dramatic role in the transi-
tion.

Going beyond the regime of a clean hopping model with
disordered interactions, if we include weak randomness in
the hopping Hamiltonian or go beyond large N for the in-
teractions, based on an Imry-Ma argument [49], we expect
the nematic phase to be strictly destroyed since there will be
local random fields which break C6 symmetry. However, large
nematic domains might nevertheless persist at weak disorder,
and the topological phases and anomalous Hall transport are
expected to survive.

An interesting future avenue is motivated by previous work
[5]. In d = 2, power-counting arguments demonstrate that α

interactions would only be relevant for quite flat bands with
dispersion ε(k) ∝ |k|p p > 6. However, for p � 3 a distinct
nFL state persists to T = 0, different than the SYK solution,
despite the interactions being irrelevant. The nature of this
intermediary regime deserves further attention.

One can also ask a related question based on work on
nematic order within 3D quadratic band-touching systems
[14,50,51]. Short-range interactions in that case are RG irrel-
evant, although long-range interactions are strongly relevant
and lead to nFL behavior. The Yukawa-SYK model in 2D
also has a critical bosonic propagator which also leads to
nFL behavior [52–54]. The role of such critical behavior in
the current model is worthy of exploration. There are a few
interesting variants of the model that could also be explored.
If the random interaction respected translational symmetry,
the disorder average would induce a momentum dependence
in 
(k, ω) [6]. One could also study doped versions of the
model away from half filling to examine the effects of Berry
curvature and interactions in a partially filled metallic Chern
band.

Future directions of this work can also turn towards the
aspects of the coupled SYK model that remain unexplored in
higher dimensional problems. Considerable recent interest in
this class of coupled SYK orbitals demonstrates a wide variety
of exotic phenomena, such as revival dynamics, wormholes,
and the teleportation of quantum information [22,24,39].
These aspects of the model have even been probed through
quantum computing simulations, although the physics ob-
served in this simplified model remain unclear [55,56]. The
role that nontrivial band structure and topology has on such
phenomena remains undetermined.
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APPENDIX A: SELF-CONSISTENT SOLUTIONS FOR A
COUPLED CORRELATED SYK MODEL

We begin with the Hamiltonian

H =
∑

k

ϕ
†
khkϕk, ϕk =

(
ck,1

ck,2

)
, (A1)

with the interaction terms

H intra
J =

∑
r

∑
i jkl

∑
σ

Ji jkl (r)c†
r,σ,ic

†
r,σ, jcr,σ,kcr,σ,l , (A2)

H inter
α = α

∑
r

∑
i jkl

∑
σ

Ji jkl (r)c†
r,σ,ic

†
r,σ̄ , jcr,σ,kcr,σ̄ ,l . (A3)

The interaction terms can be rewritten using fermion quadlin-
ears as

HSYK = HJ + Hα ≡
∑

r

∑
i jkl

Ji jkl (r)Oi jkl (r, τ )

=
∑

r

∑
i jkl

∑
σ

Ji jkl (r)
(
Oσσσσ

i jkl (r, τ ) + αOσ σ̄σ σ̄
i jkl (r, τ )

)

=
∑

r

∑
i< j,k<l

∑
σ

Ji jkl (r)
(
4Oσσσσ

i jkl (r, τ )

+ 2α
(
Oσ σ̄σ σ̄

i jkl (r, τ ) + Oσ σ̄ σ̄ σ
i jkl (r, τ )

))
, (A4)

where

Oσ1σ2σ3σ4
i jkl (r, τ ) = c†

r,σ1,i
(τ )c†

r,σ2, j (τ )cr,σ3,k (τ )cr,σ4,l (τ ), (A5)

and the second equality in Eq. (A4) is for the restricted sum
i < j, k < l . This means that the disorder averaging is over
independent indices. Here σ̄ refers to the opposite orbital and
σ ′ refers to either the same or opposite orbital. After following
the replica trick [7], we have the disorder-averaged partition
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function as

Z =
∫ ∏

s

D[c̄, c] exp

⎡
⎣−

∫
dτ1

∑
r,r′

∑
σ,σ ′

∑
i

c̄r,σ,i((∂τ1 − μ)δrr′δσσ ′ + hσσ ′ (r − r′))cr′,σ,i

− J2

16N3

∫
dτ1dτ2

⎛
⎝∑

r

∑
i< j,k<l

Oi jkl (r, τ1)Olk ji(r, τ2)

⎞
⎠

⎤
⎦. (A6)

This partition function can be rewritten in terms of fermion bilinears G and 
 by applying a Lagrange multiplier constraint
which is detailed in Ref. [7]. The effective saddle-point action in the N → ∞ limit is given as

− 1

N
S[G, 
] =

∫
dk

(2π )2
dτ ln det ((∂τ − μ)δσσ ′ − hσσ ′ (k) − 
σσ ′ (τ ))

+
∫

dτ1dτ2

{∑
σσ ′


σσ ′ (τ1, τ2)Gσ ′σ (τ2, τ1) + J2

4

(∑
σσ ′

Gσσ ′ (τ1, τ2)2Gσ ′σ (τ2, τ1)2

+ 2α[G11(τ1, τ2)G11(τ2, τ1) + G22(τ1, τ2)G22(τ2, τ1)][G12(τ2, τ1)G21(τ1, τ2) + G21(τ2, τ1)G12(τ1, τ2)]

+ α2[G11(τ2, τ1)G22(τ2, τ1)G11(τ1, τ2)G22(τ1, τ2) + G12(τ2, τ1)G21(τ2, τ1)G11(τ1, τ2)G22(τ1, τ2)

+G11(τ2, τ1)G22(τ2, τ1)G21(τ1, τ2)G12(τ1, τ2) + G12(τ2, τ1)G21(τ2, τ1)G21(τ1, τ2)G12(τ1, τ2)]

)}
. (A7)

The corresponding Dyson equations for 
σσ or 
σσ̄ is given as (with τ invariance)

Gσσ ′ (iω) =
∫

dk
(2π )2

(iω − h(k) − 
(iω))−1
σσ ′, (A8)

where


σσ (τ ) = − J2

(
G2

σσ (τ )Gσσ (−τ ) + αGσσ (τ )(Gσ σ̄ (−τ )Gσ̄ σ (τ ) + Gσ̄ σ (−τ )Gσ σ̄ (τ ))

+ α2

2
Gσ̄ σ̄ (−τ )(Gσσ (τ )Gσ̄ σ̄ (τ ) + Gσ σ̄ (τ )Gσ̄ σ (τ ))

)
, (A9)


σσ̄ (τ ) = − J2

(
G2

σ σ̄ (τ )Gσ̄ σ (−τ ) + αGσ σ̄ (τ )(Gσσ (−τ )Gσσ (τ ) + Gσ̄ σ̄ (−τ )Gσ̄ σ̄ (τ ))

+ α2

2
Gσ σ̄ (−τ )(Gσσ (τ )Gσ̄ σ̄ (τ ) + Gσ σ̄ (τ )Gσ̄ σ (τ ))

)
. (A10)

The condensed general expression is given as


σσ ′ (τ ) = − J2

(
G2

σσ ′ (τ )Gσ ′σ (−τ ) + αGσσ ′ (τ )(Gσ σ̄ ′ (−τ )Gσ̄ ′σ (τ ) + Gσ̄ σ ′ (−τ )Gσ ′σ̄ (τ ))

+ α2

2
Gσ̄ ′σ̄ (−τ )(Gσ σ̄ ′ (τ )Gσ̄ σ ′ (τ ) + Gσσ ′ (τ )Gσ̄ ,σ̄ ′ (τ ))

)
. (A11)

The corresponding free-energy density is given by

f =
∑

n

ln det(G−1) +
∑
σσ ′

∫ β

0
dτ

{

σσ ′ (τ )Gσσ ′ (β − τ ) − J2

4

(
G2

σσ ′ (τ )G2
σ ′σ (β − τ )

+ α(Gσ σ̄ (τ )Gσ̄ ′σ (τ )Gσσ ′ (β − τ )Gσ σ̄ ′ (β − τ ) + Gσ̄ σ ′ (τ )Gσ ′σ̄ (τ )Gσ̄ σ ′ (β − τ )Gσσ ′ (β − τ ))

× α2

2
(Gσ σ̄ (β − τ )Gσ̄ ′σ̄ (β − τ )Gσ σ̄ ′ (τ )Gσ̄ σ ′ (τ ) + Gσ σ̄ (β − τ )Gσ̄ ′σ̄ (β − τ )Gσσ ′ (τ )Gσ̄ σ̄ ′ (τ ))

)}
. (A12)
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APPENDIX B: SUPERCONDUCTING MODEL

We can recast the above model in BdG version by making a particle hole transformation on one orbital, c†
i2 ↔ ci2. This leads

to

HBdG =
∑

k

ϕ
†
khkϕk, ϕk =

(
ck,1

c†
−k,2

)
. (B1)

Such a model describes a class D mean-field superconductor with interorbital pairing and broken time-reversal symmetry. This
Hamiltonian can describe a transition between a trivial superconductor and a topological superconductor, which is driven by
tuning the chemical potential.

The derivation for the interacting nematic superconducting model follows Appendix A upon applying this particle hole
transformation and sending α �→ −α. The equivalent symmetry is now Jσσσσ

i jkl = J σ̄ σ̄ σ̄ σ̄
kli j = (J σ̄ σ̄ σ̄ σ̄

i jkl )∗.
Our disorder averaged partition function is still given by Eq. (A6). The quadlinears over the restricted flavor indices are now

given by

Oi jkl (r, τ ) = 4O1111
i jkl (r, τ ) + 4O2222

kli j (r, τ ) + 2α
(
O1212

ilk j (r, τ ) + O2121
k jil (r, τ ) + O2112

l jki (r, τ ) + O1221
ik jl (r, τ )

)
. (B2)

An equivalent procedure to above gives [35]

− 1

N
S[G, 
] =

∫
dk

(2π )2
dτ ln det ((∂τ − μ)δσσ ′ − hσσ ′ (k) − 
σσ ′ (τ ))

+
∫

dτ1dτ2

{∑
σ


σσ (τ1, τ2)Gσσ (τ2, τ1) +
∑

σ

�σσ̄ Fσ̄ σ

+ J2

4

(∑
σ

Gσσ (τ1, τ2)2Gσσ (τ2, τ1)2 + Fσσ (τ1, τ2)2Fσσ (τ2, τ1)2

− 2α[G11(τ1, τ2)G11(τ2, τ1) + G22(τ1, τ2)G22(τ2, τ1)][F12(τ2, τ1)F21(τ1, τ2) + F21(τ2, τ1)F12(τ1, τ2)]

+ α2[G11(τ2, τ1)G22(τ2, τ1)G11(τ1, τ2)G22(τ1, τ2) + F12(τ2, τ1)F21(τ2, τ1)G11(τ1, τ2)G22(τ1, τ2)

+G11(τ2, τ1)G22(τ2, τ1)F21(τ1, τ2)F12(τ1, τ2) + F12(τ2, τ1)F21(τ2, τ1)F21(τ1, τ2)F12(τ1, τ2)]

)}
. (B3)

This gives equivalent Dyson equations to Eq. (A11) upon the substitutions α �→ −α, Gσ,σ̄ �→ Fσ,σ̄ , and 
σ,σ̄ �→ �σ,σ̄

APPENDIX C: ANALYTICALLY CONTINUED DYSON EQUATIONS

The self-consistent Dyson equations can be analytically continued to be solved in real time explicitly [24,43,47,57]. Following
that procedure provides the self-consistent real-frequency 
(ω),


σσ (ω) = − iJ2
∫

dωeiωt

(
(n++

σσ )2n−−
σσ + (n−+

σσ )2n+−
σσ

+ α(n++
σσ n++

σ̄ σ n−−
σ σ̄ + n−+

σσ n−+
σ̄ σ n+−

σ σ̄ + n++
σσ n++

σ σ̄ n−−
σ̄ σ + n−+

σσ n−+
σ σ̄ n+−

σ̄ σ )

+ α2

2
(n++

σσ n++
σ̄ σ̄ n−−

σ̄ σ̄ + n−+
σσ n−+

σ̄ σ̄ n+−
σ̄ σ̄ + n++

σ σ̄ n++
σ̄ σ n−−

σ̄ σ̄ + n−+
σ σ̄ n−+

σ̄ σ n+−
σ̄ σ̄ )

)
(C1)

and


σσ̄ (ω) = − iJ2
∫

dωeiωt

(
(n++

σ σ̄ )2n−−
σ̄ σ + (n−+

σ σ̄ )2n+−
σ̄ σ

α(n++
σ σ̄ n++

σσ n−−
σσ + n−+

σ σ̄ n−+
σσ n+−

σσ + n++
σ σ̄ n++

σ̄ σ̄ n−−
σ̄ σ̄ + n−+

σ σ̄ n−+
σ̄ σ̄ n+−

σ̄ σ̄ )

+ α2

2
(n++

σσ n++
σ̄ σ̄ n−−

σ σ̄ + n−+
σσ n−+

σ̄ σ̄ n+−
σ σ̄ + n++

σ σ̄ n++
σ̄ σ n−−

σ σ̄ + n−+
σ σ̄ n−+

σ̄ σ n+−
σ σ̄ )

)
, (C2)

where we have defined the time-dependent occupation as

nss′
(t ) =

∫
dωAσσ ′ (ω)nF(sω)eis′ωt , (C3)

and the spectral function Aσσ ′ (ω) is given from the generalized matrix expression:

A(ω) = i

2π
(GR(ω) − GR(ω)†). (C4)

235169-9



HARDY, BOSE, AND PARAMEKANTI PHYSICAL REVIEW B 108, 235169 (2023)

The equivalent simplification can be made as


σσ ′ (τ ) = − iJ2
∫

dωeiωt

(
(n++

σσ ′ )2n−−
σ ′σ + (n−+

σσ ′ )2n+−
σ ′σ

+ α(n++
σσ ′n++

σ̄ ′σ n−−
σ σ̄ ′ + n−+

σσ ′n−+
σ̄ ′σ n+−

σ σ̄ ′ + n++
σσ ′n++

b,−an−−
σ̄ σ ′ + n−+

σσ ′n−+
s̄′,s̄ n+−

σ̄ σ ′ )

+ α2

2
(n++

σ σ̄ ′n++
σ̄ σ ′n−−

σ̄ ′σ̄ + n−+
σ σ̄ ′n−+

σ̄ σ ′n+−
σ̄ ′σ̄ + n++

σσ ′n++
σ̄ σ̄ ′n−−

σ̄ ′σ̄ + n−+
σσ ′n−+

σ̄ σ̄ ′n+−
σ̄ ′σ̄ )

)
. (C5)

APPENDIX D: ANOMALOUS HALL CONDUCTIVITY DERIVATION

While the calculation of the anomalous Hall conductivity in terms of spectral functions is, in principle, routine, we provide
the detailed analysis as we were unable to find a suitable reference in the literature to our knowledge. To construct the current
operator, we start with a general hopping Hamiltonian, h(k), and consider a Pierls substitution kμ → kμ − eAμ. We are interested
in the uniform dc conductivity, so we restrict to the uniform, zero-momentum field. This gives the paramagnetic current operator
as [58]

jμ(Q = 0, iω) = δS[A]

δAμ

= −e
∑

k

∑
iν

ϕ
†
k,iν

⎛
⎝∑

μ

∂h(k)

∂kμ

⎞
⎠ϕk,iω+iν . (D1)

We compute the paramagnetic current-current correlation function [59]

Kμν (0, iω) = 〈 jμ(0, iω) jν (0,−iω)〉 (D2)

such that the conductivity can be extracted from the correlator as

σμν (ω) = − lim
η→0

1

ω
Im(Kμν (0, ω + iη)). (D3)

The correlator in Matsubara frequency is given as [42,60]

Kμν (iω) = e2
∑

k

∑
iν

Tr∂μh(k) · G(k, iν) · ∂νh(k) · G(k, iω + iν), (D4)

where G(k, iν) is the Green’s function. For an interacting case, this expression does not admit a direct analytic continuation.
Instead, we utilize the spectral representation of the Green’s functions, perform the Matsubara sum, and then analytically
continue to arrive at

Kμν (ω) = −e2
∑

k

∫
dε1dε2Tr∂μh(k) · A(k, ε1) · ∂νh(k) · A(k, ε2)

(
nF (ε1) − nF (ε2)

ω − (ε2 − ε1) + iη

)
. (D5)

The trace argument is written as

T μν (k; ε1, ε2) = Tr∂μh(k) · A(k, ε1) · ∂νh(k) · A(k, ε2). (D6)

This gives two terms for the imaginary part of the response, the real T μν contribution is

Im(Kμν (ω))1 = −e2π
∑

k

∫
dε Re(T μν (k; ε, ε + ω))(nF (ε) − nF (ε + ω)). (D7)

The contribution from the imaginary part of T μν is

Im(Kμν (ω))2 = −e2
∑

k

∫
dε1dε2 Im(T μν (ε1, ε2))(nF (ε1) − nF (ε2))P

(
1

ω − (ε2 − ε1)

)
, (D8)

where P refers to the principal value. The numerical implementation of Eq. (D8) is

Im(Kμν (ω))2 = −e2
∑

k

∫
dε1dε2 Im (T μν (k; ε1, ε2))(nF (ε1) − nF (ε2))

(
ω − (ε2 − ε1)

(ω − (ε2 − ε1))2 + η2

)
, (D9)

where η is an infinitesimal value. This term is often neglected as most work deals with strictly real diagonal spectral functions
and appears to be missing from the available literature.

Using Eq. (D3), we find that the first contribution to the dc limit of the conductivity through Eq. (D7) reduces to

σμν (ω → 0)1 = ∂

∂ω
Im(Kμν (ω))1

∣∣∣∣
ω=0

= −e2π
∑

k

∫
dε1 Re (T μν (k; ε1, ε1))

∂nF (ω)

∂ω

∣∣∣∣
ω=ε1

, (D10)
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FIG. 7. The low-temperature phase diagram for T/J = 1 × 10−3 and � = 1 for fixed (a) α = −1 and (b) J = 10. The color is the
magnitude of our order parameter �0. The fixed J plot demonstrates the effective shift of δ mentioned in the main text.

whereas Eq. (D8) contributes to the dc conductivity as

σμν (ω → 0)2 = ∂

∂ω
Im(Kμν (ω))2

∣∣∣∣
ω=0

= e2
∑

k

∫
dε1dε2

(
Im Tμν (k; ε1, ε2)

)
(nF (ε1) − nF (ε2))

η2 − �ε2
2,1

(�ε2
2,1 + η2)2

. (D11)

We get the total dc conductivity as σμν (ω → 0) = σμν (ω → 0)1 + σμν (ω → 0)2.

APPENDIX E: TUNING J

In Sec. IV B, we discuss the phase diagram for fixed J
while tuning α, shown in Fig. 7. The physics are not funda-
mentally altered by tuning J with fixed α. For completeness,
however, we include such a phase diagram. The main differ-
ence is a consequence of the mass renormalization detailed in
Fig. 3. For fixed J = 10, the intraorbital interaction renormal-
izes the mass, which shifts the effective phase boundary to the
left to more negative δ values.

APPENDIX F: LOWER ANGULAR MOMENTUM RESULTS

To explore the relationship between the results for these
phase transitions and the angular momentum l , we constructed
lattice Hamiltonians with l = 1 and l = 2 corresponding to
coupling with the p and d orbitals, respectively [9], which
will support Chern transitions of ±1,±2, respectively. The
quantitative form of the phase diagrams upon tuning l are
shown in Fig. 8. There are also qualitative differences. All
terms break C2 symmetry for C6 �→ C3. The l = 1 and l = 3
nematic phases also break I as the orbital representation is
E1u and B1u, whereas the l = 2 case has an orbital represen-
tation of E2g. This means that for l = 2, I� = �, whereas
for l = 1, 3 I� = −�. We now consider the role that these
symmetries have on our l = 1 model.

(1) C6: ϕk → τRϕRk, where rotation R ≡ R2π/6 and
τR = ((I + τz )/2 − ω(I − τz )/2). Thus, C6 symmetry im-
plies τ

†
RhkτR = hRk, which is satisfied since εk = εRk and

τ
†
RτzτR = τz, while τ

†
Rτ+τR = −ωτ+, and τ

†
Rτ−τR = −ω2τ−,

while λ+
k = −ω2λ+

Rk and λ−
k = −ωλ−

Rk.
(2) MyT : ϕk → Kϕk′ , where k′ = My · (−k). We then

expect hk → h∗
k′ . This is satisfied since εk′ = εk, and λ± →

λ±.
(3) MxT : ϕk → Kϕk′ , where k′ = Mx · (−k). This is

identical to case (2).
(4) Charge conjugation C: ϕ†

k → ϕT
−kτx. This leads to hk →

−τxhT
−kτx. This symmetry is obeyed by our Hamiltonian.

We now consider the role that these symmetries have on
our l = 2 model.

(1) C6: ϕk → τRϕRk where rotation R ≡ R2π/6 and
τR = ((I + τz )/2 + ω2(I − τz )/2). Thus C6 symmetry im-
plies τ

†
RhkτR = hRk, which is satisfied since εk = εRk

and τ
†
RτzτR = τz, while τ

†
Rτ+τR = ω2τ+, and τ

†
Rτ−τR = ωτ−,

while λ+
k = ωλ+

Rk and λ−
k = ω2λ−

Rk.

(2) MyT : ϕk → Kϕk′ , where k′ = My · (−k). We then
expect hk → h∗

k′ . This is satisfied since εk′ = εk, and λ± →
λ±.

(3) MxT : ϕk → Kϕk′ , where k′ = Mx · (−k). This is
identical to case (2).

(4) Charge conjugation C: ϕ
†
k → ϕT

−kτx. This leads
to hk → −τxhT

−kτx. This symmetry is obeyed by our
Hamiltonian.

hk = εkτz + �λ
l−
k τ+ + �∗λl+

k τ−, (F1)

where τ± ≡ (τx ± iτy)/2. l = 1, 2 corresponds to the p, d
orbitals, respectively. The hopping representations of these
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FIG. 8. The low-temperature phase diagram for T/J = 1 × 10−3 and � = 1 for (a) l = 1, (b) l = 2, and (c) l = 3. The light blue region
is an isotropic trivial state with C = 0. Increasing the relative angular momentum of the orbitals leads to decreased relevance of the band
inversion and suppression of the Chern insulating state.

orbitals is given as

λ
p+
k =

3∑
i=1

ωi−1 sin ki, λ
d+
k =

3∑
i=1

ω1−i cos ki. (F2)

Here ω = e2π i/3 and λ−
k = (λ+

k )∗. The p and d orbitals obey
the E1u and E2g representations, respectively.

The underlying lattice Hamiltonians with lower angular
momentum l and therefore lower Chern numbers have more
dominant band-inversion terms that suppress the onset of ne-
matic ordering. This can be seen from a low-energy expansion
that

(�k ) = (kx + iky)l . (F3)
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