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Flavor-wave theory with quasiparticle damping at finite temperatures:
Application to chiral edge modes in the Kitaev model
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We propose a theoretical framework to investigate elementary excitations at finite temperatures within a
localized electron model that describes the interactions between multiple degrees of freedom, such as quantum
spin models and Kugel-Khomskii models. Thus far, their excitation structures have been mainly examined using
the linear flavor-wave theory, an SU(N) generalization of the linear spin-wave theory. This technique introduces
noninteracting bosonic quasiparticles as elementary excitations from the ground state, thereby elucidating nu-
merous physical phenomena, including excitation spectra and transport properties characterized by topologically
nontrivial band structures. Nevertheless, the interactions between quasiparticles cannot be ignored in systems
exemplified by S = 1/2 quantum spin models, where strong quantum fluctuations are present. Recent studies
have investigated the effects of quasiparticle damping at zero temperature in such models. In our study, extending
this approach to the flavor-wave theory for general localized electron models, we construct a comprehensive
method to calculate excitation spectra with the quasiparticle damping at finite temperatures. We apply our method
to the Kitaev model under magnetic fields, a typical example of models with topologically nontrivial magnon
bands. Our calculations reveal that chiral edge modes undergo significant damping in weak magnetic fields,
amplifying the damping rate by the temperature increase. This effect is caused by collisions with thermally
excited quasiparticles. Since our approach starts from a general Hamiltonian, it will be widely applicable to
other localized systems, such as spin-orbital coupled systems derived from multi-orbital Hubbard models in the
strong-correlation limit.
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I. INTRODUCTION

In modern condensed-matter physics, the topological na-
ture of electronic systems is one of the crucial ingredients
enriching physical phenomena. For example, in quantum Hall
systems, the Chern number, a topological invariant in elec-
tronic band dispersions, is closely related to a quantized
value of the Hall conductance and the number of chiral edge
modes [1,2]. This concept has been applied to magnons,
which are collective spin-wave excitations from a magnet-
ically ordered state in insulating magnets [3–5]; the Chern
number of magnon bands possibly becomes nonzero, leading
to the presence of chiral edge modes in the gap between
the bands. Since magnons are charge-neutral bosonic ex-
citations, quantum Hall effects do not occur. Instead, one
expects the emergence of thermal Hall effects [3–5], which
is a phenomenon exhibiting a thermal current induced by a
temperature gradient along the perpendicular direction when
magnon bands possess nonzero Berry curvature [6]. Such
magnons are called topological magnons, usually caused by
anisotropic spin interactions beyond the Heisenberg coupling
or noncollinear magnetic orders. Thus far, the emergence
of topological magnons has been theoretically proposed in
spin systems with the Dzyaloshinskii-Moriya- or Kitaev-type
interactions [5,7–12], and the thermal Hall effect has been
observed in the pyrochlore materials, Lu2V2O7, Ho2V2O7,
In2Mn2O7, and Tb2Ti2O7 [4,13,14], the layered honeycomb
material VI3 [15,16], and the layered kagome materials,
Cu(1,3-benzenedicarboxylate) and Cd-kapellasite [17,18].

Since magnons are collective excitations from a magneti-
cally ordered state, they behave as bosons with zero chemical
potential and possess positive energies. These characteristics
lead to crucially different behavior from fermionic systems.
In quantum Hall systems composed of electrons, the ther-
mal Hall coefficient divided by temperature takes a nonzero
quantized value determined by the Chern number of each
band in the zero-temperature limit. On the other hand, in its
magnonic counterpart, the thermal Hall coefficient divided
by temperature must vanish at zero temperature because chi-
ral magnon edge modes appear not across zero energy but
in between positive-energy bands [19,20]. This considera-
tion implies that thermally excited magnons play a crucial
role in the transport phenomena originating from the chiral
edge modes.

The topological nature of collective excitations has been
discussed not only on magnons but also on other bosonic
quasiparticles, such as triplons from a singlet-dimer covered
ground state [21–23]. A comprehensive approach to include
these cases has been developed as the flavor-wave theory, an
extension of the spin-wave theory. This method was originally
proposed for localized SU(N) systems [24–29], but it can
be applied to other systems with interacting local degrees of
freedom. By using the generalized theory, it has been pro-
posed that the Shastry-Sutherland model possesses the band
structures of triplon excitations with nonzero Chern numbers
due to Dzyaloshinskii-Moriya interactions [21].

While the topological character of collective excitations
has been examined under the assumption of noninteracting
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quasiparticles within a linear flavor-wave approximation, non-
linear terms beyond this approximation are inevitably present,
which appear due to quantum fluctuations intrinsic to lo-
calized spins. This effect gives rise to interactions between
collective excitations and should be addressed appropriately,
particularly for S = 1/2 quantum spin systems. In magneti-
cally ordered systems, the interactions cause a finite lifetime
to magnons, namely the damping of magnons, at zero tem-
perature [30–33] and finite temperatures [34]. The effects
of the magnon damping have been introduced to understand
the broad spectrum observed in inelastic neutron-scattering
measurements, and calculations incorporating the magnon
damping have successfully explained experimental results.
Nevertheless, it is often challenging to address the impact of
the magnon damping on the topological nature of magnons
and related phenomena, such as the thermal Hall effect [5,35].

Recently, it has been reported that the thermal Hall con-
ductivity originating from collective excitations is much
smaller than the theoretically predicted value obtained within
the free-magnon picture in the quasi-two-dimensional quan-
tum magnets SrCu2(BO3)2 with triplon excitations [36] and
Cr2Ge2Te6 with magnon excitations [37]. These results sug-
gest that the interactions between quasiparticles are crucial
in topological transport phenomena. Therefore, clarifying the
damping effects of topological bosonic quasiparticles at zero
and nonzero temperatures is highly desired.

Other well-known simple examples exhibiting topological
excitations are the Kitaev-related systems under magnetic
fields. In the pure Kitaev model [38], magnetic fields along the
[111] direction yield topologically nontrivial magnon bands
[10,39]. Moreover, recent theoretical studies based on the
linear spin-wave theory have reported that the Chern number
of each magnon band changes by introducing other interac-
tions, such as the Heisenberg one and varying magnetic-field
directions [10,12,39–47]. Correspondingly, the thermal Hall
effect has been observed in the Kitaev candidate material
α-RuCl3 [15,48–58]. Although the experimental results imply
the presence of topological quasiparticles in this compound,
there is a debate about which quasiparticles are responsi-
ble for the thermal Hall effect; several works have proposed
that only magnons are responsible [15,54], while others have
suggested Majorana fermions or phonons as possible origins
[51,52,55,57,58].

Meanwhile, it has been pointed out that strong magnon
damping is crucial in understanding spin dynamics [59,60],
suggesting that nonlinear terms beyond the linear spin-wave
approximations are also important for the topological nature
of the magnons in the Kitaev-related model under magnetic
fields. Topologically nontrivial magnon bands accompany
chiral edge modes, and their stability has been examined at
zero temperature [10]. On the other hand, it has been known
that possible magnon-damping processes at finite tempera-
tures are entirely different from that at zero temperature [31];
the latter only originates from spontaneous decay by splitting
into multiple magnons, but collisions with other thermally
excited magnons also contribute to the finite-temperature
processes [34]. Therefore, examining the finite-temperature
effects of magnon damping on chiral edge modes is needed to
clarify the role of topological magnons in thermal transport.

In this paper, we construct a calculation framework capable
of handling nonlinear terms beyond the linear flavor-wave
theory for generalized many-body models with interacting
local degrees of freedom at finite temperatures. We apply
this approach to the Kitaev model under magnetic fields. In
the present scheme, we start from the Hamiltonian consisting
of one-body and two-body terms for local degrees of free-
dom and apply the mean-field (MF) theory with the arbitrary
number of sublattices. Utilizing the generalized Holstein-
Primakoff transformation, we rewrite the model Hamiltonian
into a bosonic representation. This bosonic Hamiltonian con-
sists of bilinear terms of bosons and higher-order terms
beyond these contributions. The former describes noninter-
acting bosons. We treat the latter contributions corresponding
to interactions between bosons by the self-consistent imag-
inary Dyson equation (iDE) approach, which enables us to
avoid the appearance of unphysical divergences in excitation
spectra. Here, we apply the present scheme to the Kitaev
model under magnetic fields on a honeycomb lattice, which
possesses magnon bands with nonzero Chern numbers. In this
model, the MF solution is a forced ferromagnetic state regard-
less of the magnetic-field intensity. To examine the effect of
the magnon damping on edge states, we calculate magnon
damping rates and magnon spectra on clusters with open
boundaries. The chiral edge modes are strongly damped at
zero temperature in weak magnetic fields due to a magnon col-
lapsing into two. The damping rate decreases with increasing
the intensity of an applied magnetic field and vanishes above a
certain field intensity. The disappearance of overlap between
the magnon dispersions and the two-magnon continuum deter-
mines the critical value of the field intensity. With increasing
temperature, the damping rate of the magnon edge modes
increases due to another magnon damping process, collisions
with thermally excited magnons. The damping rate is nonzero,
even above the critical magnetic field. We demonstrate that the
nonlinear terms giving rise to the magnon damping strongly
affect not only bulk spectra but also edge modes at finite
temperatures. Our results suggest that the effect of the magnon
damping is relevant to finite-temperature topological transport
phenomena such as the thermal Hall effect.

This paper is organized as follows: In the next section,
we present the method used in the present study. The MF
theory and generalized Holstein-Primakoff transformation are
described in Secs. II A and II B, respectively. We introduce
the linear flavor-wave theory in Sec. II C. The extensions
considering the nonlinear parts of flavor-waves are given in
Sec. II D. Section II E provides the method we have developed
to evaluate effects of the damping of collective modes in the
nonlinear flavor-wave theory at finite temperatures. In Sec. III,
we introduce the S = 1/2 Kitaev honeycomb model to which
our method is applied in the present study. The results are
given in Sec. IV. First, we show the MF results for the two
systems with different boundary conditions in Sec. IV A. In
Sec. IV B, we show the magnon spectra at low magnetic fields
at zero temperatures. The results for higher magnetic fields
at finite temperatures are given in Sec. IV C. In Sec. V, we
discuss the magnetic-field dependence and temperature evo-
lution of the magnon damping of chiral edge modes. We also
mention the relevance to real materials and observables such
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as the thermal Hall effect. Finally, Sec. VI is devoted to the
summary.

II. METHOD

A. Mean-field theory

Before showing the details of the flavor-wave theory, we
first explain the MF approximation. We start from a general
localized model, which is given by

H = 1

2

∑
i, j

∑
γ γ ′

Jγ γ ′
i j Oγ

i O
γ ′
j −

∑
i

∑
γ

hγ
i O

γ
i , (1)

where Oγ

i represents the γ component of the local operator

defined at site i with the local dimension N , Jγ γ ′
i j stands for

the interaction between the operators Oγ

i and Oγ ′
j . The last

term of Eq. (1) is the one-body term with the local field hγ
i

for the operator Oγ
i . In the MF theory, each local operator is

decomposed by the local average and the deviation from it as

Oγ
i = δOγ

i + 〈Oγ 〉l , (2)

where we assume that the local average 〈Oγ 〉l depends on
sublattice l to which the site i belongs. Here, we prepare M
sublattices to realize a stable MF solution.

The original Hamiltonian given in Eq. (1) is decomposed
to the MF Hamiltonian HMF and the deviation from it, H′, as

H = HMF + H′, (3)

where HMF is given by the sum of the local Hamiltonians as

HMF =
∑

i

HMF
i + const. (4)

The local MF Hamiltonian HMF at site i is represented as

HMF
i =

∑
γ

⎛
⎝∑

l ′

∑
j∈l ′

∑
γ ′

Jγ γ ′
i j 〈Oγ ′ 〉l ′ − hγ

i

⎞
⎠Oγ

i . (5)

Here, 〈Oγ 〉l = 〈0; i|Oγ |0; i〉 denotes the expectation value for
the ground state |0; i〉 of the local Hamiltonian HMF

i with
site i belonging to sublattice l . To obtain the ground state,
we diagonalize the (N × N )-matrix representation of HMF

i
and obtain the ground state |0; i〉 with the eigenenergy El

0
and mth excited states |m; i〉 with the eigenenergy El

m for
m = 1, 2, . . . ,N − 1. Note that the Hilbert space of the total
Hamiltonian is spanned by the direct product of the local
eigenstates |m; i〉 of HMF

i , but the eigenenergies and eigen-
states at sites belonging to the same sublattice are equivalent,
respectively. Namely, the eigenenergy and eigenstate are la-
beled not by the site index but by the sublattice index l .

B. Generalized Holstein-Primakoff transformation

The excitation structure is described by the contribution
beyond the MF Hamiltonian, H′, which is given by

H′ = 1

2

∑
i, j

∑
γ γ ′

Jγ γ ′
i j δOγ

i δOγ ′
j . (6)

We rewrite the above Hamiltonian using bosons to evaluate
the elementary excitations from the MF ground state. Here, we

expand Eq. (2) using the eigenstates of the local Hamiltonian
at site i in sublattice l as

δOγ

i =
N −1∑

m,m′=0

X mm′
i δOγ

mm′;l , (7)

where X mm′
i = |m; i〉 〈m′; i| is the local projection operator at

site i and δOγ

mm′;l = 〈m; i|δOγ |m′; i〉, which depends only on
the sublattice index l to which site i belongs. The projec-
tion operator is represented by bosons using the generalized
Holstein-Primakoff transformation [24,41,61,62]. We intro-
duce N − 1 bosons described by the creation (annihilation)
operators a†

mi (ami) with m = 1, 2, . . . ,N − 1. For m � 1,
X 0m

i and X m0
i are written as

X m0
i = a†

mi

⎛
⎝S −

N −1∑
n=1

a†
niani

⎞
⎠

1/2

, X 0m
i = (

X m0
i

)†
, (8)

and, for 1 � m, m′, X mm′
i is given by

X mm′
i = a†

miam′i. (9)

Note that S is introduced as

S = X 00
i +

N −1∑
n=1

a†
niani, (10)

and it should be unity because of the local constraint intrin-
sic to the projection operator,

∑N −1
m=0 X mm

i = 1. The bosonic
expressions in Eqs. (8)–(10) reproduce the commutation rela-
tions that the projection operators should satisfy. The above
bosonic representation for the local operators has been used
particularly for SU(N) systems. The approach applied to these
systems is known as the flavor-wave theory [24–27].

Although the above bosonic representation using the
generalized Holstein-Primakoff transformation is exact, the
presence of the square root in Eq. (8) complicates further
calculations. When the number of excited bosons is small
enough, the square root can be expanded with respect to 1/S
as [24,41,61–63]

X m0
i =

√
Sa†

mi

⎛
⎝1 − 1

2S

N −1∑
n=1

a†
niani

⎞
⎠ + O(S−3/2). (11)

Using this expression, H′ in Eq. (6) is represented by the
bosons and expanded for 1/S as

H′ = SH′
2 +

√
SH′

3 + H′
4 + O(S−1/2), (12)

where H′
2, H′

3, and H′
4 are the terms composed of the products

of two, three, and four boson creation or annihilation operators
in H′.

On the other hand, the local MF Hamiltonian is given by

HMF
i =

N −1∑
m=0

El
mX mm

i = SEl
0 +

N −1∑
m=1

�El
ma†

miami, (13)

where �El
m = El

m − El
0 is the energy difference between the

excited state and ground state of the local MF Hamiltonian at
site i belonging to sublattice l . Note that the average 〈Oγ 〉l

for the MF ground state is of O(S ), which is understood from
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Eq. (10). If one assumes that hγ
i is the order of S , the local MF

for Oγ
i in Eq. (5) should be the order of O(S ), and thereby, the

energies El
m (m = 0, 1, . . . ,N − 1) are in this order. Thus,

the first and second terms of Eq. (13) are in the orders of
O(S2) and O(S ), respectively. Here, we introduce HLFW,
which is given by the sum of the second term of Eq. (13) and
SH′

2 in Eq. (12). Since these give contributions with O(S ),
the total Hamiltonian is represented as

H = S
(
HLFW + 1√

S
H′

3 + 1

SH′
4 + O(S−3/2)

)
+ const.

(14)

Note that, while a†
mi and ami do not appear alone because of

the stable condition of the MF solution, other odd-order terms
are allowed to be present in the Hamiltonian [31].

C. Linear flavor-wave theory

First, we consider HLFW, which is given by the bilinear
from of ami and a†

mi. The approximation considering only
HLFW is called the linear flavor-wave theory. By introducing
the Fourier transformation of ami with respect to i, the Hamil-
tonian HLFW is formally written as

HLFW = 1

2

B.Z.∑
k

A†
kMkAk, (15)

where Mk is a 2N × 2N Hermitian matrix and N =
(N − 1)M is the number of collective mode branches (see
Appendix A). The 2N-dimensional vector A†

k is given by

A†
k = (a†

1,k a†
2,k · · · a†

N,k a1,−k a2,−k · · · aN,−k), (16)

where aι,k with ι = (ml ) being the composite index of local
excited state m and sublattice l is the Fourier transformation
of ami, which is represented by

aι,k =
√

M

Nt

∑
i∈l

amie
−ik·ri . (17)

Here, ri is the position of site i, and Nt is the number
of sites. We diagonalize Mk by applying the Bogoliubov
transformation as Ek = T †

k MkTk, where Tk is a parauni-
tary matrix and Ek is the diagonal matrix given by Ek =
diag{ε1,k, ε2,k, . . . , εN,k, ε1,−k, ε2,−k, . . . , εN,−k} [64]. Using
this transformation, the Hamiltonian is rewritten as the fol-
lowing diagonalized form:

HLFW = 1

2

B.Z.∑
k

B†
kEkBk. (18)

Here, we introduce the set of bosonic operators Bk = T −1
k Ak,

which is given by

B†
k = (b†

1,k b†
2,k · · · b†

N,k b1,−k b2,−k · · · bN,−k), (19)

where b†
η,k is regarded as the creation operator of a quantized

flavor-wave excitation with the energy εη,k. The sum of k is
taken in the first Brillouin zone.

D. Nonlinear flavor-wave theory

In the previous section, we consider only the bilinear terms
of bosonic operators. In this case, the Hamiltonian is written
as a free boson system without interactions, as shown in
Eq. (18). Here, we address effects of the higher-order terms
beyond the linear flavor-wave Hamiltonian HLFW in Eq. (14).
These contributions are treated as perturbation terms, and
HLFW is regarded as an unperturbed term. As discussed in
Sec. II B, H′ is expanded with respect to 1/S , and we take
account of O(1/S ) corrections from the bilinear term HLFW

[30,32,65]. In this sense, we need to deal with H′
3/

√
S up to

second-order perturbations and H′
4/S up to first-order pertur-

bations [see Eq. (B15)].
In the present study, we focus on damping effects on the

bosonic quasiparticles, and hence, we examine the imagi-
nary part of the self-energy of the bosonic quasiparticles.
Note that the first-order perturbations contribute only to the
real part of the self-energy [32–34,65–68]. Thus, we concen-
trate second-order perturbations for the cubic term of bosons,
H′

3/
√
S . The cubic term can be decomposed into two terms,

H′
3/

√
S = H(d)

3 /
√
S + H(s)

3 /
√
S . The first term involves the

process with a quasiparticle splitting into two particles and
second term stands for the process of creating (annihilating)
three quasiparticles simultaneously. The details are given in
Appendix B, and only the results are presented here as

1√
S
H(d)

3 = 1

2!

√
M

NtS

×
N∑

ηη′η′′

k+q=p∑
kqp

(
V̄η,η′←η′′

k,q←p b†
η,kb†

η′,qbη′′,p + H.c.
)
,

(20)

1√
S
H(s)

3 = 1

3!

√
M

NtS

×
N∑

ηη′η′′

k+q=−p∑
kqp

(
W̄η,η′,η′′

k,q,p b†
η,kb†

η′,qb†
η′′,p + H.c.

)
,

(21)

where V̄η,η′←η′′
k,q←p and W̄η,η′,η′′

k,q,p are the bare vertex functions,
which is given explicitly in Eqs. (B10) and (B11), respec-
tively. Figures 1(a) and 1(b) represent the schematic diagrams
of the processes with V̄η,η′←η′′

k,q←p and W̄η,η′,η′′
k,q,p , respectively.

Here, we treat Eqs. (20) and (21) as perturbation terms,
where Eq. (18) is regarded as a unperturbed Hamiltonian. We
calculate the self-energy of bosonic quasiparticles, 	k(ω, T ),
which is defined in Eq. (B17) with T being the temperature.
In the present calculations, we focus on the quasiparticle
damping caused within each collective mode branch. To this
end, we consider only the imaginary part of the diagonal
components extracted from the self-energy 	k(ω, T ) up to
1/S relative to HLFW. We denote the self-energy to which the
above simplification is applied as 	̃η,k(ω, T ). This self-energy
is split into two contributions:

	̃η,k(ω, T ) = 	
(c)
η,k(ω, T ) + 	

(d)
η,k(ω, T ), (22)
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FIG. 1. (a), (b) Schematic pictures of the three-quasiparticle in-
teractions corresponding to Eqs. (20) and (21), respectively. (c),
(d) Lowest-order contributions of H3 to the self-energy 	̃ in Eq. (22).
At zero temperature, only the diagram shown in panel (d) contributes
to the self-energy.

where 	
(c)
η,k(ω, T ) and 	

(d)
η,k(ω, T ) are the contributions with

O(1/S ) from the diagrams shown in Figs. 1(c) and 1(d), re-
spectively. The explicit representations are given in Eqs. (B23)
and (B24). As shown in Fig. 1(c), 	

(c)
η,k(ω, T ) comes from

a collision with excited quasiparticles. At zero temperature,
there are no thermally excited quasiparticles, and hence,
	

(c)
η,k(ω, T ) is nonzero only at finite temperatures. On the

other hand, 	
(d)
η,k(ω, T ) originates from a decay process to

multiple magnons. This process is not involved with excited
quasiparticles and contributes to the self-energy even at zero
temperature. Note that there is another process involved with
W̄η,η′,η′′

k,q,p [Fig. 1(b)]. This contribution, defined as 	
(s)
η,k(ω, T ),

is represented by the diagram that the arrows of interme-
diate states in Fig. 1(d) are reversed [see Appendix B and
Eq. (B24)]. Indeed, the imaginary part of 	

(s)
η,k(ω, T ) vanishes

due to the energy-conservation law.
We comment on the first-order perturbation for the cubic

term H′
3, which does not contribute to the self-energy in the

present scheme, as mentioned before. This contribution can
be considered by applying the Hartree-Fock (HF) decoupling
to H′

3. It has been reported that the correction originating
from this effect modifies the MF solution in the ground
state [10,32]. Namely, an MF value 〈δOγ 〉l , which vanishes
without the first-order perturbation of H′

3, becomes nonzero
due to contributions from HF decouplings like 〈a†a〉 a. Such
terms destabilize the existing MF ground state of HMF and
compel us to find a new MF solution. After solving the
self-consistent equation determining MFs, we reconstruct a
flavor-wave Hamiltonian with the newly found MFs. Together
with the HF decoupling for H4, we can take into account the
HF corrections up to the order of O(1/S ). If we consider the
real part of the self-energy at zero temperature, we need to
address them and 	

(s)
η,k(ω, T ) properly [32,65].

E. Imaginary Dyson equation approach

In this section, we show the details of the iDE approach
used in the present calculations. This method was developed
in Refs. [65,69] and has been widely applied to magnon
systems at zero temperature [34,35,59,60,70–72]. The details
are shown in Appendix B. We start from the Dyson equation

shown in Eq. (B19). The pole of a bosonic Green’s function is
determined by

det[ωσ3 − Ek − 	k(ω, T )] = 0, (23)

where

σ3 =
(

1N×N

−1N×N

)
.

We introduce the damping rate as the imaginary part of the
self-energy as follows:

�k(ω, T ) ≡ −Im	k(ω, T ). (24)

As mentioned in Sec II D, we consider the diagonal part of
the self-energy and neglect its real part, and such a self-energy
has been introduced as 	̃η,k(ω, T ) in the previous section. In
the following, we restrict the range of η to 1, 2, . . . , N . In this
treatment, Eqs. (23) and (24) are simplified as

ω = εη,k + 	̃η,k(ω, T ), (25)

�η,k(ω, T ) = −Im	̃η,k(ω, T ). (26)

The simplest approximation to eliminate the ω dependence
is the on-shell approximation, where the argument ω of 	̃η,k

is replaced to the one-particle energy εη,k. By applying the
approximation, the damping rate up to 1/S corrections is
expressed as �η,k(T ) 	 −Im	̃η,k(εη,k, T ) (see Appendix C
for more details). This approximation in the 1/S correction
corresponds to the Born approximation that considers only
one loop in Figs. 1(c) and 1(d). Note that the imaginary part
of 	̃η,k(εη,k, T ) exhibits unphysical divergent behavior due to
treating initial particle and two-particle states with different
accuracy in the on-shell approximation [31,34,65]. In general,
the issue may be alleviated by higher-order 1/S corrections,
but such calculations are highly complicated, and performing
them would involve significant computational costs.

Instead, to suppress singularities in the self-energy en-
countered within the 1/S correction, the iDE approach has
been proposed [65,69]. In this approach, a finite lifetime is
introduced in the one-particle energy of the corresponding
self-energy. By considering the finite lifetime, one can relax
the energy conservation law in the self-energy, which allows
us to reduce the artificial singularity and enables regularizing
the quasiparticle spectrum. To determine the self-energy, we
solve the following equation:

ω = εη,k + iIm	̃η,k(ω∗, T ), (27)

where the complex conjugate ω∗ in 	η,k originates from
causality [65]. Note that, in this approach, the real part of
ω remains unchanged, and the imaginary part is determined
iteratively. The obtained complex number value ω gives the
pole of the bosonic Green’s function into the upper half
plane, and the imaginary part corresponds to the damping rate
�η,k(T ), which is expressed as �η,k(T ) = −Im	̃η,k(ω∗, T ).
This procedure is equivalent to changing the δ function in
the on-shell approximation [see Eq. (C1)] to the Lorentzian-
type [see Eqs. (B23) and (B24)]. It has been shown that the
iDE approach can regularize the singularity of the damping
rate appearing in the on-shell approximation [59,65,69]. We
numerically confirmed that the damping rate calculated using
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FIG. 2. Schematic picture of the honeycomb lattice on which the
S = 1/2 Kitaev model is defined. The red, blue, and green lines stand
for the x, y, and z bonds, respectively. The black arrows represent
the two primitive translation vectors. The inset shows the relation
between the coordinates of the spin space spanned by (Sx, Sy, Sz )
and the real space by (a, b, c).

our scheme with the iDE approach is consistent with previous
studies at zero temperature [35].

In the present study, we extend the iDE method to finite-
temperature calculations. To demonstrate the validity of this
method at finite temperatures, we calculate the dynamical spin
structure factor in the Kitaev model, which is introduced in
the next section. The results are presented in Appendix D. The
present iDE results agree with those obtained by a continuous-
time quantum Monte Carlo (CTQMC) method [73] at the
same temperature. Therefore, we conclude that the iDE ap-
proach is valid, at least for the temperature region where the
magnon picture is justified. Here, we introduce the spectral
function for bosonic excitations. We approximate the retarded
Green’s function defined in Eq. (B20) as

GR
η,k(ω, T ) 	 1

ω − εη,k + i�η,k
. (28)

By using Eq. (28), the spectral function Ak can be written as

Ak(ω, T ) = − 1

π

1

N

N∑
η

Im GR
η,k(ω, T )

	 1

N

N∑
η

�η,k/π

(ω − εη,k)2 + �2
η,k

. (29)

III. MODEL

We apply the iDE method explained in the previous sec-
tion to the S = 1/2 Kitaev model on a honeycomb lattice
[10,38,74–76]. The Hamiltonian of this model is given by

H = 2K
∑

γ=x,y,z

∑
〈i, j〉γ

Sγ
i Sγ

j −
∑

i

h · Si, (30)

where Sγ
i (= x, y, z) represents the S = 1/2 spin at site i, and

K (< 0) is the exchange constant of the ferromagnetic Kitaev
interaction between spins on the nearest-neighbor (NN) sites.
The Kitaev interaction is bond-dependent, and 〈i, j〉γ denotes
the NN γ bond on the honeycomb lattice (see Fig. 2). The last
term of Eq. (30) is the Zeeman term with the magnetic field h.

FIG. 3. (a) Schematic picture of the 12 zigzag chains (M = 24)
on the honeycomb cluster with zigzag edges where a periodic bound-
ary condition is imposed along the a direction. (b) Spatial distribution
of the direction of spin moment at several magnetic fields. The inset
shows the definition of θ , which is the angle of the spin moment from
the c axis on the a-c plane.

The Kitaev interaction is believed to be realized in compounds
with 4d or 5d transition-metal ions [77,78]. Considering the
connection to real materials, we introduce the spin coordinate
such that the [111] direction in the spin space is parallel to the
c axis in the real space and the Sz direction is on the a-c plane
(see the inset of Fig. 2). Hereafter, we set the Kitaev interac-
tion to K = −1 and apply the magnetic field perpendicular to
the honeycomb plane, h ‖ c.

In our calculations, we introduce two clusters characterized
by distinct boundary conditions: One is a cluster with peri-
odic boundary conditions along the two primitive translation
vectors for the honeycomb lattice [see Fig. 2], and the other
possesses the open boundary with zigzag edges and the peri-
odic condition imposed along the direction of the zigzag chain
[see Fig. 3(a)]. For the latter, we consider the cluster including
12 zigzag chains (M = 24) as shown in Fig. 3(a).

IV. RESULT

A. Mean-field solution

First, we mention the MF ground states of the Kitaev model
under magnetic fields on the two clusters. In the cluster with
the periodic boundary conditions, the MF ground state is the
spin-polarized state parallel to the magnetic field direction
regardless of the magnetic-field intensity. On the other hand,
in the case of the cluster with zigzag edges, the spin direc-
tion depends on the distance from the edge. Spins near the
center of the cluster are almost parallel to the magnetic field
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FIG. 4. (a) Magnon dispersion presented along high-symmetry
lines in the k space for h = 0.1 in the system with the periodic
boundary conditions imposed. (b) Magnon spectral functions at h =
0.1 and T = 0, where the magnon damping calculated by the iDE
approach. In panel (b), the dashed lines represent the bare magnon
dispersions shown in panel (a). (c), (d) Corresponding plots for the
system with open boundaries where the lattice terminates with zigzag
edges [see Fig. 3(a)].

direction. Meanwhile, in the vicinity of the edges, the spin
direction is tilted from the magnetic field direction (h ‖ c) to
the a axis, as shown in Fig. 3(b). This is due to the lack of z
bonds for edge sites; spins on edge sites tilt toward the Sx-Sy

plane to gain the exchange energies on x and y bonds. The
deviation from the applied field direction becomes small with
increasing the field intensity.

B. Magnon spectra for low-field regime at zero temperature

In this section, we show the results for the magnon spectra
in the Kitaev model under the magnetic field with h = 0.1 at
zero temperature. Figure 4(a) displays the magnon dispersions
obtained by the linear flavor-wave theory on the cluster with
the periodic boundary conditions. The dispersions are plotted
along the lines shown in Fig. 4(a) in the first Brillouin zone.
There are two branches because there are two spins in a
unit cell of the honeycomb lattice. The results are consistent
with the magnon dispersions obtained by the previous studies
[10,41]. We also calculate the magnon dispersions on the
cluster with zigzag edges. As shown in Fig. 4(c), there are
two modes connected between two bulk bands corresponding
to the two magnon dispersions shown in Fig. 4(a). These two
in-gap modes are chiral edge modes along the two zigzag
edges, which result from topologically nontrivial magnon
bands caused by an applied magnetic field.

Here, we introduce the damping effect of magnons.
Figures 4(b) and 4(d) show the magnon spectral functions de-
fined in Eq. (29), where the imaginary part of the self-energy
is evaluated by the iDE method, in the cluster with the periodic
boundary conditions and that with zigzag edges, respectively.
In the former case shown in Fig. 4(b), magnons around the �

point in the low-energy branch survive even in the presence of
the magnon-magnon interactions. Away from the � point, the
damping effect of magnons becomes more significant, which
is reflected by the enhancement of the imaginary part of the

FIG. 5. Two-magnon DOS at h = 0.1 in (a) the system with
the periodic boundary conditions imposed and (b) that with zigzag
edges. The black lines represent the one-particle magnon dispersion.

self-energy. For the higher-energy magnon branch, magnons
appear to decay throughout the Brillouin zone. In the case of
the cluster with zigzag edges [Fig. 4(d)], low-energy magnons
around ka = 0 are stable against introducing magnon-magnon
interactions similar to the results in the cluster with the pe-
riodic boundaries. On the other hand, low-energy magnons
away from the ka = 0 point are strongly damped, as well as
high-energy magnons. It is worth noting that the chiral edge
modes also exhibit strong damping at zero temperature.

To clarify the k and energy dependence of the magnon
damping, we focus on the self-energy of magnons. There are
two contributions in the self-energy as shown in Eq. (22), but
the second term 	

(d)
η,k(ω, T ) corresponding to the decay pro-

cess [Fig. 1(d)] only contributes at zero temperature. From the
explicit representation of 	

(d)
η,k(ω, T ) presented in Eq. (B24),

it is naively expected that the imaginary part is zero when
the condition ω − εη′,q − εη′′,k−q = 0 is satisfied for ω = εη,k.
This consideration is correct for the on-shell Born approxima-
tion. We apply it to the present results obtained by the iDE
approach. Here, we introduce two-magnon density of states
(DOS), which is defined as

D(d)
k (ω) ≡ 1

N2

N∑
η′,η′′

M

Nt

B.Z.∑
q

δ(ω − εη′,q − εη′′,k−q). (31)

When the dispersion relation ω = εη,k overlaps with nonzero
D(d)

k (ω), such magnons possibly collapse due to the decay
process inherent in the self-energy 	

(d)
η,k(ω, T ).

The two-magnon DOS at h = 0.1 is shown in Fig. 5, where
Figs. 5(a) and 5(b) correspond to the results in the system
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FIG. 6. Magnon spectral function given in Eq. (29) in the system with zigzag edges under the magnetic field with h = 0.6 at (a) T = 0
and (b) T = 0.6. The dashed lines represent the one-particle magnon dispersions. (c) Two-magnon DOS and (d) two-magnon collision DOS
at h = 0.6. The black lines represent the one-particle magnon dispersions. (e)–(h) Corresponding plots for h = 1.0.

under the periodic boundary conditions and that with zigzag
edges, respectively. In both cases, the upper one-magnon
branches overlap with the two-magnon continuum. In the
on-shell Born approximation, a necessary condition for the
single-magnon with εη,k splitting into a two-magnon contin-
uum is represented as

εη,k = εη′,q + εη′′,k−q. (32)

This condition indicates that the high-energy magnons decay
as long as V̄η,η′←η′′

q,k−q←k �= 0, and the strong magnon decay ob-
tained by the iDE approach [Figs. 4(b) and 4(d)] is consistent
with this consideration. On the other hand, the chiral edge
modes also decay strongly, as shown in Fig. 4(d), although the
intensity of D(d)

k (ω) is weak compared with the high-energy
region. Indeed, we have numerically confirmed that the chiral
edge modes rarely decay in the on-shell Born approximation.
Contrary to this approximation, the criteria for magnon decay
shown in Eq. (32) do not necessarily have to hold strictly in

the iDE approach because this approach takes account of the
energy fluctuations of magnons.

Note that we find sharp cutoffs for the smearing of the
magnon spectrum, as observed in Fig. 4(b). This issue could
potentially be corrected by renormalizing two-magnon en-
ergies or maintaining the full frequency dependence of the
self-energy. A calculation technique that takes account of
two-magnon decay has also been developed for the on-shell
approach [32]. While previous studies have suggested that
two-magnon states remain relatively stable in most spin sys-
tems at low temperatures [65], we expect that incorporating
the two-magnon decay into the iDE method might alleviate
the sharp cutoff issues.

C. Temperature dependence of magnon spectra
with higher magnetic fields

In this section, we focus on the results for higher magnetic
fields in the cluster with zigzag edges. Figure 6(a) shows the
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magnon spectrum for h = 0.6 at zero temperature calculated
by the iDE approach. As shown in this figure, the chiral
edge modes appear to survive particularly below ω � 1.5 in
contrast with the case with h = 0.1. Moreover, we also find
that magnons in the low-energy band survive, although those
in the high-energy band collapse due to the nonzero lifetime
of the magnons. These results are understood from the overlap
between the single-magnon dispersion relation εη,k and two-
magnon DOS D(d)

k (ω); the lower-energy magnons and chiral
edge modes do not overlap with nonzero D(d)

k (ω) but this
DOS takes larger values in the energy window of the higher-
energy magnons, as shown in Fig. 6(c). Further increase of the
magnetic field leads to stable chiral edge modes in the wider
energy region, as shown in Fig. 6(e). This is understood from
the high-energy shift of two-magnon DOS [Fig. 6(g)].

Here, we examine the effect of thermal fluctuations on the
magnon damping. Figure 6(b) shows the magnon spectrum
for h = 0.6 at T = 0.6. As shown in this figure, the chiral
edge modes are smeared strongly by thermal fluctuations.
To clarify the origin of this effect, we discuss the contribu-
tion from 	

(c)
η,k(ω, T ) in Eq. (22), which is nonzero at finite

temperatures. This contribution originates from the collision
with thermally excited magnons. Here, we introduce the two-
magnon collision DOS as

D(c)
k (ω) ≡ 1

N2

N∑
η′,η′′

M

Nt

B.Z.∑
q

δ(ω + εη′,q − εη′′,k+q). (33)

Similar to the case of D(d)
k (ω), the overlap between the single-

magnon dispersion and the two-magnon collision DOS gives
the necessary condition of nonzero Im	

(c)
η,k(ω, T ) within the

on-shell Born approximation [see Eq. (B23)]. Figure 6(d)
shows the two-magnon collision DOS D(c)

k (ω). Unlike the case
of D(d)

k (ω) shown in Fig. 6(c), the chiral edge modes overlap
with the two-magnon collision DOS. This result indicates that
the decay of the chiral edge modes at h = 0.6 and T = 0.6 is
due to the collision process with thermally excited magnons
in the bulk bands. The present consideration is also applied to
the case with higher magnetic fields. Figure 6(f) displays the
magnon spectrum for h = 1.0 at T = 0.6. In this case, the chi-
ral edge modes appear to survive even at finite temperatures.
The existence of the stable edge modes against thermal fluc-
tuations is understood from the two-magnon collision DOS as
shown in Fig. 6(h); the edge modes do not overlap the two-
magnon collision DOS. Therefore, in the high-field case, the
chiral edge magnon is robust in the presence of the magnon-
magnon interactions at both zero and finite temperatures, and
the topological magnon picture in terms of the noninteracting
limit is well established.

V. DISCUSSION

In this section, we discuss the magnetic-field dependence
of the magnon damping for the chiral edge mode. As shown
in Fig. 4(c), the two magnon branches along the zigzag edges
are present between two bulk bands. These chiral edge modes
cross at ka = π . We focus on the magnon damping of the edge
modes and introduce the damping rate for each edge mode at
this point as �edge. We have confirmed that the values of the

FIG. 7. Magnetic-field dependence of the edge-mode damping
rate �edge, which is defined in the main text, at several temperatures.

damping rate for the two magnon edge modes are the same
at ka = π . Figure 7 shows the magnetic field dependence of
�edge at several temperatures. At T = 0, �edge monotonically
decreases with increasing h and vanishes above h 	 0.48.
The condition for vanishing �edge can be understood from the
overlap between the chiral edge mode and two magnon DOS
defined in Eq. (31). As shown in Fig. 5(b), the chiral edge
modes overlap with the two magnon continuum, indicating
the finite lifetime of chiral edge magnons. With increasing the
magnetic field, the continuum is shifted to the higher-energy
side and does not overlap with the edge modes, as shown in
Figs. 6(c) and 6(g). Thus, we calculate the lowest energy of
the continuum D(d)

k (ω) at ka = π . Figure 8 shows the magnetic
field dependence of the lowest energy defined as E (d)

min. We find
that E (d)

min is larger than the edge mode energy εedge = εka=π

above hc1 	 0.52. This value is close to the critical field where
�edge vanishes at T = 0, suggesting that the damping effect at
zero temperature basically is understood from the decay to
two magnons. Meanwhile, the monotonic decrease of �edge

with increasing h cannot be understood only from two magnon
DOS. This behavior originates from the matrix elements of the
vertex V̄η,η′←η′′

k,q←p and the smearing effects in 	
(c)
η,k(ω, T ) taken

by the iDE calculations.
Next, we discuss the magnetic-field effect on the magnon

damping of the edge modes at finite temperatures. As shown
in Fig. 7, �edge increases with increasing temperature, and

FIG. 8. Magnetic field dependence of the energy of the edge-
mode εedge, the lowest energy of the two-magnon DOS E (d)

min, and the
highest energy of the two-magnon collision DOS E (c)

max at ka = π .
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thermal fluctuations result in the shift to the high-field side
without changing the overall h dependence. Accordingly, the
critical field where �edge vanishes shifts to the high-field
side. Since the magnon-damping effect originating from the
self-energy 	

(d)
η,k(ω, T ) contributes only in h � hc1, the shift

is due to the collision process coming from 	
(c)
η,k(ω, T ).

This process is brought about when magnon energy overlaps
with the two-magnon collision DOS presented in Eq. (33). As
shown in Figs. 6(d) and 6(h), the two-magnon collision DOS
has a distribution centered at the zero energy. To discuss the
overlap with the chiral edge modes, we focus on the highest
energy of two-magnon collision DOS at ka = π , which we
define as E (c)

max. The magnetic field dependence of E (c)
max is

shown in Fig. 8. We find that E (c)
max and εedge cross at hc2 	

0.86, which is larger than hc1. This result clearly indicates
that thermal fluctuations give rise to the magnon damping of
the chiral edge modes even when the noninteracting magnon
picture for the edge modes is justified at zero temperature.

In the Kitaev candidate material α-RuCl3, the strength
of the Kitaev interaction is considered to be |2K| = 100 K
[79–83]. In this case, damping effects on the chiral edge
magnons are inevitably present as long as we apply the mag-
netic fields with a Zeeman energy comparable to the exchange
coupling, whose intensity is approximated as ≈100 T. There-
fore, we conclude that, within the magnon picture, chiral
edge modes possess a finite lifetime, and the damping effect
is relevant in the pure Kitaev model under magnetic fields.
When we consider additional interactions such as Heisenberg
and � terms, the energy structures of two-magnon DOS and
two-magnon collision DOS can be changed. The additional
interactions could stabilize the chiral edge modes if these two
kinds of continuum do not overlap with chiral mode branches.
The effects of the additional terms remain as future work.

In the present study, we focus only on the ferromagnetic
Kitaev interaction. When one assumes a fully polarized spin
state, no significant difference is observed between systems
with ferromagnetic and antiferromagnetic Kitaev interactions
within the framework of the linear spin-wave theory [10,47].
The difference merely appears as the value of an offset mag-
netic field. On the other hand, when considering nonlinear
contributions beyond the linear spin-wave theory, we expect
essential differences between the systems with ferromagnetic
and antiferromagnetic Kitaev interactions, which are inferred
from the previous study [10]. A detailed analysis of topologi-
cal properties in the antiferromagnetic Kitaev model using the
nonlinear spin-wave theory is needed to reveal the difference
from the ferromagnetic Kitaev model.

Finally, we note that topological thermal transport phe-
nomena may occur even if the chiral edge mode possesses
a finite lifetime. The thermal Hall effect at low temperatures
is mainly caused by the finite Berry curvatures defined at the
low-energy branches [20,84,85]. At h = 0.1, Figs. 4(b) and
4(d) show that the low-energy magnons are stable in the pres-
ence of the magnon-magnon interactions despite the strong
damping of the chiral edge magnon mode. Therefore, if the
low-energy magnons survive, the thermal Hall effect may be
detectable regardless of the stability of chiral edge magnons.
However, the formulation of thermal Hall conductivity incor-
porating the magnon damping has not been established yet,
and the damping effect on the topological transport remains

elusive. To answer the issue, constructing this formulation in
bulk systems is highly desired.

Our calculation framework starts from a general Hamilto-
nian describing interactions between local degrees of freedom
with any number of states and the MF ground state with any
number of sublattices. Thus, it is widely applicable to other
systems with local degrees of freedom such as spin-orbital
entangled systems with multipolar interactions [61–63] and
molecular-orbital crystals including spin-dimerized systems
[21,86–88], and also to systems with the magnetic ordering
characterized by long-period waves such as skyrmion and
triple-meron crystals [89,90]. Moreover, since our formalism
is mapped onto bosonic Hamiltonian with no restriction of
the number of local bosons, it can be applied to electronic
models coupled with phonons, such as dynamical Jahn-Teller
systems [91]. We also expect that our method is applicable
to anticipating excitation spectra of collective modes in real
materials. It has been proposed that the general Hamiltonian in
Eq. (1) based on the present study can be derived as a Kugel-
Khomskii-type effective model for a Mott insulator from a
realistic multiorbital Hubbard model [92]. Combining this
approach with our method could systematically demonstrate
excitation spectra in Mott insulators based on first-principles
calculations.

VI. SUMMARY

In summary, we have proposed a framework that takes
account of damping effects on collective excitations from a
mean-field ground state in a general interacting model be-
tween local degrees of freedom. We have introduced bosonic
quasiparticles based on the flavor-wave theory. We evaluate
damping effects on the quasiparticles at finite temperatures by
extending the imaginary Dyson equation method, which has
been widely employed in analyzing various magnon systems.
We have found two contributions to quasiparticle damping
processes in the self-energy: One occurs due to collisions
with excited quasiparticles, and the other is a decay process
into two quasiparticles. The latter occurs even at zero tem-
perature, but the former appears only at finite temperatures.
We have applied our method to the Kitaev model on a hon-
eycomb lattice under a magnetic field, a well-known system
with topologically nontrivial magnon bands. We have vali-
dated the method by comparing the dynamical spin structure
factor with that obtained by the continuous-time quantum
Monte Carlo simulations. We focus on chiral edge modes in
a cluster with zigzag edges to examine damping effects on
topological magnons. We have demonstrated that the chiral
edge modes are strongly damped in weak magnetic fields at
zero temperature. With increasing the intensity of the applied
magnetic field, the lifetime of the chiral edge modes becomes
longer and well-defined quasiparticle excitations. We have
also found that thermal fluctuations give rise to an increase
in the damping rate of the chiral edge modes. This effect
originates from collisions with thermally excited magnons in
the bulk. Since the present approach starts from a general
Hamiltonian, it can widely apply to other localized systems,
such as spin-orbital and electron-phonon coupled systems. We
also expect an application to real materials by integrating with
first-principles calculations giving a localized model.
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Note added. A preprint [93] addressing a similar problem
recently appeared. We confirmed that its results are consistent
with ours.
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APPENDIX A: LINEAR FLAVOR-WAVE THEORY
AND BOGOLIUBOV TRANSFORMATION

In this section, we show the details of the linear flavor-
wave theory and Bogoliubov transformation given in Sec. II C.
The 2N × 2N Hermitian matrix Mk in the linear flavor-wave
Hamiltonian HLFW in Eq. (15) is given by

Mk =
(

J̄k + J̄†
k + �Ediag Jk + JT

−k

J∗
−k + J†

k J̄∗
−k + J̄T

−k + �Ediag

)
, (A1)

where �Ediag = diag{�E1,�E2, . . . , �EN } with �Eι =
�El

m is a N × N diagonal matrix, and Jk and J̄k are defined as
the following N × N diagonal matrices:

Jk;ιι′ = Jk;(ml )(m′l ′ ) = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ γ ′
i j eik·(r j−ri )Ōl

γ mŌl ′
γ ′,m′ ,

(A2)

J̄k;ιι′ = J̄k;(ml )(m′l ′ ) = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ γ ′
i j eik·(r j−ri )Ōl

γ mŌl ′∗
γ ′,m′ ,

(A3)

where Ōl
γ ,m = 〈m; i|Oγ |0; i〉.

To diagonalize this Hamiltonian into Eq. (18), we introduce
the paraunitary matrix Tk as

Ak = TkBk =
(

Uk V ∗
−k

Vk U ∗
−k

)
Bk, (A4)

or equivalently,

aι,k =
N∑
η

(Uk,ιηbη,k + V ∗
−k,ιηb†

η,−k), (A5)

a†
ι,k =

N∑
η

(U ∗
k,ιηb†

η,k + V−k,ιηbη,−k). (A6)

Here, Uk and Vk are N × N unitary matrices. We can find
the paraunitary matrix Tk by combining with the Cholesky
decomposition and exact diagonalization [64].

APPENDIX B: NONLINEAR FLAVOR-WAVE THEORY

In this section, we present theoretical treatments for non-
linear terms in the flavor-wave theory. Here, we focus on

the cubic term, H′
3/

√
S in Eq. (14), which is neglected in

the linear flavor-wave theory. By performing straightforward
calculations, one can represent the cubic term as

1√
S
H′

3 = 1

2
√
S

M∑
ll ′

∑
i∈l, j∈l ′

∑
γ γ ′

N −1∑
mm′m′′

Jγ γ ′
i j

× (
Ōl

γ mδŌl ′
γ ′,m′m′′a†

mia
†
m′ jam′′ j

+ δŌl
γ ,m′m′′Ōl ′

γ ′ma†
m′iam′′ia

†
m j + H.c.

)
, (B1)

where δŌl
γ ,m′m′′ = 〈m′; i|δOγ |m′′; i〉. By using Eq. (17), H′

3 is
expressed by

1√
S
H′

3 =
√

M

NtS

M∑
ll ′

∑
kk′

N −1∑
mm′m′′

(
Jlδl ′

k;m,m′m′′a†
ml,ka†

m′l ′,k′am′′l ′,k+k′

+ Jl̄δl̄ ′
k;m,m′m′′aml,−ka†

m′l ′,k′am′′l ′,k+k′

+ Jδll ′
k;m′m′′,ma†

m′l,k′am′′l,k′−ka†
ml ′,−k

+ Jδl̄ l̄ ′
k;m′m′′,ma†

m′′l,k′am′l,k′−kaml ′,k
)
, (B2)

where the coefficients are given as follows:

Jlδl ′
k;m,m′m′′ = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ γ ′
i j eik·(r j−ri )Ōl

γ mδŌl ′
γ ′,m′m′′ ,

Jl ′δl
k;m,m′m′′ = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ ′γ
ji eik·(ri−r j )Ōl ′

γ ′mδŌl
γ ,m′m′′ ,

Jl̄δl ′
k;m,m′m′′ = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ γ ′
i j eik·(r j−ri )Ōl∗

γ m δŌl ′
γ ′,m′m′′ ,

Jl̄ ′δl
k;m,m′m′′ = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ ′γ
ji eik·(ri−r j )Ōl ′∗

γ ′mδŌl
γ ,m′m′′ ,

Jδll ′
k;m′m′′,m = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ γ ′
i j eik·(r j−ri )δŌl

γ ,m′m′′Ōl ′
γ ′m,

Jδl ′l
k;m′m′′,m = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ ′γ
ji eik·(ri−r j )δŌl ′

γ ′,m′m′′Ōl
γ m,

Jδl l̄ ′
k;m′m′′,m = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ γ ′
i j eik·(r j−ri ) δŌl

γ ,m′m′′Ōl ′∗
γ ′m,

Jδl ′ l̄
k;m′m′′,m = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ ′γ
ji eik·(ri−r j ) δŌl ′

γ ′,m′m′′Ōl∗
γ m,

Jl̄δl̄ ′
k;m,m′m′′ = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ γ ′
i j eik·(r j−ri )Ōl∗

γ m δŌl ′∗
γ ′,m′m′′ ,

Jl̄ ′δl̄
k;m,m′m′′ = 1

2

∑
i∈l, j∈l ′

∑
γ γ ′

Jγ ′γ
ji eik·(ri−r j )Ōl ′∗

γ ′mδŌl∗
γ ,m′m′′ . (B3)
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Using the relations between the above coefficients such as Jl̄δl̄ ′
k;m,m′m′′ = Jlδl ′∗

−k;m,m′m′′ = Jδl ′l∗
k;m′m′′,m, one can represent Eq. (B2) as

1√
S
H′

3 =
√

M

NtS

M∑
ll ′

∑
kk′

N −1∑
mm′m′′

(
Jlδl ′

k;m,m′m′′a†
ml,ka†

m′l ′,k′am′′l ′,k+k′ + Jδll ′
−k′;m′m′′,ma†

m′l,ka†
ml ′,k′am′′l,k+k′ + H.c.

)
. (B4)

We introduce the following interaction vertex:

V ι,ι′←ι′′
k,q←p ≡ Jlδl ′

k;m,m′m′′ [(δl ′,l ′′ − δl,l ′′δl ′,l ′′ ) + 2δl,l ′′δl ′,l ′′ ] + Jl ′δl
q;m′,mm′′ [(δl,l ′′ − δl,l ′′δl ′,l ′′ ) + 2δl,l ′′δl ′,l ′′ ]

= Jlδl ′
k;m,m′m′′ (δl ′,l ′′ + δl,l ′′δl ′,l ′′ ) + Jl ′δl

q;m′,mm′′ (δl,l ′′ + δl,l ′′δl ′,l ′′ ). (B5)

The above cubic term is simplified as

1√
S
H′

3 = 1

2

√
M

NtS

N∑
ιι′ι′′

k+q=p∑
kq

(
V ι,ι′←ι′′

k,q←p a†
ι,ka†

ι′,qaι′′,p + H.c.
)
, (B6)

where ι = (ml ), ι′ = (m′l ′), and ι′′ = (m′′l ′′). Similar expressions are derived for spin models in previous studies [94,95].
By applying the Bogoliubov transformation, Eqs. (A5) and (A6), H′

3 is represented by

1√
S
H′

3 = 1√
S
H(d)

3 + 1√
S
H(s)

3 , (B7)

where

1√
S
H(d)

3 = 1

2!

√
M

NtS

N∑
ηη′η′′

k+q=p∑
kqp

(
V̄η,η′←η′′

k,q←p b†
η,kb†

η′,qbη′′,p + H.c.
)
, (B8)

1√
S
H(s)

3 = 1

3!

√
M

NtS

N∑
ηη′η′′

k+q=−p∑
kqp

(
W̄η,η′,η′′

k,q,p b†
η,kb†

η′,qb†
η′′,p + H.c.

)
. (B9)

The interaction vertices in the above expressions are given by

V̄η,η′←η′′
k,q←p =

N∑
ιι′ι′′

{
V ι,ι′←ι′′

k,q←pU ∗
k,ιηU ∗

q,ι′η′Up,ι′′η′′ +
(
V ι,ι′←ι′′

−k,−q←−p

)∗
V ∗

k,ιηV ∗
q,ι′η′Vp,ι′′η′′ + V ι,ι′←ι′′

q,−p←−kU ∗
q,ιη′Vp,ι′η′′V ∗

k,ι′′η

+
(
V ι,ι′←ι′′

−q,p←k

)∗
V ∗

q,ιη′Up,ι′η′′U ∗
k,ι′′η + V ι,ι′←ι′′

−p,k←−qVp,ι,η′′U ∗
k,ι′ηV ∗

q,ι′′η′ +
(
V ι,ι′←ι′′

p,−k←q

)∗
Up,ιη′′V ∗

k,ι′ηU ∗
q,ι′′η′

}
, (B10)

W̄η,η′,η′′
k,q,p =

N∑
ιι′ι′′

{
V ι,ι′←ι′′

k,q←−pU
∗
k,ιηU ∗

q,ι′η′V ∗
p,ι′′η′′ +

(
V ι,ι′←ι′′

−k,−q←p

)∗
V ∗

k,ιηV ∗
q,ι′η′U ∗

p,ι′′η′′ + V ι,ι′←ι′′
q,p←−kU ∗

q,ιη′U ∗
p,ι′η′′V ∗

k,ι′′η

+
(
V ι,ι′←ι′′

−q,−p←k

)∗
V ∗

q,ιη′V ∗
p,ι′η′′U ∗

k,ι′′η + V ι,ι′←ι′′
p,k←−qU

∗
p,ιη′′U ∗

k,ι′ηV ∗
q,ι′′η′ +

(
V ι,ι′←ι′′

−p,−k←q

)∗
V ∗

p,ιη′′V ∗
k,ι′ηU ∗

q,ι′′η′′

}
. (B11)

These expressions are the same as those in previous stud-
ies [94,96]. Figures 1(a) and 1(b) illustrate these vertices,
V̄η,η′←η′′

k,q←p and W̄η,η′,η′′
k,q,p , respectively.

To treat the anharmonic terms as perturbations up to order
1/S , we utilize the standard Green’s function approach [66].
In terms of the bosons bη,k, we define the temperature Green’s
function as follows:

Gηη′,k(τ ) ≡ −〈TτBη,k(τ )B†
η′,k〉 (η, η′ = 1, 2, . . . , 2N ),

(B12)

Gηη′,k(iωn) ≡
∫ β

0
dτeiωnτGηη′k(τ ), (B13)

where Tτ is the time-ordering operator in the imaginary time,
ωn = 2nπ/β is the Matsubara frequency with n being integer,
and 〈·〉 stands for the thermal average. β = (kBT )−1 is the
inverse temperature, where kB is the Boltzmann constant. The

bare temperature Green’s function is represented by

G (0)
k (iωn) = 1

iωnσ3 − Ek
. (B14)

The temperature Green’s function up to the 1/S correction
with respect to the HLFW [see Eq. (14)] can be written as [66]

Gηη′,k(τ ) 	G (0)
ηη′,k(τ ) + 1

S

∫ β

0
dτ1〈TτH′

4(τ1)Bη,k(τ )B†
η′,k〉0

− 1

S
1

2!

∫ β

0
dτ1

∫ β

0
dτ2〈TτH′

3(τ1)H′
3(τ2)

× Bη,k(τ )B†
η′,k〉0, (B15)
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where H′
4 is the four-quasiparticle interaction, and 〈 · 〉0 rep-

resents the thermal average in HLFW. We also introduce the
self-energy, which is defined as

	k(ω, T ) ≡ 	k(iωn → ω + i0+), (B16)

	k(iωn) ≡ [
G (0)

k (iωn)
]−1 − [Gk(iωn)]−1. (B17)

By using the self-energy, the temperature and retarded Green’s
function can be written as [66]

Gk(iωn) = [
1 − G (0)

k (iωn)	k(iωn)
]−1G (0)

k (iωn)

= [iωnσ3 − Ek − 	k(iωn)]−1, (B18)

GR
k (ω, T ) ≡ Gk(iωn → ω + i0+)

= [(ω + i0+)σ3 − Ek − 	k(ω, T )]−1. (B19)

Since we focus on the damping phenomena of the bosonic
quasiparticles, we consider only the imaginary part of the
self-energy within the 1/S correction relative to HLFW. The
lowest-order diagrams with the imaginary part are Figs. 1(c)
and 1(d), which represent the spontaneous decays and col-
lisions with thermally excited bosons, respectively. Since
multiple thermally excited bosons are required for the colli-
sion process, only contributions from Fig. 1(d) are nonzero
at zero temperature. As in Refs. [59,94], we treat only di-
agonal terms of the self-energy, defined as 	̃η,k(iωn). In the
following, we restrict the range of η to 1, 2, . . . , N . Then, the
temperature Green’s function are expressed by

Gη,k(iωn) = 1

iωn − εη,k − 	̃η,k(iωn)
. (B20)

From Figs. 1(c) and 1(d), 	̃η,k(ω, T ) can be written as

	̃η,k(ω, T ) = 	̃η,k(iωn → ω + i0+)

= 	
(c)
η,k(ω, T ) + 	

(d)
η,k(ω, T ), (B21)

where

	
(c)
η,k(ω, T ) = M

NtS

N∑
η′,η′′

B.Z.∑
q

∣∣∣V̄η,η′←η′′
k,q←k+q

∣∣∣2

ω + εη′,q − εη′′,k+q + i0+

× [g(εη′,q) − g(εη′′,k+q)] for ω � 0, (B22)

	
(d)
η,k(ω, T ) = 1

2

M

NtS

N∑
η′,η′′

B.Z.∑
q

∣∣∣V̄η′,η′′←η

q,k−q←k

∣∣∣2

ω − εη′,q − εη′′,k−q + i0+

× [g(εη′,q) + g(εη′′,k−q) + 1]. (B23)

The above quantities 	
(c)
η,k and 	

(d)
η,k correspond to the self-

energies depicted by Figs. 1(c) and 1(d), respectively. Note
that we also consider the process 	

(s)
η,k(ω, T ) shown in Fig. 9,

which is involved with the magnon interaction presented in
Fig. 1(b). This is given by

	
(s)
η,k(ω, T ) = − 1

2

M

NtS

N∑
η′,η′′

B.Z.∑
q

∣∣∣W̄η′,η′′,η
q,k−q,k

∣∣∣2

ω + εη′,q + εη′′,−k−q − i0+

× [g(εη′,q) + g(εη′′,−k−q) + 1]. (B24)

FIG. 9. The lowest-order diagram involved with H(s)
3 defined in

Eq. (21) [see also Fig. 1(b)].

Since εη′,q and εη′′,−k−q are positive, the imaginary part of this
quantity is zero. We do not take it into account in the present
scheme.

APPENDIX C: ON-SHELL APPROXIMATION

In the on-shell approximation, ω in the self-energy
	̃η,k(ω, T ) is replaced to the one-particle energy εη,k. The on-
shell approximation up to the 1/S correction corresponds to
the Born approximation. In this approximation, the damping
rate �η,k is evaluated as

�η,k(T ) 	 − Im	̃η,k(ω = εη,k, T )

= M

NtS

N∑
η′η′′

B.Z.∑
q

{
1

2

∣∣∣V̄η′,η′′←η

q,k−q←k

∣∣∣2
[g(εη′,q)

+ g(εη′′,k−q) + 1]δ(εη,k − εη′,q − εη′′,k−q)

+
∣∣∣V̄η,η′←η′′

k,q←k+q

∣∣∣2
[g(εη′,q) − g(εη′′,k+q)]

× δ(εη,k + εη′,q − εη′′,k+q)

}
. (C1)

We numerically confirmed that calculation results of the
damping rate in the antiferromagnetic Heisenberg model on
the square and tetragonal lattice are the same as those in
the previous studies at T = 0 [32,33]. We note that since
this approximation completely neglects the magnon-magnon
interactions in the intermediate states of the self-energy, it
shows nonanalytic divergences [31].

APPENDIX D: DYNAMICAL STRUCTURE FACTOR

In this Appendix, we verify the validity of our method
incorporated with the iDE approach at finite temperatures.
We calculate the dynamical structure factor in Eq. (30) and
compare with the previous results computed by a continuous-
time quantum Monte Carlo (CTQMC) method in Ref. [73].

The dynamical structure factor is defined as

Sγ γ ′
(k, ω) ≡

∫ ∞

−∞

dt

2π
eiωt

〈
δOγ

k (t )δOγ ′
−k

〉
(D1)

= 1

M

M∑
ll ′

∫ ∞

−∞

dt

2π
eiωt

〈
δOγ

l,k(t )δOγ ′
l ′,−k

〉
, (D2)

where l and l ′ are the sublattice indexes. The Fourier transfor-
mation of the operator δOγ

i introduced in Eq. (2) is defined
as

δOγ

k ≡
√

1

Nt

∑
i

δOγ
i e−ik·ri =

√
1

M

M∑
l

δOγ

l,k, (D3)
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FIG. 10. Dynamical structure factor S(k, ω) at h/|2K| = 0.15 and T/|2K| = 0.05 obtained by (a) the linear spin-wave theory and nonlinear
theories with (b) the on-shell approximation and (c) the iDE approach. (d)–(f) Corresponding plots for h/|2K| = 0.12 and T/|2K| = 0.15. The
smearing factor is introduced as 0.1. The parameters for upper and lower sides correspond to those for Figs. 3(h) and 3(e) in Ref. [73],
respectively. (g) First Brillouin zones centered at the � point and adjoined one centered at the �′ point. The red lines represent the lines
connected with the high-symmetry points used in panels (a)–(f).

with

δOγ

l,k ≡
√

M

Nt

∑
i∈l

δOγ
i e−ik·ri . (D4)

To calculate Eq. (D2), we introduce the following time-
ordered correlation function:

�γγ ′
(k, τ ) ≡ 1

M

M∑
ll ′

〈
Tτ δOγ

l,k(τ )δOγ ′
l ′,−k

〉
. (D5)

The Fourier transformation with respect to the imaginary time
is given by

�γγ ′
(k, i�) =

∫ β

0
dτ�γγ ′

(k, τ )ei�τ . (D6)

Here, we introduce the dynamical susceptibility as an analytic
continuation from �γγ ′

(k, i�) as follows:

χγγ ′
(k, ω) ≡ �γγ ′

(k, i� → ω + i0+). (D7)

For ω > 0, the diagonal components of Eq. (D2) is expressed
as

Sγ γ (k, ω) = 1

π
Imχγγ (k, ω). (D8)

In the present study, we only take into account the lowest-
order contributions of δOγ

i and approximate the retarded
Green’s function for bosonic quasiparticles as Eq. (28). By
using this representation of the Green’s function, Sγ γ (k, ω) is
written as

Sγ γ (k, ω) = 1

M

N∑
η

|W̃γ kη|2 �η,k/π

(ω − εη,k )2 + �2
η,k

, (D9)

where

W̃γ kη ≡
N∑
ι

(
Ōl

γ mVk,ιη + Ōl∗
γ mUk,ιη

)
. (D10)

We calculate the trace of the dynamical structure fac-
tor, S(k, ω) = ∑

γ Sγ γ (k, ω). Figure 10 shows S(k, ω) at
(h/|2K|, T/|2K|) = (0.15, 0.05) and (0.12, 0.15). We choose
these parameters to compare the results with the previous ones
in Ref. [73]. Figures 10(b) and 10(e) show S(k, ω) obtained
by the on-shell Born approximation. We find that the spectral
weight around the �′ point is smeared due to the magnon
damping compared with the results calculated by the linear
spin-wave theory [Figs. 10(a) and 10(d)]. In addition, unnat-
ural suppression in the high-energy region is observed. This
behavior is due to the artifact intrinsic to the on-shell Born
approximation as mentioned in Sec. C. On the other hand, in
the results by the iDE approach, such unnatural behavior is
not observed, as shown in Figs. 10(c) and 10(f). Furthermore,
these spectral structures are in good agreement with those ob-
tained by CTQMC simulations shown in Figs. 3(h) and 3(e) in
Ref. [73]. In particular, the present approach can reproduce the
broadening of the excitation spectra at the � and �′ points due
to the magnon damping, which suggests that the qualitative
behavior of magnon spectrum obtained by the iDE method
is reliable. This is in contrast with the results by the on-shell
Born approximation, which are largely intact against thermal
fluctuations [Figs. 10(b) and 10(e)]. These results indicate
that the damping effect is essential in evaluating the dynamic
structure factors in the Kitaev model under magnetic fields,
and our present approach can treat this effect appropriately at
finite temperatures.

Finally, we discuss the relevance of our finite-temperature
calculations based on the 1/S expansion to the analysis where
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localized degrees of freedom are regarded to be classical.
The numerical study on a classical spin model using Landau-
Lifshitz-Gilbert equation in Ref. [97] reported that magnons
collapse due to thermal fluctuations, which is consistent with

our results at finite temperatures. On the other hand, calcula-
tion techniques beyond classical simulations, such as the 1/S
approach, are needed to examine the magnon damping at zero
temperature due to quantum fluctuations.
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