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Electron charge density is a fundamental physical quantity, determining various properties of matter. In this
study, we have proposed a deep learning model for accurate charge-density prediction. Our model naturally
preserves physical symmetries and can be effectively trained from one-shot density functional theory calculation
toward high accuracy. It captures detailed atomic environment information, ensuring accurate predictions of
charge density across bulk, surface, molecules, and amorphous structures. This implementation exhibits excellent
scalability and provides efficient analyses of material properties in large-scale condensed matter systems.
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I. INTRODUCTION

In the vast domain of materials science and condensed mat-
ter physics, electron charge density is a fundamental property
that describes the spatial distribution of electrons in a material.
It provides invaluable insights into overall material behaviors
and is an essential quantity in various quantum-mechanical
frameworks, especially in density functional theory (DFT)
[1], where the ground-state properties of a many-body system
can be described as functionals of the electron charge den-
sity. Commonly, DFT solves the Kohn-Sham (KS) equations
[2] via the self-consistent loop [3] to adopt the ground-state
charge density o(r, {R;}}_,), where charge density o is a func-
tion of the space position r and the positions of all n atoms in
the system {R;}?_,. A significant challenge of this approach
is the computational complexity of O(N?) with respect to
the number of electrons. The harshness of density functional
optimization impedes the application of DFT in mesoscopic
systems with thousands or even millions of atoms. This lim-
itation has spurred the search for alternative approaches that
can efficiently represent charge density without compromising
accuracy.

The electron density generally obtains “nearsightedness”
and screening effect in many-atom systems [4,5]. These ef-
fects make it possible to introduce a radius r. around a space
point, beyond which any perturbation on the atomic environ-
ment only provides negligible impacts on the electron density
at that point. This is the locality property of electron den-
sity, which does not apply to the KS wave functions. In that
case, the original time-consuming KS self-consistent calcu-
lation can be turned into mapping local atomic environment
information to the electron density. Such a mapping can nat-
urally be obtained via techniques such as machine learning.
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A well-trained machine learning model can be used for pre-
dicting charge density in different atomic systems, and even
be scalable for determining large-scale material systems. Cur-
rently, several machine learning models have been proposed
to predict electron charge density as alternatives to first-
principles calculations, as listed in Table 1.

One commonly used strategy is to express the charge
density as the summation of a set of basis functions such
as spherical harmonics, with the coefficients fitted via ma-
chine learning [6—12]. The rotational invariance of charge
density can be automatically protected with a reasonable basis
set. These methods are efficient but mainly used in charge-
localized systems, and the accuracy is highly dependent on
the quality and complexity of basis functions and usually
requires DFT calculations of plenty of different atomic struc-
tures to train. On the other hand, the grid-based methods can
be adopted to obtain more flexibility [13—18]. These methods
focus on mapping every unique local environment around
real space points to nondegenerate values in the latent space,
which thus contains enough information for charge-density
representation. The mapping should generally be invariant
under three physical symmetry operations: translation, rota-
tion, and permutation, as will be discussed in detail below.
Achieving these without losing structural detail information
is a nontrivial task. Moreover, grid-point methods usually
require large numbers of data points from various structures
to obtain satisfactory accuracy.

Herein, to overcome the above challenges for the grid-
based method, we introduce a deep learning charge model
(Deep Charge) to represent electron charge density. We have
adopted the embedding framework from Deep Potential [19]
to extract the local atomic environment, which naturally pre-
serves the system’s symmetry. This implementation requires
very few structures for training. Remarkably, a one-shot
DFT calculation is sufficient for simple systems like crys-
talline silicon and aluminum to reach a mean absolute error
(MAE) below 7 x 107%¢/ A3. The model provides a scalable
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TABLE I. The published works on machine learning charge density. The top seven methods belong to basis-function methods, while the
bottom six are grid-point methods. The unit for MAE and RMSE values is e/A3.

Method Systems Accuracy Data size Ref.
SA-GPR Small molecules MAE: 1.0%~1.2% ~1000 structures [6]
SA-GPR Organic dimers rMAE: 0.3%~1.8% ~2300 structures [71
SALTED Al, Si, I,—Ice 9%RMSE*:~1.5% 100 structures [8]
EGNN* DNA rMAE ~1% 922 structures [9]
SchNOrb Small molecules 25 000 structures [10]
EGNN Water clusters rMAE: ~1.4% 6000 structures [11]
ML-HK map Small molecules 100 ~ 350 structures [12]
Gaussians PE and Al thin films RMSE®: ~ 5 x 107 >107 points [13]
CGCNN Polymer, zeolite RMSE: 0.04 ~ 0.18 >3 x 10° points [14]
Deep Density Molecules, Al rRMSE®: 0.5%~2.2% 103 ~ 10° points [15]
Gaussians Organics RMSE: 0.03 ~ 1.52 ~1.5 x 10° points [16]
EGNN Molecules, cathode rMAE: 0.06%~0.27% 10° ~ 10° structures [17]
JLCDMs Benzene, Al, MoS, RMSE: 0.006 ~ 0.008 ~1.6 x 10° points [18]
This work Si, Al, Al-Mg, water MAE: 0.05%~0.4% >10° points

#Equivariant graph neural network.
PRelative mean absolute error. va lpi — pil/ va |pil, in which p; is the real charge density of the ith grid point; p; is the represented value of

that point.
“Percentage root-mean-square error, defined in the original paper.

dRoot-mean-square error. v va (p; — pi)* /N, in which N is the total number of grid points.

“Relative root-mean-square error. Vv SN — 0/ Vv >V p2.

representation of charge density in bulk, surface, and complex
systems such as alloy and amorphous, involving semicon-
ducting and metallic systems. Our Deep Charge model can
thus efficiently assist in the prediction and analysis of charge
density in large-scale condensed matter systems with DFT
accuracy.

II. DEEP CHARGE MODEL

The most important reasons why the Deep Charge model
can effectively capture the physics consistent with KS-DFT
are the nearsightedness [5] and the screening effect [20,21]
of materials. When a perturbation in the atomic structure
is introduced within a local environment of a material, the
ground-state distribution of electrons adjusts accordingly.
The magnitude of the charge-density change diminishes with
increasing distance from the perturbation due to the de-
structive interference of the density amplitude concerning
single-particle eigenstates. In gapped systems or disordered
systems, the decay is exponential, causing a rapid decrease
in influence. Meanwhile, in ordered gapless systems such as
metals, the decay follows power laws rather than exponential,
breaking the nearsightedness to some extent. On the other
hand, the screening effect of metallic electrons shields the
long-range Coulomb potential from the perturbed atoms, forc-
ing the system to be nearsighted. These results ensure that
almost all the information about local charge density is en-
coded in the atomic structures within a suitable cutoff radius.
The Deep Charge model can thus be trained to establish the
relationship between the charge density and atomic structures
approaching the DFT accuracy.

The continuous charge density is discretized into a space
grid in grid-point methods. Suppose there are n atoms in the

system; the charge-density value at position r can be written
as a function of the coordinates of atoms {R;}7_,,

p=olr. (RYL). M

where all the information of the system is required to deter-
mine the density at a single point. Instead, we can use only
the coordinates of neighboring atoms {R;|i € n, (r)}, where
n, (r) denotes the set of atoms within the cutoff radius r.
surrounding r with a size of n,.

o(r. RJ_;) = o(r, (Rili € n, (")) @

Ideally, this charge-density representation should be de-
signed carefully to fulfill the invariance under three symmetry
operations:

1. Any translation 7; of the whole system
Taor, (RY_)) = o(r +d, (R; +d}_,) should result in
the same value as o(r, {R;}}_,);

2. Any operation O € O(3) centered at r should obey
Oo(r, (RY_)) = o(r. {RY,):

3. Any permutation 7 on labels of the same atomic species
fulfills o(r, {Rz ) }i=y) = o(r, {Ri}i_)).

To preserve the translational invariance of the density, the
relative coordinates r; = r — R; = (x;, y;, z;) are adopted:

o(r {Rili € n, (N}) = o({rili € ny (N}). 3

The density can be represented via neural networks as
o(rili € n, (N}) = F(D{rili € ny, (r)};0a):05),  (4)

where D represents the descriptor that extracts all the local
environment information, and F represents the fitting net
for charge density. The trainable neural network parameters
for them are 6, and 6, respectively. In the implementation
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FIG. 1. Workflow of Deep Charge prediction. Suppose there are N grid points in the system; each grid point goes through one network

separately.

of Deep Charge, the descriptor is constructed to conserve
the rotation and permutation symmetry. Herein, we use the
two-body embedding DEEPPOT-SE descriptor with radial and
angular information [22]:

1
D=—G"RR'G., 5)

n2
in which R € R"*{l.4 ig the coordinate matrix with the

form of
R,:s(r,»)(l,ﬁ,&,ﬁ), (©)
rip ri ri

in which r; = ||r;|| is the norm of relative coordinates. s(r) is

the switching function defined with a fifth-order polynomial:

1

o r<ryg
[ (— 612+ 15u—10)+1] r—Ts
s(ry= o um O] Kr<re, U= , (7
r Fe — Ty
0, r>r.

where r, is the radius where smoothing starts. The construc-
tion of RRT is naturally invariant under O(3) symmetry
operation. The embedding matrix G is for obtaining the per-
mutation invariance according to Ref. [23], and G_ is the first
few columns of G (ten columns in our case). The form of G is
trained with neural networks \:

Gi = N(s(r)). (8)

The fitting net F obtains a simple fully connected
feed-forward network structure. The detailed charge-density
prediction workflow is shown in Fig. 1. The continuous space
is discretized into grids. The model will take the atomic
configuration and grid points as input and find the local envi-
ronment for each grid point in parallel, which will be used in
the embedding networks to construct the descriptor and then
input to the fitting networks. The final charge density can thus
be collected from the grid points.

Other similar grid-point methods with high accuracy, such
as those that use Gaussian fingerprints [13] and Jacobi-
Legendre charge density models (JLCDMs) [18], usually
require a predefined set of filter functions to construct finger-
prints. These functions are applied to the relative distances
between the grid points and each surrounding atom and are
then summed over the results from all the atoms to obtain
the fingerprint. Consequently, the number of filter functions
corresponds to the number of consistent fingerprints. This
construction method has the advantage of reducing the com-
plexity of training, as environmental information is extracted

via manually designed functions. Meanwhile, the quality of
extracted information can highly depend on the quality and
number of the filters and may lack flexibility in very com-
plex circumstances. In the case of Deep Charge, on the
other hand, the descriptor is trainable, providing additional
degrees of freedom to map local environmental information
into latent space. This implementation endowed the model
with more adaptability to complex systems such as amor-
phous structures, as demonstrated and discussed later in
this paper.

III. RESULTS AND DISCUSSION

A. Performance in bulk systems

In this section, we examine the convergence relation be-
tween the number of data points for training and the accuracy
in bulks. We chose crystalline silicon with 64 atoms for this
study. Silicon is an extensively studied semiconductor with
localized valence electrons at bond positions. The training
sets were based on the charge density obtained from only
one structure, while the testing was performed on all the
grid points from an unseen structure. The results are shown
in Fig. 2. In addition, we compared the convergence with
models trained on five different structures, 10° data points for
each structure selected, displayed with blue dashed lines in
Fig. 2(a). The model can reach an MAE of 6.7 x 10~*¢/A3
trained with 10° data points. It is noticeable that the one-
structure models exhibit similar accuracy to the five-structure
models, indicating that a little charge-density information of
one single structure of structure is enough to learn the patterns
in crystals. The parity plot of Fig. 2(b) has a coefficient of
determination (R?) of 0.999 957, also indicating a nearly
linear relationship. Meanwhile, as shown in Figs. 2(c)-2(f),
the absolute charge-density errors are larger around the cen-
ter of atoms, where the fluctuation and charge density are
also higher. The absolute error distribution is also shown
in Fig. S1(a) in Supplemental Material (SM) [24] (see also
Refs. [3,25-31] therein).

B. Performance in surface systems

To test the capability of the model under different atomic
environments, we further evaluated the charge-density repre-
sentation in surface structures. The aluminum surface with
144 atoms was chosen, because it is a benchmark ma-
terial for testing charge-density representation with highly
delocalized valence electrons [8,13,15,18]. As shown in
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FIG. 2. The performance of the Deep Charge model on bulk silicon. (a) The convergence relation between the number of data points used
for training and the MAE values for the testing set. (b) The scatter plot of predicted and test densities from a whole testing structure. Notice
that the negative values of charge density are induced by the on-site correction terms in projector augmented-wave (PAW) pseudopotentials.
(c) The charge density along the line is indicated in the inset of (a). (d), (¢) The charge density computed from DFT and machine learning,
respectively. The slice is denoted in the inset of (a). (f) The absolute error. Color bars are in the unit of e /A3.

Figs. 3(a) and 3(b), the accuracy of our model approached be-
low 6 x 10™*e/A? after training with 10° data points, which
is quite similar to the five-structure model. We have extracted
the charge density along the line across the surface and bond
positions, as shown in Fig. 3(c). The charge density near the
surface is lower than that in the bulk. This is owing to the sur-
face relaxation; the atoms near the surface are loosely bonded,
reducing the charge density between atoms. Moreover, the
charge density inside the film also varies considerably with the
disturbance of atomic structures than that in silicon, which is
also clearly shown in Fig. 4. The results from the Deep Charge
model greatly overlap that from the DFT calculation, meaning
that the embedding approach can accurately capture the subtle
changes in the environment, with the error fluctuating under
0.004 ¢/A> along the line.

In addition, many other works have tested their model in
aluminum with different system sizes and structures. Thus, we
herein briefly compare other models with ours. The SALTED
[8], Deep Density [15], and JLCDM [18] models have been
examined in small bulk aluminum systems, in which the errors
are ~1% [%RMSE (root-mean-square error), 4 atoms], 2 X
1072eV/A3 (MAE, 32 atoms), 4.81 x 10~*eV/A3 (MAE,
32 atoms), respectively. For comparison, we trained and
tested our model in the same systems and obtained an MAE
of 3.37 x 10~ eV/A3, lower than their values. Meanwhile,
Gaussian fingerprints [13] can reach an RMSE of about
1073 eV/A? in six-layer thin-film systems (144 atoms) with
about 10° datapoints, while the error can be further decreased
to 6 x 10~*eV/A3 but requires two orders of magnitude more
data than us. Overall, the Deep Charge model can provide an

0.3 T T T T T T T 0.012
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(a) . \ MAE = 0.000489 /A
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FIG. 3. (a) The convergence relation of machine learning model in aluminum surface. (b) The scatter plot of predicted and test densities.

(c) The charge density along the line is indicated in the inset of (a).
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(c) Absolute error
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FIG. 4. (a), (b) The computed charge density from DFT and
machine learning, respectively. The slice is denoted in Fig. 3(a). (c)
The absolute error.

efficient and accurate way of representing charge density in
aluminum.

C. Performance and scalability in complex structures

In this section, we examine the scalability of the ma-
chine learning model in complex structures. Scalability is
one of the most valuable aims of machine learning, since
complex structures normally require a large system size in
practical applications, while the ordinary DFT calculations
for large supercells are extremely challenging. Therefore,
we have studied the model in alloy and amorphous mate-
rials. Specifically, aluminum-magnesium alloy (108 atoms),
amorphous silicon (64 atoms), and water (48 atoms) were
tested.

First, a face-centered cubic structure with randomly placed
aluminum and magnesium was used for the alloy study. The
training convergence towards the number of structures trained
on was tested, and 10° grid points from each structure were
chosen for training, as shown in Fig. 5(a). The MAE ap-
proaches 8.0 x 10~*e/A3 with more than five structures of
training data. Figures 5(b) and 5(c) indicate that the increase in
system size barely influences the predictability of the machine
learning model. The MAE in the system with 256 atoms
is 8.14 x 10~*e/A3, slightly smaller than 7.66 x 10~*¢/A3
from the system with 108 atoms. The detailed charge density
is shown in the first row of Fig. 6. The absolute errors are
mostly contributed from the center area of magnesium atoms,
with a value of around 0.06 ¢/A3.

Next, amorphous silicon and water reveal similar results,
as shown in Figs. 5(d)-5(i) and Fig. 6. For amorphous sili-
con, the MAE reached below 0.004 e/A3 after training with
seven structures of data. The max absolute error for the test
structure is 0.037 ¢/A3, nearing the silicon atoms. Moreover,
we have also examined the performance of our model in
the silicon melting process, which obtains MAEs of about
0.005¢/A3. The details are discussed in the SM. In the case
of water, the MAE decreases below 0.0023 /A3 after training
with six structures. The predictions in silicon with 216 atoms
and water with 384 atoms are as good as that in smaller

systems. However, with the increase in system size, the
accuracy for water decreases relatively largely, which may
be induced by the rather small training structures. These re-
sults show that the accuracy of Deep Charge in amorphous
structures is relatively lower than that of crystalline but can
still be a good representation. Besides, the larger error around
atom centers could be related to the cutoff function we used,
which increases the weight of adjacent atoms but probably
not be the best description of the electron distributions. A
reasonable design of the cutoff function by reference to the
near-core charge density should improve the predictability
of machine learning models. The extremely high scalability
will pave the way for predicting charge density in large-scale
simulations.

From all the results above, we can see that the Deep Charge
model can effectively capture the radial distribution of the
charge near atoms as well as the angular distribution around
bond positions, due to two factors. First, the construction
of the local environmental matrix R of each grid point has
included the generalized coordinates with angular information
for every neighboring atom. Second, the embedding net G
of each grid point works as filters that add weights to each
neighboring atom according to the distance and chemical
species. From a physical point of view, this can be regarded
as the contribution of each atom to the charge-density repre-
sentation in latent space. Different from the above-mentioned
filters such as Gaussian, the parameters of embedding nets
are adaptive and can be learned to align with the DFT
results via training. Together with the weight of atomic
contribution and detailed generalized coordinates, the model
obtains its ability to represent the charge density of arbitrary
material systems.

IV. CONCLUSION

In summary, we have realized a charge-density represen-
tation with machine learning techniques. Our Deep Charge
model can accurately represent charge density in semiconduc-
tor, metal, and molecular systems. The symmetry-preserving
descriptor enhances the training efficiency. Only one single
DFT calculation is enough for training extremely high-
accuracy models for simple crystal structures. It can also
capture the fluctuations of the environment and represent com-
plex systems by training with fewer data. Meanwhile, further
improvement in the accuracy and efficiency of this model
is still possible. A reasonable design of the cutoff function
and loss function may increase the charge-density accuracy
near the atoms. Moreover, implementing a concurrent learning
strategy can automate the sampling process of data points used
for training, leading to more efficient learning and less human
intervention.

In addition, reasonable modifications to the model can
extend its application. Apart from the descriptor employed in
our study, the attention-based model [32] offers the potential
to create a universal charge-density representation covering
more elements. Furthermore, the model can be adapted to pre-
dict the spatial distribution of other fields, such as spin charge
density and the local density of states on grids. Achieving
this requires suitable modifications to the network architecture
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FIG. 5. (a), (d), (g) The convergence relation between the number of structures used for training and the MAE values for the testing set
of aluminum-magnesium alloy, amorphous silicon, and water, respectively. (b), (e), (h) The corresponding scatter plots for charge density
calculated by DFT and Deep Charge for a whole grid of data from a testing structure. (c), (f), (i) The corresponding parity plots in larger

supercells.

and transitioning from scalar output values to two- or multidi-
mensional vectors. The feasibility and implementation will be
carried out in future works.

Our model is easy to implement and can provide an ap-
proach for fast charge-density prediction avoiding the usage
of KS quasiparticle wave functions. Looking forward, with
the predicted charge density, many other physical quantities
like ground-state energy and force can be derived theoretically
based on the orbital-free DFT frameworks [33], which thus
assist the electronic structure analysis, stability prediction,
elastic behavior, etc. in large-scale condensed matter systems
with the first-principle accuracy. Additionally, the predicted
charge density can be integrated into physics-informed neural
networks to efficiently derive these quantities. This approach

further enhances the versatility and efficiency of our model
in capturing and analyzing the complex physics of condensed
matter systems.
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