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Excitonic phases in a spatially separated electron-hole ladder model
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We obtain the numerical ground state of a one-dimensional ladder model with the upper and lower chains
occupied by spatially separated electrons and holes, respectively. Under charge neutrality, we find that the
excitonic bound states are always formed, i.e., no finite regime of decoupled electron and hole plasma exists
at zero temperature. The system either behaves like a bosonic liquid or a bosonic crystal depending on the
interchain attractive and intrachain repulsive interaction strengths. We also provide the detailed excitonic phase
diagrams in the intra- and interchain interaction parameters, with and without disorder. We also comment on the
corresponding two-dimensional electron-hole bilayer exciton condensation.

DOI: 10.1103/PhysRevB.108.235158

I. INTRODUCTION

Electrons and holes can form bound states through the
attractive Coulomb interaction, called excitons. At sufficiently
low temperatures, excitons can condense due to their bosonic
nature [1–5]. One exciting experimental possibility is the two-
dimensional (2D) electron-hole bilayer, where the attraction
between the electrons in one layer and the holes in the other
layer should lead to interlayer coherent excitonic bosonic
condensation [6–10]. Recently, transport evidence has been
reported for bilayer exciton condensation in several different
layer systems [11–13]. There is also extensive experimental
literature on the closely related phenomenon of spontaneous
interlayer coherence in bilayer quantum Hall systems with a
total filling of unity, where the electron-hole transformation
in a filled Landau level produces an effective exciton conden-
sate [14–16]. In spite of very extensive theoretical literature
on the subject, the central conceptual issue of the T = 0
ground-state quantum phase diagram of the electron-hole bi-
layers remains problematic since even the basic question of
the allowed T = 0 quantum phases remain unknown and con-
troversial. Many publications claim uncritically that the T = 0
phase contains the unpaired electron-hole liquid as a possi-
ble ground state with a (Mott-like) quantum phase transition
from the bosonic exciton liquid to the fermionic electron-hole
liquid at weak coupling—see the discussion and citations in
Ref. [17]. We believe this claim to be incorrect, and there is
no ground-state transition to an electron-hole liquid in bilayer
electron-hole systems (or quantum Hall bilayers at a filling
factor of unity).

In this work, we theoretically investigate, using the
density-matrix renormalization group (DMRG), a two-chain
one-dimensional (1D) analog of 2D bilayers—a ladder model
with two oppositely charged spatially separated 1D chains.
Our system is controlled by two parameters, the intrachain
repulsive interaction U1 and interchain attractive interaction
U2. We are particularly interested in the (U1,U2) phase dia-
gram and the important issue of how many phases it can have.
To answer this question, we numerically obtain the ground

state using the DMRG method implemented by the ITensor
package [18], which is essentially an exact technique for our
purpose. We note that the problem of two coupled 1D chains
can also be studied from the bosonization perspective [19–22]
which is useful to describe the thermodynamic phases. Nev-
ertheless, our nonperturbative DMRG approach is preferred
to describe the quantitative excitonic phase diagram over a
wide range of parameters even though the finite sizes prevent
obtaining the critical phase boundary exactly. The reason is
that our system has parabolic dispersion and the interaction
strength can be much larger than the hopping strength, which
greatly complicates the implementation of the bosonization
method.

Intuitively, one may hypothesize a plasma phase when the
electrons and holes are concentrated densely enough in their
respective channels and the effective U2 is small. In the other
limit of large U2, the electron-hole interaction should prevail,
making the elementary excitations primarily excitons. We find
that there is no such electron-hole liquid phase, and excitons
are always favored in the ground state for any nonzero attrac-
tive interaction, with the excitons at small U2 having a large
size and coherent only over a short distance. Additionally,
we observe the crystallization of the bosonic liquid for large
U1, resulting in a phase diagram only having two phases:
an excitonic bosonic liquid and a crystal. We also study
the robustness of this phase diagram against disorder and
temperature.

II. MODEL HAMILTONIAN

The ladder model is defined by

H0 = −
∑

i

(c†
i+1ci + c̄†

i+1c̄i + H.c.)

+ U1(ni+1ni + n̄i+1n̄i ) − U2(nin̄i ). (1)

Here, ci (c̄i) is the annihilation operator for the electron (hole)
at site i of the upper (lower) chain. We fix the intrachain hop-
ping strength to be unity and U2,U1 > 0 corresponding to the
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FIG. 1. (U1,U2) phase diagram for a 14-rung ladder system. (a) Onsite bosonic correlation b(0). (b) Long-range bosonic correlation b =∑L/2
r=1 b(r). (c) Crystalline order parameter from the bosonic density-density correlation. The dashed line given by U2 = 3 separates the weakly

bound [b(0) < 0.5] and tightly bound [b(0) > 0.5] exciton regimes at weak U1. The solid green line given by
√

16 + U 2
2 − U2 = U1 roughly

separates the bosonic crystal and bosonic liquid.

(electron-hole) attractive and (electron-electron or hole-hole)
repulsive interaction within and between chains. Note that
we ignore any interchain tunneling, and the Pauli principle
is explicitly incorporated in Eq. (1) since we ignore spins as a
nonessential complication for the physics of exciton conden-
sation. Throughout this work, we also fix the filling of each
chain to be 1/2 and use the periodic boundary condition. The
model Eq. (1) is closely related to the class of bilayer Hub-
bard models [23–28] or bilayer Heisenberg models [29,30].
These classes of models feature a superfluid phase and a
staggered/checkerboard insulating phase where each site is
occupied by an electron of one species and a hole of the other
species—an exciton. In the following calculation, we refer to
the superfluid phase as bosonic liquid and the insulating phase
as bosonic crystal. We note that if one extends the interaction
range, the bosonic crystal is possible for lattices with less than
1/2 filling (see the Appendix).

For U2 = 0, each chain has an electron (hole) liquid, which
is a Luttinger liquid (but this is not relevant for the physics of
our interest where the focus is on the inter-chain bosonic cor-
relations for nonzero U2). To characterize the bosonic nature
of the system, we compute the following correlation functions

C∗(i′, i) = 〈ci′ c̄i′ c̄
†
i c†

i 〉, C(i′, i) = 〈ci′c
†
i 〉, (2)

where C∗ is the double-chain propagation involving moving a
hole and an electron simultaneously, while C is the single-
chain electron propagation (hole propagation C̄ is defined
similarly). When the two chains are decoupled, i.e., U2 = 0,
C∗(i′, i) = C(i′, i)C̄(i′, i) so the difference

b(r) = 4L−1
L∑

i=1

|C∗(i + r, i) − C(i + r, i)C̄(i + r, i)| (3)

indicates the bosonic correlator for the exciton propagation.
The numerical coefficient 4 is chosen so that b(0) = 1 in
the maximally coupled limit U2 → ∞ where every rung is
either empty or occupied by one exciton with no uncoupled
electrons or holes. Indeed, in this limit, C∗(i, i),C(i, i), C̄(i, i)
that count the onsite occupancy of excitons, electrons, and
holes, all read 1/2 due to the half-filling and charge-neutrality
conditions. The quantity b(0) thus indicates how strong

the electron-hole bound state or equivalently the bosonic
correlation is.

In Fig. 1(a), we show b(0) as a function of interaction
strengths U1 and U2 in a 14-rung ladder system, i.e., 28 sites,
with b(0) > 0 for any nonzero U2. For small U1, the exciton
becomes tightly bound for U2 � 3, resulting in a vertical
crossover. For large U1, b(0) saturates trivially because the
strong repulsive U1 induces independent Wigner crystals on
the two chains, and any U2 > 0 can lock these crystals with
each other. We call the resultant state coherent Wigner crystal
(CWC) because of the locking of the two crystals due to
nonzero (albeit small) U2.

The bosonic correlation also has information about the
mobility of the exciton bound state, which is encoded in
b = ∑L/2

r=1 b(r) shown in Fig. 1(b). At small U1 and U2, the
onset of long-range bosonic correlation coincides with the
formation of bosonic bound states. We note that the boson in
the bosonic liquid phase is actually hardcore and acts similar
to fermions in 1D. Thus this description does not contradict
with the Luttinger liquid description of fermions. However,
naming this phase “bosonic liquid” emphasizes the electron-
hole bound states we are interested in and provides an intuitive
distinction to the bosonic crystal phase at larger U2.

The exciton mobility vanishes at larger U2 even where b(0)
clearly indicates the existence of strongly bound excitons.
This is because excitons in our 1D model are really hardcore
bosons, which behave similarly to fermions in one dimension
and tend to localize (rather than condense) under a repulsive
interaction. This feature at large U2 is specific to our 1D model
and would not apply to 2D bilayers. To estimate the localiza-
tion crossover in this large U2 limit, we consider a simplified
half-filled two-rung ladder with U1 = 0. The energy spectrum
can be obtained by solving the 4 × 4 matrix

h =

⎛
⎜⎜⎝

−U2 1 1 0
1 0 0 1
1 0 0 1
0 1 1 −U2

⎞
⎟⎟⎠. (4)

The ground-state and first excited-state energies are E0 =
−(U2 +

√
16 + U 2

2 )/2 and E1 = −U2, separated from the
other two levels by ∼U2. In the limit of large U2, the
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lowest-energy configurations are those with electrons and
holes occupying the same rung. As such, the transition from
one low-energy configuration to another can be thought of as
the hopping of an exciton whose strength induces a splitting
between the two lowest-energy levels

t∗ = (E1 − E0)/2 = (√
16 + U 2

2 − U2
)
/4. (5)

The bosonic liquid crosses over to the solid when t∗ ∝ U1

[we demonstrate t∗ = U1/4 in Fig. 1(b)]. For U2 → 0, the
crossover happens at U1 = O(1) while in the limit U2 → ∞,
U1 ∝ 1/U2. These analytical conditions for the transitions to
the solid phase (for U1 
 1 and U2 
 1) agree with our nu-
merical results, allowing us to draw a putative line between the
bosonic liquid and the bosonic solid. We believe this transition
to be an effective first-order solid-liquid transition for the
exciton system that is adiabatically connected to the Luttinger
liquid to charge-density wave transition for U2 = 0 [20,31].

To confirm our statement that the bosonic liquid can
crystallize under repulsive interaction, we directly compute
the crystalline modulation in the interchain density-density
correlation

η = 2

L(�L/4� + 1)

L∑
i=1

L/2∑
j=0

(−1) j〈n̄ini+ j〉. (6)

We note that the alternating sign is compatible with the half-
filled crystal, and the normalization guarantees η = 1 for the
maximally crystallized state. Figure 1(c) clearly shows that
the vanishing of exciton mobility almost coincides with the
formation of bosonic crystals. The very slight mismatch can
be explained by Eq. (4). Accordingly, the total energy of
two excitons (four fermions) Epair = −2U2 > E1 + E0. This
means, even without the long-range U1, two excitons have an
exchangelike repulsive interaction in the same order as the ki-
netic energy. Therefore, the strongly-bound bosonic liquid has
nonzero crystalline order even though the electrons and holes
have no intrinsic repulsive interaction. This explains why the
crystalline order emerges earlier than the vanishing of the
bosonic liquid phase. The bosonic solid-liquid phase bound-
ary, together with the weakly (small U2) to strongly (large
U2) bound states, partition the (U1,U2) parameter space into
four regimes. The bosonic liquid is separated into the weakly
and strongly bound BEC—the so-called BCS-BEC crossover.
Similarly, the bosonic crystal phase can be subdivided into the
CWC and dipolar crystal (DC). CWC and DC are not different
phases and differ only quantitatively, depending on whether
the state is induced by introducing weak U2 between the two
Wigner crystals or U1 on the liquid phase of strongly bound
excitons.

One remaining question is whether the weakly bound ex-
citon survives or is replaced by electron/hole plasma in the
thermodynamic limit. In Fig. 2, we perform the finite-size
scaling analysis with respect to Fig. 1. The results converge
with system sizes, which supports the claim that excitons
always form for any attractive interaction U2 > 0, and there is
no Mott transition for any finite U2. We find that the calculated
bosonic correlation decreases continuously with decreasing
U2 without vanishing, thus arguing for the weak-coupling

L
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FIG. 2. Finite-size scaling analysis of (a) b(0), (b) b, and (c) η at
U1 = 0.5. L is the number of rungs in the ladder model.

excitonic BCS state to be stable down to arbitrarily small U2

within our numerical accuracy.

III. DISORDERED PHASE DIAGRAM

We study the robustness of the phase diagram under ran-
dom disorder, i.e., H = H0 + ∑

i Wini + W̄in̄i. The disorder
value at each site is drawn independently from a uniform
distribution (−W,W ).

In Figs. 3(a) and 3(c), we reproduce the phase diagram
under uncorrelated noise with amplitude W = 1. This noise
dampens the long-range bosonic correlation [Fig. 3(a)] and
generates a peculiar regime around the crossover line for
U1 < 2, where the bosons are nearly immobile (b ∼ 0) but
do not crystallize either (η < 1). Our current model assumes
no correlation between the disorder on the upper and lower
chains. We can, however, gain some insight from studying the
problem using two complementary limits, i.e., the disorders
on the two chains are (i) antisymmetric (Wi = −W̄i) or (ii)
symmetric (Wi = W̄i).

In Fig. 3(b), we show the relative deviation on the long-
range bosonic correlation δb = (b0 − bW )/b0 where bW is
computed at disorder strength W (and fixed U1 = 0.5). De-
spite having the same disorder amplitude W = 1, the three
disorder models behave differently. The antisymmetric dis-
order is relevant for the weak-coupling U2 but negated by
sufficiently large U2. The antisymmetry of the disorder model
tends to localize electrons and holes at different rungs (a
local potential minimum in one chain corresponds to a local
maximum in the adjacent), directly competing with the effect
of the interchain attraction that prefers both an electron and a
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FIG. 3. (a) Bosonic long-range correlation under uncorrelated disorder and fixed W = 1, the crossover line is carried over from the pristine
system. (b) Relative deviation induced by three disorder models having the same W = 1 along the line U1 = 0.5. (c) The crystalline order of
the disordered system is similar to (a). (d) Comparison between η (solid) and ηF (dashed), showing the interchain synchronization happens
at the same U2. (e), (f) η and ηF for U1 = 0.5,U2 = 2 (e) and U1 = 2,U2 = 10 (f). The inset in (e) shows that the bosonic and fermionic
correlations decay concomitantly with W .

hole on one rung. For stronger U2, the elementary particles are
pointlike composite bosons, and the net potential felt by this
object is vanishing, resulting in robustness against disorder.

By contrast, the system is more susceptible to symmet-
ric disorder in the strong-coupling U2 limit. In this limit,
the net potential the boson feels is nonzero and ∼W . At
the same time, the effective hopping is suppressed by U −1

2 ,
resulting in the enhanced sensitivity to symmetric disorder
for large U2. Returning to our original uncorrelated disorder
model, it can be decomposed into antisymmetric and symmet-
ric components. Therefore, for small U2, disorder affects the
system by separately localizing electrons and holes (similar
to antisymmetric disorder). For large U2, the main effect is
the localization of tightly-bound bosons (electrons and holes
localized at adjacent sites similar to symmetric disorder).
This observation explains the irregular localized regime in
Fig. 3(b). This is the Bose glass regime induced by disorder
[for U2 > 5 in Fig. 3(b)], where bosons are localized.

In the presence of uncorrelated disorder, the two chains are
not equivalent, so we introduce two additional order parame-
ters, which are the intrachain version of b and η:

c = 4L−1
L/2∑
r=1

L∑
i=1

|C(i + r, i)C̄(i + r, i)|,

ηF = 2

L(�L/4� + 1)

L∑
i=1

L/2∑
j=0

(−1) j〈nini+ j〉. (7)

In Fig. 3(d), we compare η and ηF in the pristine and dis-
ordered cases at fixed U1 = 0.5. The convergence of these
two quantities indicates the synchronization between the two
chains, which happens around the same U2 for both cases.
However, in the pristine case, η and ηF are both saturated,
but not in the disordered case. The corresponding boson local-
ization landscapes are pictorially shown in Fig. 3(d) with the
long-range order present (absent) in the pristine (disordered)
system.

The previous results are all given for W = 1. We now study
whether stronger disorder can destroy interchain coherence.
In Fig. 3(e), we show the effect of disorder on the bosonic
liquid phase (U1 = 0.5,U2 = 2). It is clear from the inset that
b is suppressed exponentially by W , but the intrachain coun-
terpart c also decays just as fast. This shows that the bosonic
correlation is destroyed at the same time as the underlying
Fermi surface, and there cannot exist any decoherent Luttinger
liquid phase by introducing disorder. Additionally, η and ηF

stay distinct for any W , clarifying that the large-W state is two
independent Anderson insulators. On the other hand, starting
with the bosonic crystal (U1 = 2,U2 = 10), η and ηF decrease
but remain identical, showing a transition from bosonic crystal
to bosonic glass. Thus, as W increases, the bosonic liquid
becomes decoherent Anderson insulators, while the bosonic
crystal loses the long-range order and becomes bosonic glass.
In the limit W → ∞, the entire parametric phase is trivially
decoupled electron/hole Anderson insulators.

IV. EFFECT OF FINITE TEMPERATURE

This section studies the thermal melting and crossover
to classical phases at low (T  1) and high (T ∼ U1,U2)
temperatures. For low temperatures, we compute the first 29
excited states and take the thermal averages of observables

〈O〉β = Tr(e−βH O)

Tr(e−βH )
≈

∑29
i=0 e−βEn〈ψn|O|ψn〉∑29

n=0 e−βEn
, (8)

which enter the correlation functions Eqs. (2), (6), and (7) with
O being the corresponding operator. We note that the chemi-
cal potential does not appear because we explicitly impose
particle number conservation on each chain when computing
excited states.

For high temperatures β ≈ 0, we use the stochastic sam-
pling method combined with imaginary time evolution. We
first set the initial state by assigning the particles (fixed par-
ticle numbers on each chain) to a set of randomly chosen
single-particle levels (U1 = U2 = 0) so that the initial state en-
semble consists of orthonormal Slater states. We then evolve
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FIG. 4. (a) Onsite bosonic correlation, (b) long-range bosonic
correlation. (c)–(d) Excitonic (solid lines) and fermionic (dashed
lines) crystalline order with respect to U2 and U1. Blue and light blue
colors denote low temperatures (less than exciton binding energy),
while red and light red denote high temperatures (more than exciton
energy).

the state using the TDVP method and compute the observable
expectation value at imaginary time τ = β/2. The thermal
expectation value is obtained by averaging over the ensemble
of initial states as

〈O〉β = Tr(e−βH O)

Tr(e−βH )
≈

∑N
i=1〈ψi|e−βH/2Oe−βH/2|ψi〉∑N

i=1〈ψi|e−βH |ψi〉
, (9)

which we choose N = 200. We have numerically tested the
convergence for N = 200.

For temperatures lower than exciton binding energy (blue
and light blue lines), the onsite correlation b(0) is unaffected
[Fig. 4(a)], but the long-range bosonic correlation decreases
(increases) compared to the zero-temperature bosonic liquid
(crystal) phase [Fig. 4(b)]. This is consistent with the thermal
melting of the bosonic crystal into a bosonic liquid phase,
which is further supported by Fig. 4(c) with η approaching ηF

but not saturating as U2 increases. On the other hand, nearest-
neighbor U1 (as compared to the onsite U2) can recover the
crystalline order and increase the melting temperature, as can
be seen in Fig. 4(d). Bosonic phases are only destroyed when
the temperature exceeds the exciton binding energy, replaced
by classical electron and hole plasma. Thus, at finite T , there
can indeed be an electron-hole liquid phase, particularly for
small U2 where the exciton binding is weak.

V. CONCLUSION

We have calculated the quantum phase diagram of indirect
excitons formed between two oppositely charged spatially
separated 1D chains. This setup lets us directly tune the bind-
ing energy and measure various correlation functions. At zero

DC
BEC

W-BEC / BCS

CWC

FIG. 5. Schematic phase diagram of indirect excitons in 2D bi-
layers. The red line given by Eq. (10) separates the crystalline and
liquid phases, and the blue line given by rs ∼ d separates the strongly
bound exciton BEC phase from the weakly-bound BEC (W-BEC) or
the BCS phase. The extension of the blue line into the crystalline
phase (dashed lines) indicates the dipolar crystal (DC) and the coher-
ent Wigner crystal (CWC) phases. There is no electron-hole plasma
phase at T = 0.

temperature, excitons always form, and the entire parameter
space is partitioned into the bosonic liquid and bosonic crystal
phases. Upon introducing a small disorder, the bosonic char-
acteristic remains unchanged, with the bosonic crystal phases
transitioning into a bosonic Anderson insulator. At finite T ,
there can indeed be an electron-hole liquid phase, particularly
for small U2 where the exciton binding is weak.

Based on our 1D tight-binding two-channel ladder re-
sults, we propose some features of the continuum excitons,
potentially realized in 2D bilayer systems. The kinetic and in-
tralayer repulsive interaction is governed by the electron/hole
density so that t ∼ 1/r2

s and U1 ∼ 1/rs. Here we use the
convention rs = a with a being the average interparticle spac-
ing within one layer normalized by the Bohr radius. U2 in
our model becomes 1/d with dimensionless d the interlayer
separation also scaled by the Bohr radius. There are two
differences with our tight-binding model. First, the exciton
kinetic energy (or that of the electron-hole pair center of mass)
remains finite for strong U2 and only depends on rs. Addition-
ally, the interaction in the strong-U2 limit becomes a dipolar
1/r3 interaction. Note that the strong U2 limit is different in
2D bilayers compared with 1D since hard-core bosons are no
longer equivalent to fermions. We estimate a phase diagram as
shown in Fig. 5 where the qualitative phase boundary is most
likely a crossover in 1D and true phase transition in 2D. The
solid-liquid phase boundary is sketched as follows:

1

rs
− 1√

r2
s + d2

= C

r2
s

, (10)

with the LHS being the repulsive interaction energy, RHS
the kinetic energy (electrons/holes and excitons), and C a
constant. The exciton description apparently prevails when
d  a or rs 
 d . We note that the asymptotic Eq. (10) yields
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(a) (c)(b)

Weakly 
bound

Tightly 
bound

DC

BCS

CDW

FIG. 6. (U1,U2) phase diagram for a 14-rung ladder system with long-range γ = 1.2 interchain attractive and intrachain repulsive
interactions. (a) Onsite bosonic correlation b(0). (b) Long-range bosonic correlation. (c) Crystalline order parameter from the bosonic
density-density correlation. The dashed line given by U2 = 3 separates the weakly bound [b(0) < 0.5] and tightly bound [b(0) > 0.5] exciton
regimes at weak U1. The solid green line given by Eq. (A2) with C = 1.2 separates the bosonic crystal and bosonic liquid. Note that the large
U2 (and small U1) regime for the dipolar model here is qualitatively different from that in the adjacent attractive interaction model of Fig. 1 in
the main text.

rs ∼ d2 
 d in the large-d limit, so similar to the tight-
binding model, the solid phase may qualitatively be divided
into the coherent Wigner crystal and dipolar crystal phases
depending on the value of rs/d . In Appendix, we perform
a numerical simulation with attractive long-range interaction
to capture the dipole physics. Remarkably, a part of this
proposed phase diagram is realized in our dipolar 1D tight-
binding model, with the main difference being the large U2

regime.
Note added. The preprint [32] claims to have observed

experimentally the coherent exciton crystal phase that we find
in our simulations.
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APPENDIX: LONG-RANGE ATTRACTIVE POTENTIAL

We modify the interaction potential into

HI = −
∑

i

U2nin̄i +
∑
i< j

(ni, n̄i )Ui, j (n j, n̄ j )
T ,

Ui,i+δ =
⎛
⎝ U1

δγ − U1U2

(U 2/γ

1 +δ2U 2/γ

2 )γ /2

− U1U2

(U 2/γ

1 +δ2U 2/γ

2 )γ /2

U1
δγ

⎞
⎠, (A1)

assuming that the elementary interaction ∼1/rγ so that the
intrachain repulsive interaction scales as a−γ with a being the
site spacing and the interchain attractive interaction scales as
(d2 + a2)−γ /2 with d being the separation between the two
chains. In Fig. 6, we show an equivalence of Fig. 1 in the main
text. The main difference with the system in the main text is
that the long-range interaction modifies the solid-liquid phase

(a) (b) (c)

FIG. 7. Same as Fig. 6 but with 15 sites per chain and the filling of each chain being 1/3. The normalization coefficients is 9/2 for (a)–(b).
For (c), the crystalline order parameter becomes η = 3

L(�L/6�+1)

∑L
i=1

∑L/2
j=0 cos 2π j

3 〈n̄ini+ j〉. The phase diagram is qualitatively similar to Fig. 6
but the extended phases (BCS and BEC) expand along U1 axis.
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boundary into

√
16 + U 2

2 − U2 = CU1

(
1 − U2(

U 2/γ

1 + U 2/γ

2

)γ /2

)
, (A2)

where the RHS is the nearest-neighbor dipole interaction. We
can see that in the limit U2 → ∞, the hopping is renormalized
to t∗ ∼ 1/U2, while interaction now becomes dipole-dipole
interaction and reads U 3

1 /U 2
2  t∗. As a result, the large-U2

regime is dominated by the BEC phase, unlike the crys-
tal phase in Fig. 1 where large U2 converts the effectively

hardcore bosonic system to a crystalline fermionic system for
U2 
 1.

Due to the long-range nature of the interaction, insulating
phase is possible even for less than half-filled lattice. The
constraint on the filling fraction now reduces to 1/n for 1D
lattices or some rational numbers for higher-dimensional lat-
tices depending on the lattice symmetry. In Fig. 7, we redo
the calculation of Fig. 6 with 1/3 filling, i.e., five electrons
and holes occupying a 15-rung ladder. Qualitatively, the phase
diagram is similar to the half-filled case but quantitatively, the
liquid phase expands. This can be understood of the scaling of
the dipolar interaction 1/r3 versus that of the kinetic energy
1/r2, meaning that the system favors the extended phase at
low filling to minimize the kinetic energy.
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