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Efficient method for estimating the dynamics of the full polarizability tensor during ab initio
molecular dynamics simulations
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An efficient method is presented to approximate the dynamics of individual polarizability tensor elements,
for example, during ab initio molecular dynamics simulations. The method is based on the calculation of the
quadrupole moment matrix of the position operator in the maximally localized Wannier functions representation.
The presented method has a wide range of applications, particularly in vibrational spectroscopy simulations, such
as (resonance) Raman, Raman optical activity, sum-frequency generation, etc. It is demonstrated that this method
can lead to a several-hundred-times speedup with respect to reference linear response calculations. The predictive
power of the introduced method is tested in the cases of various molecules as well as depolarized Raman spectra
of gaseous and liquid methanol, in all of which remarkable agreement with the reference spectra is observed.
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I. INTRODUCTION

Electric polarizability is one of the fundamental properties
of materials and describes the tendency of a material to change
its dipole moment upon being subject to an external electric
field. Evolution of the electric polarizability of a material
during a certain process provides invaluable information about
many of its chemical and physical properties. Therefore es-
timation of the full polarizability tensor lies at the heart of
many spectroscopy simulations, for example, polarized and
depolarized Raman, Raman optical activity, sum-frequency
generation, etc. [1–7]

Despite promising methods devised in the past decade to
facilitate computation of vibrational spectra based on ab initio
molecular dynamics (AIMD) simulations, application of such
methods has been limited to small systems and fast processes
[7]. This is, partly, due to the huge computational cost of such
simulations, especially in cases where the full polarizability
tensor of a system is needed [8,9]. The calculation of the
polarizability tensor could, in fact, be an order of magnitude
more costly than generating the trajectory itself.

Nevertheless, it has been shown that in the case of Ra-
man spectroscopy simulations, a substantial speedup can be
achieved by using the Wannier polarizability (WP) method,
which allows for on-the-fly calculation of the mean polariz-
ability of a system during an AIMD simulation, avoiding a
direct computation of the full polarizability tensor through
the finite-difference method or linear response (LR) theory
[10,11]. However, the applicability of the WP method is
limited to the simulation of polarized Raman spectra, where
only the mean polarizability is required, and therefore lin-
ear response theory [12–17] and the finite-difference scheme
[5,6,18] have remained the methods of choice for simulating,
for example, depolarized Raman and sum-frequency genera-
tion spectra.
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In this paper, an efficient method is introduced to extend
applicability of the WP method to spectroscopy simulations
where the full polarizability tensor is required. The aim is set
at reproducing the correct dynamics of the static polarizability
tensor during AIMD simulations. This is achieved by calcu-
lating the quadrupole moment matrix of the position operator
in the maximally localized Wannier functions representation
and gives a substantial speedup over calculations using linear
response theory or the finite-difference method. The predic-
tive power of this method is checked against reference linear
response calculations in the cases of various molecules and
clusters as well as liquid methanol.

II. METHODOLOGY

A. Covariance matrix of the position operator
in the Wannier representation

Maximally localized Wannier functions (MLWFs) [19,20]
allow for partitioning the total electronic charge distribution
in a system into fragment contributions. They are defined as

wn(r − R) = V

(2π )3

∫
BZ

dk e−ik·r
J∑

m=1

U (k)
mn ψmk(r). (1)

Here, ψmk(r) are Bloch eigenstates as obtained from an elec-
tronic structure method, such as density functional theory
(DFT) [21], R is a Bravais lattice vector, V is the real-space
primitive cell volume, and the integral is computed over the
whole Brillouin zone (BZ). To compute MLWFs, the func-
tional

Qtot =
NWF∑

n

Qn =
NWF∑

n

[〈wn|r2|wn〉 − 〈wn|r|wn〉2] (2)

is minimized by appropriately chosen unitary rotations U (k)
mn

[22–24]. With minimized Qtot, the isotropic extension of the
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Wannier function n can be then obtained by Sn = Q1/2
n , which

has units of length.
In the Wannier polarizability (WP) method [10,11] the

mean polarizability is directly calculated based on MLWF
spreads as

Ā = β

3

NWF∑
n

S3
n, (3)

with β being a constant. As such, the mean polarizability is
calculated without a need for calculating individual elements
of the polarizability tensor. The WP method has been suc-
cessfully employed for simulating ab initio polarized Raman
spectra of various systems with only a minimal extra computa-
tional cost required for the calculation of MLWFs [10,11,25–
27].

The WP method directly connects the mean polarizability
to the volume of electronic fragments in the system, inspired
by the fact that the polarizability of molecules is known to
be, to a first approximation, linearly proportional to their
volume [28–31]. Following a similar line of thought, here we
propose a direct relation between the individual elements of
the polarizability tensor and the spatial extent of electronic
fragments (MLWFs) along different directions. To this end,
the quadrupole moment matrix of the position operator in the
MLWFs representation is used.

To calculate the quadrupole moment matrix, one can adapt
the approach of Wheeler et al. [32] and Kang et al. [33],
which, extending the original work by Resta (which enables
one to calculate the polarization of a many-body ground state
[34]), allows for the calculation of the quadrupole moment
(covariance) matrix based on periodic operators for pq, with
p, q ∈ {x, y, z}. In this paper, however, nonperiodic operators
for x, y, and z components are employed to define a 3 × 3
covariance matrix for each Wannier function wn as

cn,pq = [〈wn|pq|wn〉 − 〈wn|p|wn〉〈wn|q|wn〉] 1
2 , (4)

where p, q ∈ {x, y, z} and 〈wn|p|wn〉 is the p component of
the Wannier center. It is observed that the computation of co-
variance matrices using nonperiodic operators is much faster
than computations based on periodic position operators. The
spread of each MLWF is related to the trace of its covariance
matrix as

Sn = Tr[cn]. (5)

We define the total covariance matrix for the whole system as

� =
(

NWF∑
i=1

ci

)3

. (6)

In Eq. (6), � is a symmetric 3 × 3 matrix, and the third power,
similar to Eq. (3), ensures the same physical units as A.

It is, in principle, possible to present a direct relation be-
tween � and A by introducing a proportionality constant [such
as β in Eq. (3)]. Such a constant would generally be system
dependent, in which case a single-point reference calculation
(for example, using LR theory) would be enough to estimate
it by comparing � with A for the system under study. The
obtained value for the proportionality constant could then be
used throughout an AIMD simulation (see below). However,

here the aim is not to estimate the polarizability tensor A
with a high accuracy; rather, the goal is to approximate the
dynamics of its individual elements during AIMD simulations
based on those of the total covariant matrix �. Since the time
series [such as Apq(t ) and �pq(t )] should be normalized in the
autocorrelation formalism for simulating finite-temperature
spectra (see below), introducing such a proportionality con-
stant is not necessary for spectroscopy simulations.

Equation (6) incorporates the cross terms between covari-
ance matrices of different Wannier centers into �. Such terms
are neglected in Eq. (3) for the mean polarizability. The effect
of cross correlations between local physical quantities has
already been shown to be crucial in spectroscopy simulations
[1,3,4]. In the original WP method, neglecting such effects
could result in inaccurate relative Raman intensities, where
the total spectra are primarily dominated by Wannier func-
tions with larger volumes [35].

Finally, it is observed that, even in the case of extended sys-
tems where the Wannier center does not constantly fluctuate
between the neighboring unit cells, the approximate dynamics
of the polarizability tensor calculated through Eq. (6) using
nonperiodic position operators results in vibrational spectra
which agree very well with reference linear response spectra
(see below).

B. Polarized and depolarized Raman intensities

The performance of the method introduced above is
demonstrated in the case of finite-temperature depolarized
Raman simulations. The total Raman intensity is given by
[1,2,36]

IRaman = IRaman
pol + 7

30 IRaman
depol . (7)

The polarized and depolarized Raman intensities can be
calculated through performing a Fourier transform of the
polarizability autocorrelation function at thermodynamic
equilibrium. This formalism fully takes the anharmonicity of
the potential energy surface into account as the polarizability
of the system is normally sampled throughout AIMD simu-
lations at finite temperatures. The polarized and depolarized
Raman intensities can be calculated using [2,4]

IRaman
pol ∝ Cq/cl(ν)

∫ ∞

−∞
dt ei2πνt 〈Ā(0)Ā(t )〉cl,

IRaman
depol ∝ Cq/cl(ν)

∫ ∞

−∞
dt ei2πνt 〈Tr[B(0) · B(t )]〉cl. (8)

The mean polarizability Ā = (Axx + Ayy + Azz )/3, and
Cq/cl(ν) = hν/kBT

1−exp (−hν/kBT ) is the quantum correction factor
obtained based on harmonic approximation and has been
shown to satisfy both the detailed balance condition and the
fluctuation-dissipation theorem [37]. B = A − ĀI represents
the traceless anisotropic part of the polarizability tensor, with
I being the unity matrix, while 〈· · · 〉cl denotes the ensemble
average of classical statistical mechanics. It can be shown
that IRaman

depol ∼ γ 2 = 1
2

∑
p,q∈{x,y,z} 3(ApqApq − AppAqq ), where

γ 2 is the anisotropic Raman invariant [1,38]. As such, in the
autocorrelation formalism, the depolarized Raman intensity
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can be given by [5,13]

IRaman
depol ∝Cq/cl(ν)

[∫ ∞

−∞
dt ei2πνt 〈[Axx(0) − Ayy(0)]

×[Axx(t ) − Ayy(t )]〉cl

+
∫ ∞

−∞
dt ei2πνt 〈[Axx(0) − Azz(0)][Axx(t )−Azz(t )]〉cl

+
∫ ∞

−∞
dt ei2πνt 〈[Ayy(0) − Azz(0)][Ayy(t )−Azz(t )]〉cl

+6
∫ ∞

−∞
dt ei2πνt 〈Axy(0)Axy(t )〉cl

+6
∫ ∞

−∞
dt ei2πνt 〈Axz(0)Axz(t )〉cl

+6
∫ ∞

−∞
dt ei2πνt 〈Ayz(0)Ayz(t )〉cl

]
. (9)

C. Computational details

All calculations are performed at the density functional
theory (DFT) [21] level using the CP2K software package [39].
The DFT calculations are performed in conjunction with a
TZVP-MOLOPT basis set (a basis set with triple-zeta valence
plus one set of polarization functions optimized from molec-
ular calculations) [40] as well as the Becke–Lee-Yang-Parr
(BLYP) [41,42] exchange-correlation energy functional and
Goedecker-Teter-Hutter (GTH) pseudopotentials [43,44]. The
semiempirical DFT-with-dispersion-correction method DFT-
D3 [45] is used to correct for the long-range dispersion
interactions.

The maximum atomic force component used for structural
optimization of molecules is 0.02 eV/Å. Structures of wa-
ter clusters from the Cambridge Cluster Database are used
without further optimization. The localization criterion for the
total spread for the calculation of the MLWF through unitary
Jacobi rotations is set to 10−7, whereas the target accuracy for
the convergence of the conjugate gradient scheme in the ref-
erence linear response calculations of polarizability tensors is
10−6. MLWFs are first obtained using the Berry approach and
are then used for the calculation of the covariance matrices
according to Eq. (4).

All Raman spectra are obtained by performing 20-ps DFT-
based AIMD simulations in the canonical ensemble to achieve
equilibrium at 300 K, followed by 100-ps AIMD simula-
tions in the microcanonical ensemble to remove thermostat
effects and sample polarizabilities and Wannier functions. The
temperature is controlled by a canonical sampling through
velocity rescaling (CSVR) thermostat [46]. A time step of 1 fs
is used in these simulations, and polarizabilities are sampled
at each time step together with MLWFs. To simulate liquid
methanol, a cubic unit cell of size 15.00 × 15.00 × 15.00 Å3

containing 50 methanol molecules is used.
The linear response and Wannier localization modules

have different parallel implementations in the CP2K software
package. Therefore comparisons between the time needed
for calculation of polarizability tensors using linear response
theory, tLR, and that required for obtaining total covariance
matrices, tWP, are made based on the speedup in latency,

TABLE I. Pearson correlation coefficient between elements of �

and A.

Coefficient Correlation

ρ(�xx, Axx ) 0.86
ρ(�yy, Ayy ) 0.80
ρ(�zz, Azz ) 0.91
ρ(�xy, Axy ) 0.63
ρ(�xz, Axz ) 0.89
ρ(�yz, Ayz ) 0.96
ρ(Tr[�], Tr[A]) 0.86
ρ(γ 2

�, γ 2
A ) 0.84

f = tLR/tWP, of single-core computations [35]. Here, tWP in-
cludes both the time needed for obtaining MLWFs and that
needed for computing the covariance matrices.

III. RESULTS AND DISCUSSION

A. Total covariance matrix

The total covariance matrix is calculated using Eq. (6) for a
set of molecular structures consisting of nonpolar, polar, and
charged conformations shown in Fig. 1(a). The aim here is
to study the correlation between the total covariance matrix
elements, �pq, in each structure and the corresponding ele-
ments of the reference polarizability tensor, Apq, calculated
using linear response (LR) theory. This is done by computing
the Pearson correlation coefficients, ρ, which are given in
Table I. In the calculation of correlations, the order of molec-
ular systems is as shown in Fig. 1(a) (left to right, top to
bottom). The correlation between the individual elements
of A and � is observed to be very strong, implying that
the dynamics of the polarizability tensor, A, can reliably be
approximated by that of the total covariance matrix, �. How-
ever, computation of the total covariance matrices is found
to be hugely less demanding computationally. The speedup,
defined as the time needed for the calculation of polarizability
tensors through LR theory with respect to that required for
the calculation of total covariance matrices using the WP
method for the same systems, is presented in Fig. 1(b) for
the water clusters (H2O)k , k = 5, . . . , 20, shown in Fig. 1(a).
In all clusters, the speedup is observed to be above 50 times.
Even in the case of a bulk water sample consisting of 32 water
molecules [shown as a solid square in Fig. 1(b)], a speedup of
above 61 times is seen. Such a substantial speedup, as will be
demonstrated below, is particularly beneficial for simulations
of finite-temperature spectra through long AIMD trajectories.
Figure 1(c) shows tLR and tWP for the same systems as func-
tions of the number of electrons. It appears from the fits that
substantial speedups could also be expected for larger systems
containing similar molecules.

The main reason behind the observed speedup in the WP
calculations has to do with the fact that the perturbed orbitals
have to be computed iteratively in each LR calculation and
their orthogonality condition has to be imposed. For the cal-
culation of polarizability, this has to be repeated for three
perturbative external electric fields along the x, y, and z axes.
Such calculations amount to a considerable computational
cost (especially during AIMD simulations) which depends
on the unit cell size, the fineness of the real-space grid, and
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(b) (c)(a)

FIG. 1. (a) Molecular systems used in this paper. Except for water clusters, whose structures are taken from the Cambridge Cluster Database
[47], all other structures are first optimized. DME, dimethoxyethane; DOL, dioxolane; EC, ethylene carbonate; DMSO, dimethyl sulfoxide;
TFSI, bis(trifluoromethanesulfonyl)imide; HQ, hydroxyquinoline. (b) Semilogarithmic plot of the time needed for serial computation (on a
single CPU core) of the polarizability tensors for water clusters (H2O)k , k = 5, . . . , 20 through LR theory relative to that required for the
calculation of total covariance matrices using the WP method. Also shown (solid square) is the speedup for a bulk system containing 32 water
molecules. (c) tLR and tWP for the same systems as functions of the number of electrons. Dashed and solid curves in red represent fits to the
data points. RMSE, root-mean-square error.

the basis set size. In the WP method, however, there is no
need to find the response of the system to any external per-
turbation. The MLWFs are calculated from the Kohn-Sham
(unperturbed) orbitals followed by the estimation of their spa-
tial extension through the covariance matrices in Eq. (4). The
time needed for the latter depends mainly on the basis set size
(that is, the number of electrons and the quality of the basis
set) based on which the MLWFs are represented.

B. Raman spectra of methanol in gas and liquid phases

Figure 2 shows individual elements of the polarizability
tensor A (red) and the total covariance matrix � (black)
for a methanol molecule in the gas phase obtained from an
AIMD trajectory of 10 000 snapshots. Diagonal elements are
presented in Fig. 2(a), while off-diagonal ones are shown
in Fig. 2(b). Also shown in Figs. 2(c) and 2(d) are normal-
ized distributions of the traces, Tr[�] and Tr[A], and the
anisotropic Raman invariants, γ 2

A and γ 2
�. The reference

polarizability tensor is again calculated using LR theory. Al-
though the values of the polarizability tensor and the total
covariance matrix elements differ substantially [Figs. 2(a)
and 2(b)], there is apparently a strong correlation between
them. In fact, the correlation coefficients are found to be
ρ(Tr[�], Tr[A]) � 0.98 and ρ(γ 2

�, γ 2
A ) � 0.82. In agreement

with this, the normalized distributions presented in Figs. 2(c)
and 2(d) also have comparable statistical characteristics, given
in Figs. 2(c) and 2(d) as insets [35].

Polarized and depolarized Raman spectra of a methanol
molecule in the gas phase at 300 K are presented in Figs. 3(a)
and 3(b), respectively. In the case of the WP calculations
(black), the spectra are computed by replacing Ai j by �i j

in Eq. (8). Other than applying a Hann window function
to the time series, no other modification (for example, zero
padding, local fitting, etc.) is applied to the spectra. The peak
intensities in the polarized spectra [Fig. 3(a)] are scaled with
respect to that of the C–H stretching peak at ∼3000 cm−1,
while those in the depolarized spectra [Fig. 3(b)] are scaled
with respect to rocking and scissoring vibrations of CH3 at
∼1500 cm−1. The peaks at around 3000 cm−1 can be assigned
to symmetric and antisymmetric C–H stretching vibrations,
while the Raman activities at around 1500 cm−1 are due to
rocking and scissoring vibrations of CH3 as well as C–O–H
scissoring. Finally, the peak at around 1000 cm−1 can be
assigned to C–O stretching. A clear difference between the
spectra in Figs. 3(a) and 3(b) is the peak at around 1500 cm−1

which becomes prominent in the depolarized spectra. This has
to do with the fact that the rocking and scissoring of CH3 as
well as the C–O–H scissoring vibrations change the symmetry
of the molecule more dramatically compared with the other
vibrational modes. In an experimental setup for depolarized
Raman spectroscopy, this would result in detection of an in-
tensive peak at 1500 cm−1 when the detector polarization is
perpendicular to that of the incident laser. Note that, since the
spectra corresponds to the gas phase, the observed differences
between the polarized and depolarized Raman spectra should
arise from molecular symmetry breaking during vibrations.
Both polarized and depolarized Raman spectra calculated
using the WP method agree very well with the respective
reference LR spectra. However, a substantial speedup of more
than 920 times is observed in the single-core computation of
spectra using the WP method.

Figure 4 shows polarized [Fig. 4(a)] and depolarized
[Fig. 4(b)] Raman spectra of liquid methanol computed at
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FIG. 2. (a) and (b) The dynamics of diagonal and off-diagonal elements of the polarizability tensor (red) and the total covariance matrix
(black) obtained from an AIMD trajectory of a methanol molecule in the gas phase, respectively. (c) and (d) The normalized distributions of
the traces, Tr[�] (black) and Tr[A] (red), and the anisotropic Raman invariants, γ 2

� (black) and γ 2
A (blue), respectively.

300 K using LR theory (red) and the WP method (black).
In both Fig. 4(a) and Fig. 4(b) the intensities are scaled to
that of the CH3 stretching vibrations at around 3000 cm−1.
The spectra agree very well with previous theoretical [5] and
experimental [48,49] reports. The main difference between
the bulk spectra and those for the gas phase is the sharp peak at
around 3700 cm−1 in Fig. 3, which is replaced by a broad band
between 3000 and 3700 cm−1 in Fig. 4. This clearly shows the
effect of hydrogen bonding in liquid methanol. Additionally,
both the band at 3000 cm−1 (C–H stretching) and the band at
1000 cm−1 (C–O stretching) are now broadened in the spectra
of the liquid, which demonstrates the anharmonicity in these
vibrations in the liquid phase at 300 K. Similar to the case
gaseous methanol, the relative intensity of the C–O–H vibra-
tions at around 1500 cm−1 becomes higher in the depolarized
spectra, as shown in Fig. 4(b). Again, Raman spectra calcu-
lated using the WP method show a very good agreement with
reference spectra computed using LR theory. A discrepancy
between the WP and the LR results can, however, be detected
in the intensities of the Raman peaks in the C–H stretching in
the depolarized spectra.

Here a speedup of around 10 times is observed in the
WP calculations compared with the computations based on

LR theory. The amounts of time needed for the LR and WP
calculations are compared in Fig. 5 for the case of a methanol
molecule (circles) and the case of liquid methanol (squares).
Similar to the case of water [Fig. 1(c)], a scaling behavior
between quadratic and cubic is observed for the calculation
of MLWFs and �. This scaling behavior could be slightly
improved by using alternative methods for obtaining MLWFs
which are usually faster than Jacobi rotations (for example,
optimal unitary transformation generated by the crazy angle
algorithm). This would mostly affect the computation time
in large systems where the time needed to minimize the total
spread functional in Eq. (2) is comparable to that required for
the calculation of covariance matrices through Eq. (4).

IV. CONCLUSIONS

An efficient method has been proposed to approximate
the dynamics of polarizability tensor elements based on the
calculation of the quadrupole moment (covariance) of the
position operator in the maximally localized Wannier func-
tions representation. It has been shown that variations of
individual polarizability tensor elements during ab initio
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FIG. 3. Computed polarized (a) and depolarized (b) Raman
spectra of gas-phase methanol at 300 K. Red and black curves
represent the spectra obtained using LR theory and the WP method,
respectively.

molecular dynamics simulations can be well reproduced by
the total covariance matrix of Wannier centers with a signifi-
cantly less computational cost. This is particularly important
for spectroscopy simulations at finite temperatures where the
dynamics of the full polarizability tensor is needed, such as
depolarized Raman, Raman optical activity, vibrational sum-
frequency generation, etc. The performance of the introduced
method has been demonstrated in various cases, including
gas-phase and liquid methanol. Polarized and depolarized Ra-
man spectra of gas-phase and liquid methanol computed using
the present method agree very well with reference calculations
based on linear response theory. Using the presented method,
a substantial speedup (based on single-core computations) of
about 10 times has been reached in the case of liquid methanol
modeled using a large simulation box. The speedup increases
rapidly to around 140 times as the size of the simulation
box is decreased. In the case of gas-phase methanol, a huge
speedup of more than 900 times has been reached. Similar
efficiency has also been observed in the case of water clusters.
The speedup increases rapidly from about 60 times to around
1000 times as the cluster size decreases. Even in the case of
extended, periodic systems, a speedup of more than 60 times
has been observed in the case of liquid water. Therefore the
presented method delivers the efficiency required for ab ini-

FIG. 4. Computed polarized (a) and depolarized (b) Raman spec-
tra of liquid methanol at 300 K. Red and black curves represent the
spectra obtained using LR theory and the WP method, respectively.

tio finite-temperature spectroscopy simulations in condensed
phase and hence has a wide range of applications in the theo-
retical characterization of materials.

LR
WP

molecule

y = 1.874 10-5 x2.657

R2 = 0.999195
RMSE = 0.067 s

t (
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10 2
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1

101
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0 100 200 300 400 500 600 700

FIG. 5. Time needed for the LR (red) and WP (black) calcula-
tions for the case of a methanol molecule (circles) and the case of
liquid methanol (squares) based on single-core calculations. RMSE,
root-mean-square error.
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