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Crossover from Fermi arc to full Fermi surface
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The Fermi surface as a contour of the gapless quasiparticle excitation in momentum space is studied based
on a mean-field theory of the doped Mott insulator, where the underlying pseudogap phase is characterized by a
two-component resonating-valence-bond order that vanishes in the overdoping at δ > δ∗. Here the quasiparticle
emerges as a collective mode and a Fermi arc is naturally present in the pseudogap regime, while a full Fermi
surface is recovered at δ > δ∗. The area enclosed by the gapless quasiparticle contour still satisfies the Luttinger
volume in both cases, and the Fermi arc at δ < δ∗ is actually due to a significant reduction of the spectral
weight caused by a quasiparticle fractionalization in the antinodal region. The endpoints of the Fermi arcs exhibit
enhanced density of states or hot spots, which can further give rise to a charge-density-wave-like quasiparticle
interference pattern. At the critical doping δ∗, the fractionalized spin excitations become gapless and incoherent,
which is signaled by a divergent specific heat. At δ > δ∗, the quasiparticle excitation restores the coherence
over the full Fermi surface, but the fractionalization still persists at a higher energy/temperature which may be
responsible for a strange metal behavior. Different mechanisms for the Fermi arc and experimental comparisons
are briefly discussed.
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I. INTRODUCTION

In the conventional BCS theory, quasiparticles as gapless
excitations of a Fermi-liquid state will form Cooper pairs
and simultaneously experience superconducting (SC) con-
densation below Tc. However, a quasiparticle excitation in
the normal state of an underdoped cuprate seems rather un-
conventional. As revealed by angle-resolved photoemission
spectroscopy (ARPES) experiments [1–4], the gapless single-
electron excitation forms incomplete Fermi surface portions
in the Brillouin zone, known as Fermi arcs in the so-called
pseudogap phase. Only in the overdoped cuprate can a full
Fermi surface be restored above Tc [5–7], which is then
quickly connected to a strange-metal regime with a crossover
temperature much smaller than a usual Fermi degenerate
temperature.

In a BCS framework, the pairing force between the quasi-
particles is also important. That is, a d-wave pairing of the
quasiparticles should be caused by some independent bosonic
excitations for a nonphonon SC mechanism [8,9], namely, dis-
tinct gapped elementary excitations or fluctuations beyond the
gapless quasiparticles would be expected to exist in the pseu-
dogap phase. For instance, the spin resonance mode observed
in the cuprate [10–16] has been conjectured as a candidate of
the pairing glue in the literature. Nevertheless, the origin of
the Fermi arc and the bosonic excitations in the pseudogap
phase by a unified microscopic description remains a chal-
lenging issue. The complexity of the pseudogap physics as
competing and/or intertwined orders has been also extensively
discussed as the phenomenology in a generalized Landau
paradigm [17,18].

Alternatively, the pseudogap phase may be regarded as the
normal state of a doped Mott insulator, in which the res-
onating valence bond (RVB) pairing [19–23] of the localized

electrons, due to the strong on-site Coulomb repulsion, plays
a crucial role. From such a perspective, the spin-singlet RVB
pairing of the background spins may give rise to not only
the much needed nonphonon pairing strength for the high-Tc

superconductivity [19] but also a diversity of the pseudogap
phenomenon [23]. To unify the pseudogap, SC, and antiferro-
magnetic (AFM) phases in the doped Mott insulator, a more
precise two-component RVB description has been proposed
[24,25] based on the t-J model with revealing a hidden singu-
lar sign structure [26,27]. In the AFM phase, a bosonic RVB
works well [28], while in the pseudogap/SC regime at finite
doping, the doped holes will introduce a secondary fermionic
RVB pairing between the dopants. At finite doping, the ground
states of the pseudogap and SC phases are essentially the
same at temperature T = 0, while in the former the SC phase
coherence is disordered at T > 0 by the thermal topological
defects, but in the latter the SC phase coherence is maintained
up to T � Tc until a topological transition [29] to the former.
Furthermore, the primary bosonic RVB order parameter �s

vanishes at doping δ > δ∗, which defines an overdoped regime
that may be smoothly connected to a strange-metal phase at
high T as a crossover. The mean-field phase diagram without
a topological SC transition at low T is illustrated in Fig. 1 for
such a two-component RVB state [25].

The fate of the quasiparticle excitation is an important
issue for the doped Mott insulator. In the one-component
RVB theory, the low-lying Landau’s quasiparticle, carrying
both charge and spin, has been explored as the bound state
of the fractionalized particles, i.e., holon and spinon, via
effective attractive interactions [30,31]. On the other hand,
a phenomenological scheme has been recently employed in
the study of the single-particle Green’s function for the two-
component RVB state, where a Fermi arc structure in the
pseudogap phase and a two-gap feature in the SC phase have
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FIG. 1. The phase diagram of a pseudogap phase and an over-
doped normal state characterized by an RVB order parameter �s �= 0
at δ < δ∗ and �s = 0 at δ > δ∗, respectively, with removing su-
perconducting instability at low T (Ref. [25]). As shown in this
paper, a quasiparticle excitation at the RPA level exhibits a Fermi
arc structure (the left inset), which recovers a full Fermi surface
at �s = 0 (the right inset). The Fermi surface crossover occurs at
the critical point δ∗, which is marked by a divergent specific heat
γ ≡ Cv/T (the middle inset) of the background spins as �s → 0.
SM denotes a high temperature regime known as the strange-metal
phase [25].

been identified [32] in good comparison with the experiments
[33,34]. Here the quasiparticle is no longer elementary like in
a Fermi liquid but rather emergent as a collective mode [35]
in a doped Mott insulator. But the following basic questions
still need to be carefully examined and answered: What is
the emergent nature of the quasiparticle excitation in a frac-
tionalized system and if the Luttinger theorem [36,37] is still
valid or violated, and especially how can it evolve into a
conventional Landau quasiparticle with a full Fermi surface
in the overdoped regime?

In this paper, we shall further inspect the gapless quasi-
particle excitation and its physical implications based on the
parent two-component RVB mean-field description in the
t-J model [24,25]. The single-particle Green’s function is
systematically formulated by a generalized random phase ap-
proximation (RPA) scheme, in which a gapless quasiparticle
mode emerges along four Fermi arcs in the Brillouin zone
in the low-T pseudogap state (without SC phase coherence).
With �s vanishing beyond the critical doping δ∗, a full Fermi
surface is recovered. The crossover from the Fermi arc to
a full Fermi surface for the gapless quasiparticle excitation
(cf. the insets of Fig. 1) reflects the underlying transition of
the background spins from an RVB state to a semiclassical
paramagnetic state. The divergent specific heat contributed by
the background spins indicated in the middle inset of Fig. 1 is
a further manifestation of such an RVB transition at δ = δ∗.

An important conclusion of the analytic analysis of the
single-particle Green’s function is that the gapless quasipar-
ticle excitation still satisfies the Luttinger volume with a large
Fermi surface contour in the momentum space in both pseu-
dogap and overdoped paramagnetic phases. The Fermi arc
feature manifested at δ < δ∗ is actually due to a strong sup-
pression of the quasiparticle spectral weight by decaying into
the fractionalized spinon in the antinodal region. In contrast,
the low-lying quasiparticle is well protected near the nodal
region without a further decay such that a coherent Fermi arc

is preserved as the residual piece of the original large Fermi
surface in this region.

Here the Fermi-arc structure is stable within a region
covered by a gapped Fermi pocket in the mean-field state
of the fermionic spinon component [25], which is centered
at momenta (±π/2,±π/2), namely the emergent coherent
quasiparticle at the RPA level is effectively protected by the
underlying mean-field state. We show that the latter fractional-
ization may be detected experimentally as follows. In a strong
magnetic field, the pairing of the fermionic spinons may be
diminished inside the magnetic vortex cores [25] such that the
Fermi arc of the gapless quasiparticles can get hybridized with
the Fermi pocket to give rise to a quantum oscillation, which
is in agreement with the experiment [38,39].

Another unique structure in this fractionalization mecha-
nism is the appearance of sharply enhanced hot spots as the
endpoints of the Fermi arc. One finds that the scatterings
between the hot spots can further lead to a static quasiparticle
interference (QPI) pattern, which resembles a weak charge
density wave (CDW) even though there is no true spontaneous
translational symmetry breaking.

Furthermore, besides the fractionalization of a quasiparti-
cle into the fermionic spinon, the bosonic spinons can also
be thermally excited by breaking up the bosonic RVB order
in the pseudogap phase, which carry vortices in the SC order
parameter. It has been previously shown [32] that the Fermi
arc will be replaced by a d-wave-like gap with the Landau
quasiparticle turning into a Bogoliubov quasiparticle once the
SC phase coherence is realized by logarithmically binding
these bosonic spinons into S = 1 resonance-like modes at
T � Tc. In particular, as δ → δ∗, both the energy scale and
bandwidth of the bosonic spinons get diminished to result in
a divergent specific heat as indicated in Fig. 1.

On the other hand, the decay of a quasiparticle excita-
tion can be effectively stopped at δ > δ∗ due to the total
disordering of the background spins with �s = 0, which are
thermalized in a semiclassical Curie-Weiss-like state. Then a
large Fermi surface can be explicitly manifested in the spectral
function. In this sense, the phase at δ > δ∗ resembles a Fermi
liquid state as the normal state at low T . However, the overall
spectral weight for the quasiparticle is much reduced because
the background spin degrees of freedom and incoherent spin-
less holons, although they are effectively decoupled from the
quasiparticles at low temperature, are still present and even
dominate at higher temperatures in the so-called strange-metal
region.

The rest of the paper is organized as follows. In Sec. II,
we briefly outline the nontrivial phase-string sign structure of
the t-J model and the corresponding fractionalization scheme
of the two-component RVB state. Then, a generalized RPA
diagrammatic Dyson equation for the single-particle Green’s
function is presented. In Sec. III, we systematically explore
the single-particle Green’s function in both the pseudogap
phase at δ < δ∗ (Sec. III A) and overdoped phase at δ > δ∗ at
T = 0 (Sec. III B), in particular, the hot spots as the enhanced
density of states are identified near the end of the Fermi
arcs in the underdoped regime (Sec. III A 3), which lead to
a CDW-like QPI pattern (Sec. III A 4). Furthermore, with the
disappearance of the RVB order at δ∗, a divergent specific
heat is found in the spin background as shown in Sec. III B 1.
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In the Discussion section (Sec. IV), different approaches on
the origin of the Fermi arc are discussed. In particular, it is
pointed out that the Luttinger volume is always satisfied on
both sides of the critical point δ∗ in the present paper, which is
fundamentally distinct from the other schemes. However, we
also show that a Fermi pocket structure violating the Luttinger
volume does appear in a special limit of our theory, when the
secondary RVB order vanishes first in a strong magnetic field.
Finally, the conclusion and perspectives are given in Sec. V.

II. EFFECTIVE THEORETICAL FRAMEWORK

A. Phase-string effect and two-component RVB mean-field
state in the t-J model

The t-J model on a 2D square lattice is given by Ht-J =
Ht + HJ , where

Ht = −t
∑
〈i j〉σ

c†
iσ c jσ + H.c., (1)

HJ = J
∑
〈i j〉

(
Si · S j − 1

4
nin j

)
, (2)

in which Si and ni = ∑
σ c†

iσ ciσ are the local SU(2) spin op-
erator and electron number operator, respectively. The Hilbert
space is restricted by the no-double-occupancy constraint at
any site i:

ni � 1. (3)

The t-J model has been widely considered as a minimal model
for the high-Tc cuprate. Due to the no-double-occupancy con-
straint Eq. (3), the conventional Fermi statistical sign structure
will reduce to the phase-string sign structure [40,41] in the t-J
model. In particular, it is statistical sign-free at half filling,
where the ground state as governed by the Heisenberg model
HJ in Eq. (2) only possesses a trivial Marshall sign [42] with
spins forming an AFM long-range order in the thermody-
namic limit. The real challenge is at a finite doping, where
SC and pseudogap phases are expected to appear in the under-
doped regime, where the AFM long-range order disappears.

Upon doping, the singular phase-string effect will prevent
a coherent propagation of the bare doped holes [26,40]. The
starting point of the present paper will be based on a dual-
ity transformation to explicitly incorporate the phase-string
sign structure, which leads to a peculiar fractionalization
scheme [24] distinct from the usual slave-particle approaches
[23,30,43]. The ground state can be generally written in the
following form [24,25]:

|�G〉 = ei�̂
[
P̂|	h〉 ⊗ |	a〉 ⊗ |	b〉

]
, (4)

where ei�̂ is a unitary transformation due to the statistical or
phase-string sign structure, which leads to a duality world in
which the electrons are fractionalized into bosonic h-holons
described by |	h〉 and two-component spinon state charac-
terized by |	a〉 ⊗ |	b〉. In the latter, |	b〉 is an RVB state
composed of bosonic b spinons, which is further supple-
mented by fermionic backflow a spinons introduced by holes,
which are in a BCS-like pairing state |	a〉 (see below). At half
filling, |�G〉 → P̂|	b〉, which naturally reduces to the AFM
ground state of the Heisenberg model with ei�̂ → 1. At finite

doping, the Bose condensation of the holons in |	h〉 together
with the hidden off-diagonal long-range order (ODLRO) in
the aforementioned two-component RVB state will constitute
the important partial rigidity (fractionalization) to characterize
the so-called lower pseudogap phase (LPP) [25] by Eq. (4).
Figure 1 illustrates the general phase diagram obtained in
Ref. [25].

Here the duality transformation in Eq. (4) is critical to
accommodate the phase-string sign structure, with

�̂ ≡ −
∑

i

nh
i 
̂i, (5)

which may be interpreted as each doped hole introduces a
nonlocal phase shift 
̂i in the b-spinon background |	b〉. Here
nh

i denotes the holon number at site i, and


̂i ≡ 1

2

(
	s

i − 	0
i

)
, (6)

	s
i =

∑
l �=i

θi(l )
(
nb

l↑ − nb
l↓

)
, (7)

	0
i =

∑
l �=i

θi(l ), (8)

with nb
lσ denoting the number operator of the b spinon at site

l , and θi(l ) ≡ ± Im ln(zi − zl ) (zi is the complex coordinate
of site i). Physically, how the phase-shift 
̂i emerges due to
the phase-string can be transparently seen in the studies of the
single-hole and two-hole doped ground states [44–46].

After such a duality transformation, the resulting three
subsystems in Eq. (4) are quite conventional to describe the
LPP as given by [24,25]

|	h〉 ≡
∑
{lh}

ϕh(l1, l2, . . .)h
†
l1

h†
l2

. . . |0〉h, (9)

and

|	a〉 ≡ exp

⎛
⎝−

∑
i j

gi ja
†
i↑a†

j↓

⎞
⎠|0〉a, (10)

and

|	b〉 ≡ exp

⎛
⎝∑

i j

Wi jb
†
i↑b†

j↓

⎞
⎠|0〉b. (11)

The corresponding effective Hamiltonian after the duality
transformation is given in Appendix A, in which the frac-
tionalized states given above are determined at a generalized
mean-field level [25]. Here the two-component RVB state is
characterized by a BCS-like pairing amplitude gi j with an
s-wave-like order parameter �a and a bosonic RVB pairing
amplitude Wi j characterized by an order parameter �s which
reduces to the conventional Schwinger-boson mean-field or-
der parameter at half-filling limit without holes. In such an
RVB regime at low doping, the holon wave function ϕh =
constant indicates a Bose-condensed holon state |	h〉.

The projection operator P̂ in Eq. (4) enforces the original
no double occupancy constraint such that∑

σ

nb
iσ = 1, na

iσ̄ = nh
i nb

iσ . (12)
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FIG. 2. Schematic illustration of the quasiparticle fractionaliza-
tion in Eqs. (13) and (14). (a) A bare hole created by ĉi: A black
arrow represents a background b spinon and an orange arrow denotes
the backflow a spinon associated with the hole, which makes the total
spin zero at the hole site; (b) a twisted hole of c̃i is a mobile composite
with the spin and charge partners forming an internal relative motion,
as indicated by the blue wavy line and a dashed circle with arrows,
which facilitates the coherent motion of the hole in a singlet RVB
background of the b spinons.

Here na
iσ̄ is the number of the backflow a spinons with spin

σ̄ = −σ at site i, and as defined before, nh
i is the holon

number and nb
iσ is the number operator of the b spinons,

namely, under the projection, in the two-component spinon
description, the b spinons will always remain singly occupied
per lattice site, whereas the backflow a spinon compensates
the total spin at each hole site, i.e., nh

i Sb
i + Sa

i = 0 for the Sz

component—which is always chosen as the quantization axis
in the present formulation—while the Sx,y components as the
U (1) phase can be always absorbed by the h holons [24,25],
as illustrated in Fig. 2(a) where black arrows represent the
b spinons, which at the hole sites are compensated by the
a spinons (orange arrow). Such constraints in Eq. (12) are
enforced at the mean-field level by introducing the Lagrangian
multipliers [24,25] (cf. Appendix A).

It is important to note that the usual U (1) gauge fluc-
tuations associated with the constraints in Eq. (12), which
is in the transverse current channels beyond the projection
P̂ , are all suppressed (Higgsed) in the LPP due to the
ODLROs in Eqs. (9)–(11), i.e., the holon condensation and
two-component RVB orders. In other words, in the present
LPP state, the fractionalization is self-consistently protected
by the hidden ODLROs in the subsystems. On the other
hand, these fractional elementary particles are still weakly
coupled (between the h holons and b spinons) via the mutual
Chern-Simons gauge fields as the topological gauge fields in
the dual world due to the irreparable phase string [47,48].

To summarize, in the above we have outlined the previ-
ously developed phase-string mean-field formulation of the
t-J model with the detailed formalism given in Appendices A
and B, which will be the starting point for the present study of
the single-particle excitation. To have a better understanding
of the phase-string formalism, in the following, we make a
critical comparison of the mean-field state in Eq. (4) with
the conventional slave-boson mean-field state [23] given as
follows:

|�RVB〉 = P̂[|	h〉 ⊗ |	f−RVB〉],
where |	f−RVB〉 denotes a BCS-like fermionic spinon RVB
state, which replaces the two-component RVB state given in

Eq. (4) with the Gutzwiller projection operator P̂ enforcing
the no-double-occupancy constraint. The most prominent dis-
tinction is that the nonlocal mutual duality transformation ei�̂

in Eq. (4) is absent in the above slave-boson mean-field state.
Here, if the holons are Bose condensed in |	h〉, |�RVB〉 is
always SC. By contrast, even with the Bose condensation
of the holons and the RVB pairings of the two-component
spinons, Eq. (4) is intrinsically non-SC at T = 0+ as the
thermally excited b spinons in |	b〉 will always disorder the
phase coherence of |�G〉 via the phase factor ei�̂. The true SC
phase coherence is only realized at a lower temperature via a
further topological transition, which is not the main focus of
this paper (see the following subsection).

Therefore, with explicitly incorporating the phase-string
sign structure of the t-J model via the duality transformation,
a new non-SC state, i.e., LPP, will emerge to replace the
SC phase in the slave-boson mean-field state to describe the
pseudogap phase at low temperature. In particular, in this
phase-string formalism, the bosonic RVB state |	b〉 can accu-
rately recover the AFM ground state at half filling where the
fermionic a spinons disappear. At finite doping, in contrast
to the full fermion RVB state |	f−RVB〉, however, one may
naturally ask about the fate of a quasiparticle excitation, which
is created by the electronic c operator in the LPP. In the
following, we shall discuss the issue of the single-particle
(hole) excitation, which will go beyond the the fractionalized
mean-field state of Eq. (4).

B. Quasiparticle as an emergent collective excitation in the LPP

Due to the phase-string sign structure, the strongly corre-
lated electrons in the doped Mott insulator are fractionalized
into more elementary constituents of the bosonic h holons,
bosonic b spinons, and fermionic backflow a spinons. They
are coherent and form ODLROs in the LPP, i.e., the holon
condensation and two-component RVB pairings. In turn, the
fractionalization is further strengthened by the ODLROs as
the usual internal U (1) fluctuations associated with the de-
composition get Higgsed [not the external U (1) associated
with the electromagnetic field, see below]. Therefore, self-
consistently, the phase string leads to a peculiar electron
fractionalization with the elementary particles of h†, b†, and
a†, which are further protected by the hidden ODLROs.

Then the Landau quasiparticle, which is the most important
elementary excitation in a Landau FL state, is not present as
a stable object at the mean-field LPP. As a matter of fact, a
bare hole (electron) has no trace in the mean-field ground
state Eq. (4). What is the fate of the quasiparticle in a frac-
tionalized ground state is generally an important issue [23]. In
the following, we first note that the creation of a bare hole on
the ground state will decay (fractionalize) into the elementary
particles by [24,25]

ĉiσ = h†
i a†

iσ̄ ei
̂i

≡ c̃iσ ei
̂i , (13)

where

c̃iσ ≡ h†
i a†

iσ̄ . (14)

235156-4



CROSSOVER FROM FERMI ARC TO FULL FERMI … PHYSICAL REVIEW B 108, 235156 (2023)

(Note that here a trivial sign factor has been absorbed by
redefining a†

iσ̄ , and the notation c̃iσ is also different from
that used in Refs. [24,25].) In such a unique fractionalization
framework, the twisted hole c̃iσ is schematically illustrated in
Fig. 2(b) as a composite, in which the a spinon denotes a spin
that is always associated with the holon via the underlying
RVB pairing. Since the holon is condensed in the LPP, thus
c̃iσ behaves essentially like the a spinon. The aforementioned
ODLROs in the LPP protects the a spinon as a well-defined
gapped excitation. In this sense, a bare hole created by the
electron c operator in Eq. (13) is composite in the fractional-
ized LPP.

According to Eq. (13), the SC pairing is characterized by

〈ĉi↑ĉ j↓〉 ∝ �0
i j

〈
ei 1

2 (	s
i +	s

j )
〉
, (15)

where the amplitude �0
i j ∝ �a

i j with the holon condensation,
while 〈

ei 1
2 (	s

i +	s
j )
〉 = 0, (16)

once free b spinons appear in Eq. (4). In other words, even
though the superconductivity is naturally realized in the
ground state, where the b spinons form a short-range RVB
pairing, the phase coherence can be immediately disordered
at finite temperature due to the excited b spinons at the mean-
field level, which is the true LPP mean-field state studied
in Ref. [25] with the preformed pairing �0

i j �= 0. On the
other hand, with �s = 0 at δ > δ∗, the phase disordering is
expected to occur at T = 0 in Eq. (4). In both cases, the
external U (1) symmetry is not broken, without the SC phase
coherence, which will be the main focus of the present paper
with the quantitative mean-field phase diagram [25] illustrated
in Fig. 1.

Previously, it has been shown [32] that a bare hole injected
into the LPP does not fractionalize immediately. As shown by
the equation-of-motion method, it will propagate coherently
for a while before it finally decays according to Eq. (13).
In particular, a coherent quasiparticle excitation can even be
stabilized within the region that is occupied by the fermionic
a spinons, where its decay in terms of Eq. (13) is prevented
by the Pauli exclusion principle and is further protected by the
s-wave gap of the a spinons. A Fermi arc (incomplete Fermi
surface) is thus indicated in the LPP [32].

On the other hand, according to the Oshikawa’s topo-
logical argument [49], if a gapless single-particle excitation
(quasiparticle) with U (1) symmetry and translation symme-
try exists, its Fermi surface should still satisfy the Luttinger
volume, i.e., by enclosing an area to accommodate the total
number of electrons. In other words, the Landau quasipar-
ticle would be expected to present as a low-lying excitation
even in a strongly correlated system under some very general
conditions.

In the following, we shall systematically explore the issue
if and how a bare hole created by ĉ can maintain its stabil-
ity as an emergent low-lying excitation in the fractionalized
state of Eq. (4), in particular, how its gapless Fermi surface
structure evolves from δ < δ∗ to δ > δ∗ will be studied and a
large Fermi surface satisfying the Luttinger’s volume will be
reconciled with the Fermi arc phenomenon in the LPP.

C. Dyson equation of the single-particle Green’s function

The single-particle Green’s function is defined by

Ge(ri − r j ; τ ) ≡ −〈T̂τ ĉiσ (τ )ĉ†
jσ (0)〉, (17)

where T̂τ denotes the imaginary-time ordering operator. At
the mean-field level of Eq. (4), it can be further expressed
according to Eq. (13) by

Ge
0(ri − r j ; τ ) = −〈T̂τ c̃iσ (τ )c̃†

jσ (0)ei[
̂i (τ )−
̂ j (0)]〉0

= Dc̃(ri − r j ; τ ) f (ri − r j ; τ )

≡ , (18)

where

Dc̃(ri − r j ; τ ) = −〈T̂τ c̃iσ (τ )c̃†
jσ (0)e−i

∑
i→ j φ0

is is+1 〉0

×e−ik0·(ri−r j ) ≡ (19)

f (ri − r j ; τ ) = 〈
T̂τ e

i
2 	s

i (τ )e− i
2 	s

j (0)
〉
0

≡ , (20)

with k0 = (±π/2,±π/2) and the phase factor inside the av-
erage of Eq. (19) coming from e− i

2 [	0
i −	0

j ], which is originated
from ei[
̂i−
̂ j ] to keep Dc̃ gauge invariant (cf. Appendix C for
details).

Ge
0 here describes the complete fractionalization without

the trace of the gapless Landau quasiparticle. On the other
hand, based on the equation of motion [32], a bare hole can
propagate coherently based on the original t-J model before
decaying into the fractionalized elementary particles with a
vertex λ. At the RPA level, the single-particle Green’s function
may be diagrammatically expressed as

, (21)

where the straight lines with arrows in the middles denote the
bare quasiparticle propagator:

Gc
0(ri − r j ; τ ) ≡ , (22)

with a large Fermi surface satisfying the Luttinger volume as
predicted by a conventional band theory, namely, the general
Dyson equation is given by

Ge(ri − r j ; τ ) = Ge
0(ri − r j ; τ )

+ λ2
∫∫

dτ ′dτ ′′ ∑
ri′ ,ri′′

Ge
0(ri − ri′ ; τ − τ ′)

× Gc
0(ri′ − ri′′ ; τ

′ − τ ′′)Ge
0(ri′′ − r j ; τ

′′)

+ · · · , (23)

where the vertex • = λ in Eq. (21) is approximately assumed
to be a constant, which has been estimated [32] ∼Jδ. In the
momentum and frequency space, the above single-particle
Green’s function at the generalized RPA level can be further
written in a compact form:

Ge(k; ω) = 1

Ge
0
−1(k; ω) − λ2Gc

0(k; ω)
. (24)
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FIG. 3. The quasiparticle spectral function A(k, ω) at the Fermi level ω = 0. (a)–(c) A systematic evolution of the Fermi arcs calculated
by Eq. (28) at various dopings in the LPP (δ < δ∗). The white arrow in (a) denotes a hot spot with enhanced spectral weight; (d) a full Fermi
surface at δ > δ∗ based on Eq. (38). Here δ∗ � 0.26 is determined by the set of parameters used in the mean-field self-consistent equations of
Ref. [25].

Note that the Dyson equation in Eq. (21) is slightly different
from the RPA diagram in earlier work [32] for the propagator
of c̃, which is in a matrix form under the Nambu represen-
tation even in the LPP phase, since the backflow spinons of
c̃ are paired. In contrast, under the present RPA formalism
for the gauge-invariant ĉ, the single-particle Green’s function
in the LPP resumes a simpler scalar form in Eq. (24), which
is also easier for an analytic analysis. The results of the two
approaches should become equivalent at higher energies. The
present formulation is also similarly connected to the Nambu
matrix representation in the SC phase (cf. Appendix D for
more discussions of the SC phase).

III. QUASIPARTICLE EXCITATIONS WITH EMERGENT
FERMI SURFACES

In Sec. II, the parent phase of the t-J model has been
formulated in terms of the elementary particles of holon h†

and two-component spinons, b† and a†, based on the phase-
string sign structure. The corresponding mean-field states in
Eq. (4), as characterized by their ODLROs, gives rise to a
phase diagram illustrated in Fig. 1. A Landau quasiparticle
excitation is no longer an intrinsic excitation at such a frac-
tionalized mean-field level, but as a composite object defined
in Eq. (13), it may reemerge as a collective mode at the RPA
level. In the following, we shall examine such a mode based
on the generalized RPA scheme presented above in Eq. (24).

A. Fermi arc at δ < δ∗

The LPP at δ < δ∗ is characterized by the two-component
RVB order parameters, �s and �a, and the holon conden-
sation 〈h†

i 〉 �= 0. But it is short of a true ODLRO of SC or
AFLRO as we focus on the case that the phase coherence is
disordered in Eq. (16) while the AFM correlation length is
finite [25].

The corresponding mean-field (fractionalized) Green’s
function [Eq. (18)] in the momentum and frequency space can
be expressed by

Ge
0(k; ω) � −Da(−k − k0; −ω)F0 (25)

by choosing the gauge of φ0
i j of the π -flux such that

e−i
∑

i→ j φ0
is is+1 = (−1)ix− jx or (−1)iy− jy in Eq. (19), which can

be simply absorbed into e−ik0·(ri−r j ) such that Dc̃(k; ω) →
−Da(−k − k0; −ω) noting the holon condensation. Here Da

is the Green’s function of the a spinons which are in BCS-like
state [cf. Eq. (10)] as given by

Da(k; ω) = 1

ω − ξ a
k − �2

k/
(
ω + ξ a

k

) , (26)

where ξ a
k = −2(ta + γχa)

√
cos2 kx + cos2 ky + λa and �k =

2�a
√

cos2 kx + cos2 ky is the dispersion for the a spinons and
the s-wave BCS pairing order parameter [cf. Appendix A].

Furthermore, due to the short-range singlet pairing of the
b-spinons in the LPP state, f (ri − r j, τi − τ j ) in the large
distance may be approximately reduced to a constant F0 as
given in Eq. (25) at T = 0. However, as pointed out previ-
ously, the LPP state in Eq. (4) will be short of the true SC
phase coherence once there are some free b spinons excited
at T �= 0. In this regime, f should also vanish in the long-
distance and long-time to lead to a finite broadening via a
convolution with Da in Eq. (18). Nonetheless, this broadening
effect is expected to be weak at low temperature and should
not change the basic conclusions to be drawn in the following.
Thus, for the simplicity of presentation, we shall simply keep
F0 as a constant in Eq. (25).

For a free-electron band model, the single-particle Green’s
function in the normal state is given by

Gc
0(k; ω) = 1

ω − εc
k

, (27)

where εc
k = −2teff (cos kx + cos ky) − 4t ′

eff cos kx cos ky + μ is
the dispersion for the cuprate with a large Fermi surface
satisfying the Luttinger volume. In the following calculation,
we take teff = J and t ′

eff = −0.25teff , with the same set of the
parameters given in Ref. [25], which determine δ∗ � 0.26 in
the phase diagram of Fig. 1.

Therefore, we arrive at the single-particle Green’s function
in the LPP state at the RPA level by

Ge(k, ω) = F0

ω + ξ a
k+k0

− �2
k+k0

ω−ξ a
k+k0

− λ2F0
ω−εc

k

. (28)

In Figs. 3(a)–3(c), the quasiparticle spectral function
A(k, ω) = − 1

π
Im Ge(k, ω) is shown at ω = 0, which gives
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FIG. 4. (a) Lower part: The poles of Eq. (28) given in Eq. (29)
in the first quadrant of the Brillouin zone at δ = 0.06 < δ∗; Top:
Corresponding A(k, ω = 0); (b) δ > δ∗.

rise to a Fermi arc structure at δ < δ∗. The evolution trend
as a function of doping indicates that the segment size of
each Fermi arc enlarges monotonically as the doping level
increases. The full Fermi surface will be eventually recovered
at δ > δ∗ as shown in Fig. 3(d), which is to be discussed in
Sec. III B 2 below.

1. Nature of the Fermi arc

The quasiparticle dispersion is determined by the zeros of
the denominator in Eq. (28) at ω = Ee

k,l with

Ee
k,l = 1

3

[
εc

k + Re ei2lπ/3(Ck + √
Dk )1/3

]
, (29)

which is composed of three branches: l = 0, 1, 2. Here Ck =
−72�2

kε
c
k + 4(εc

k − 3ξ a
k+k0

)[9λ2F0 + 2εc
k (εc

k + 3ξ a
k+k0

)], Dk =
C2

k − 64[3�2
k+k0

+ εc
k

2 + 3(λ2F0 + ξ a
k+k0

2)]3. Two branches of
Ee

k,l with negative values are shown in Fig. 4(a) in the kx-ky

plane (at δ = 0.06), while the third branch, being positive, is
not shown there.

A pocketlike branch of Ee
k,l shown in Fig. 4(a) is at a finite

energy below the Fermi energy, which is to be discussed later.
Near the Fermi energy, there is only one branch left, which is
quite similar to the bare dispersion εc

k with a full Fermi surface
at ω = 0 in Fig. 4(a). However, the corresponding spectral
function A(k, ω = 0) [cf. the top in Fig. 4(a)] only exhibits the
Fermi arcs instead. In contrast, a full Fermi surface is restored
at δ > δ∗ in Fig. 4(b) as to be discussed in Sec. III B 2.

Let us examine the quasiparticle spectral weight defined by

Zk,l = lim
ω→Ee

k,l

Ge(k, ω) × (
ω − Ee

k,l

)

= F0

(
Ee

k,l − ξ a
k

)(
Ee

k,l − εc
k

)
∏

n �=l

(
Ee

k,l − Ee
k,n

) . (30)

As shown in Fig. 5(c), the weight Z along the Fermi sur-
face contour determined by Ee

k,l = 0 in the LPP regime is
dramatically modified: it maintains a finite weight near the
nodal region (θ = π/4) but is substantially suppressed in the
antinodal region. In other words, the quasiparticle excitation
still satisfies the Luttinger volume, but the spectral weight gets
substantially renormalized by the strong correlation effect to
result in a Fermi arc structure as manifested in Figs. 3(a)–3(c).

2. Fermi arc emerging within the gapped Fermi pocket
of the a-spinon excitation

The suppression of the quasiparticle spectral weight in the
antinodal region of the large Fermi surface contour can be
attributed to the general fractionalization of a bare hole as the
leading term in Eqs. (18) and (25). The spectral weight of Ge

0
and its real part are shown in Figs. 5(a) and 5(b), respectively.
Here four Fermi pockets of the a spinon in Fig. 5(b) are
centered at (±π/2,±π/2) in the Brillouin zone where the
dashed large Fermi surface is marked as the position of the
pole of Gc

0 in Eq. (27). The a spinons are in the s-wave-pairing
such that its spectrum is gapped as shown by the bright yellow
curve in Fig. 5(a) for one of four pockets.

Then the quasiparticle spectral function A(k, ω) at the
Fermi energy ω = 0 along the large Fermi surface determined
by Ee

k,l = 0 [cf. the inset of Fig. 5(a)], characterized by the
spectral weight function Z (θ ) in Fig. 5(c), is illustrated by the
blue in Fig. 5(a).

Thus, in the fractionalized mean-field state, the a spinons
as fermions form four (gapped) Fermi pockets according to
Eqs. (25) and (26). The Landau-like quasiparticle as a collec-
tive mode emerges as a new pole of Ge at the RPA level, when
the denominator 1 − λ2Ge

0Gc
0 vanishes in Eq. (24). Note that

at ω = 0, the free fermion propagator Gc
0 in Eq. (27) changes

FIG. 5. (a) The spectral weight (yellow) of the twisted hole depicted by Dc̃(k, ω) along the contour with the angle θ marked in the inset.
The quasiparticle (blue) emerges within the gap. (b) The real part of Dc̃(ω = 0), which changes signs at the Fermi pockets of the a-spinons.
The black dashed curves denote the large Fermi surface of the bare hole, i.e., εc

k = 0. (c) The spectral weight of the quasiparticle vs angle θ

with a vanishing (finite) imaginary broadening (see text) for the twisted hole: η = 0 meV (black dashed) and η = 2 meV (blue dot) under the
replacement of ω → ω + iη in Eq. (28). Inset of (c): the bare quasiparticle Fermi surface (black line) and the a-spinon pockets (red circle) at
�a = 0 intersects at two points labeled by the dark blue point at k∗. The doping concentration is at δ = 0.1.
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sign and diverges at the large Fermi surface εc
k = 0, while

the real part of Ge
0 is prominent mainly in the pocket regions

marked by the deep colors in Fig. 5(b). It implies that the new
Fermi surface should coincide with the bare one of εc

k = 0
outside the pocket regions, but with quickly diminished spec-
tral weight Z . It results in a pseudogap feature in the spectral
function A(k, ω) at small ω or the Fermi arc at ω = 0. On
the other hand, near the nodal region, the RPA correction of
1 − λ2Ge

0Gc
0 becomes prominent in Eq. (24), which leads to a

nontrivial Fermi arc structure to be further elaborated below.

3. Novel feature: Breakpoints and hot spots

Each segment of the Fermi arc is actually broken into three
pieces in Figs. 3(a)–3(c), which correspond to the maximums
of the quasiparticle weight Z (θ ) along the large Fermi surface,
as Fig. 5(c) indicates. Here the maximum weight around the
nodal region (with θ � π/4) is first quickly reduced around
k∗ and then is back to the second sharp peak, called a hot spot,
at the edge of the Fermi arc, beyond which Z (θ ) is finally
monotonically diminished towards the antinodal region.

The breakpoint k∗ in Fig. 5(c) coincides with the intersec-
tion point of the bare quasiparticle Fermi surface with the
a-spinon Fermi pocket (cf. the inset) where ReDa changes
sign [indicated by the white circle in Fig. 5(b)]. Before a
substantial reduction of Z (θ ) towards the antinodal region,
the breakpoint k∗ is further accompanied by a quickly en-
hanced hot spot in-between as illustrated in the main panel
of Fig. 5(c).

It is noted that Z (θ ) vanishing at k∗ may be just an artifact
that the LPP is considered as the ground state in the present
approach, instead of a finite-temperature phase above the SC
phase at Tc. In Eq. (28), a finite F0 as the long-range behavior
of f (ri − r j ; τ ) is related to the phase coherence in the ground
state. At finite temperature above Tc, the constant F0 should
be replaced by a convolution with f (ri − r j ; τ ) in Eq. (28) as
thermally excited b spinons will destroy the phase coherence.
This effect may be minimally incorporated by setting a finite
imaginary term in the denominator of the Green’s function
Eq. (26), i.e., ω → ω + iη, with the consequence illustrated
in Fig. 5(c), where the zero at k∗ is effectively lifted, although
the dip is still clearly present.

Finally, it is noted that the above discussion on the Fermi
arc is based on the ground state without SC coherence. In
the SC state, however, the scalar RPA propagator in Eq. (24)
should be rewritten by using the Nambu matrix representation
such that the Fermi arc will be replaced by a d-wave-like
two-gap feature with the Landau quasiparticle becoming a
Bogoliubov quasiparticle [32] (cf. Appendix D for more dis-
cussions).

4. CDW pattern

The sharp peaks (hot spots) of the quasiparticle weight at
the Fermi arcs will have important physical consequences. In
the following, we investigate the static charge modulation due
to the QPI pattern at ω = 0 in the LPP.

For the electronic system with the single-particle Green’s
function Eq. (28), a renormalized Green’s function in the pres-
ence of impurity can be calculated via the t-matrix method
[51,52]. Here, the t matrix describes a sequence of multiple

scattering of the impurities:

T̂ = V̂ + V̂ Ĝ(ω)V̂ + V̂ Ĝ(ω)V̂ Ĝ(ω)V̂ + · · ·
= V̂

(
1 − Ĝ(ω)V̂

)−1
, (31)

where V̂i j = viδi, j and Ĝ(ω)i j = Ge(ri − r j, ω) is the Green’s
function without impurity given by Eq. (28). Here vi ∼
±0.05t denotes the local scattering potential, which changes
signs randomly on randomly distributed sites with concentra-
tion c ∼ 5%. Then, the single-particle Green’s function under
the local impurity scattering can be expressed in the real
space as

Ge′(ri, r j, ω) = Ge(ri − r j ; ω) (32)

+
∑

a

Ge(ri − rI , ω)TIJGe(rJ − r j, ω).

The local density of states (LDOS) at a general site i can be
decomposed as ρ(ri, ω) = ρ0(ω) + δρ(ri, ω), where ρ0 is the
homogeneous density of state and δρ is the local shift due to
disorder. Here, δρ is determined by the analytic continuation
Ge′(ri, r j ; iωn) → Ge′(ri, r j ; ω + i0+):

δρ(ri, ω) = − 1

π
Im Ge′(ri, ri; ω + i0+) − ρ0(ω). (33)

Finally, for a certain energy ω, the QPI pattern in momentum
space is calculated as the power spectrum of the LDOS,

P(q, ω) =
∣∣∣∣∣ 1

N

∑
i

δρ(ri, ω)e−iq·ri

∣∣∣∣∣
2

, (34)

where q is the QPI momentum.
In the LPP, according to Eq. (28), the unconventional

single-particle Green’s function Ge in the absence of impurity
shows that there are two isolated hot spots with conspicuous
enhancement of the density of states for each segment of
Fermi arcs. The nontrivial QPI pattern can be induced by
the scattering process induced by impurity between these hot
spots. Here, the calculated QPI patterns are most prominent
along (kx, 0) as illustrated in Fig. 6(b) at various doping con-
centrations, in which the intensity peaks are marked by the
dashed vertical lines. Each peak coincides with the momen-
tum Q0 connecting two outer hot spots of the neighboring
Fermi arcs as indicated in Fig. 6(a). In addition, the QPI
pattern in Fig. 6(b) appears to be symmetric about (π/2, 0),
with another peak labeled by the arrow. But such a symmetric
pattern may happen to arise due to a pseudonested structure
in the single-particle Green’s function Eq. (28) under the cur-
rent parameter setting and the additional peak (labeled by the
arrow) may not be robust, which can be reduced as a slightly
changed structure is considered. More discussion about this
symmetric peak is given in Appendix E.

The momentum Q0 varies as a function of doping as sum-
marized in Fig. 6(c). It shows that Q0 decreases monotonically
with doping, which is qualitatively in agreement with the ex-
perimental measurements of the charge-density modulations
in the cuprates [50,53–55]. A common feature of the QPI pat-
terns at various doping concentrations is that the characteristic
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FIG. 6. (a) The wave vector Q0 connecting two hot spots with the largest weight Z . (b) The static QPI pattern obtained by Eq. (34) along
(kx, 0) at δ = 0.06 (blue solid) and δ = 0.10 (red solid). The momentum Q0 marked in (a) is indicated at the dashed vertical line at the
right-hand-side peak of the QPI. Note that another peak in the QPI pattern appears approximately symmetric about (π/2, 0) as indicated by an
arrow, whose origin is different and may not be intrinsic as argued in Appendix E. (c) Comparison of the momentum Q0 with the CDW wave
vector determined in the experimental measurement [50].

momentum coincides with the momentum transfer between
two specific hot spots of the Fermi arcs shown in Fig. 6(a).

Note that here we do not consider the charge modula-
tion pattern as a conventional CDW order that spontaneously
breaks translational symmetry in the LPP. Instead, this modu-
lation is simply a byproduct of the presence of a Fermi arc
hot spot, namely, a QPI pattern induced by scattering via
impurities. In addition, the relationship between the charge
modulation and the SC state is clear: the effect of charge
modulation is irrelevant for the establishment of the SC
phase coherence. But the single-particle spectrum will open a
V-shaped gap in the SC phase [32], leaving the hot spot
feature diminishing with the Fermi arc, which substantially
weakens the intensity of the QPI pattern in consistency with
the experimental observations [56,57].

Finally, it is worth noting that the observed charge modula-
tion resulting in STM [50,53,54] can be explicitly identified
in the QPI pattern presented in this section. On the other
hand, the charge instability observed in other spectroscopic
experimental results, such as several x-ray measurements
[50,55–58], can be directly associated with the dynamical
charge susceptibility. It is important to recognize that both
of them are manifestations of the momentum distribution of
density at the Fermi surface within this theoretical framework,
indicating that they are inherently consistent. Further discus-
sions about the dynamical charge susceptibility are presented
in the Appendices, which illustrates how the dynamical charge
susceptibility function gets enhanced at Q0 and may lead to a
true CDW instability.

B. Restoring full Fermi surface at δ > δ∗

The Fermi arc for the gapless Landau-like quasiparticle ex-
citation has been established in the LPP. In the fractionalized
mean-field state of Eq. (4), the bosonic RVB order parameter
�s will vanish beyond a critical doping concentration, to
be denoted by δ∗, which defines the boundary of the LPP
in the overdoping. In the following, we shall examine the
single-particle Green’s function at the RPA level in Eq. (24)
and inspect how the corresponding Fermi surface will evolve
into δ > δ∗.

1. Vanishing bosonic-RVB order at δ → δ∗

Since �s is the main controlling order parameter of the
fractionalized state in Eq. (4), in the following we first exam-
ine the basic spin dynamics of the b spinons at the mean-field
level �s �= 0 before taking the limit �s = 0 in |	b〉.

A typical dynamic spin susceptibility χ ′′(q, ω) calculated
based on the ground state |	b〉 at δ = 0.1 by a standard mean-
field procedure [59,60] (cf. Appendix G for more details)
is shown in Fig. 7(a), in which the dispersion of the spin
wave obtained in the same theory at half filling is plotted as
the white dashed curve for comparison. Here the spin wave
reduces to a low-lying mode at a resonance energy Eg around
the AFM wave vector Q = (π, π ) in the LPP (at δ = 0.1), in
consistency with the neutron-scattering experiments [11–16],
which is continuously softened with reducing doping and
eventually becomes gapless to recover the spin wave in the
AFM phase. A detailed doping evolution of Eg is shown in
Fig. 7(b) by the red curve, which is calculated under the same
set of parameters used to determine the mean-field phase dia-
gram in Fig. 1 (cf. Appendix B for more calculation details).

As mentioned previously, the b-spinon excitations are
crucial in disordering the SC phase coherence at finite tem-
perature. As a matter of fact, a SC instability will occur in the
LPP when the temperature is lower than [29]

Tc = Eg

κkB
, (35)

with κ � 6, which is closed to the experimental consequences
[13,61–63], namely, a finite Eg will ensure a SC phase coher-
ence by suppressing the free b-spinon excitations below Tc,
which is also plotted in Fig. 7(b). Both Eg and Tc will get re-
duced continuously in the overdoping regime as δ → δ∗ with
the suppression of the bosonic RVB order in the overdoping.

A characteristic manifestation of the change in the LPP is
the specific heat Cb

v contributed by the b spinons. As shown
in Fig. 8(a), a significant enhancement of γ ≡ Cb

v/T given
in Eq. (H2) is found as the doping approaches δ∗ at a given
temperature, which is in agreement with the experimental
results [64,65]. A systematic evolution of γ vs T at different
doping close to δ∗ � 0.26 is further illustrated in Fig. 8(b).
Both of them indicate that a spike of the specific heat well
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FIG. 7. (a) Imaginary part of dynamic spin susceptibility obtained by Eq. (G11) along the diagonal line at δ = 0.1. The charac-
teristic energy of a sharp low-lying resonance mode is labeled by Eg, and the white dashed line denotes the spin-wave dispersion at
half-filling case. (b) The doping evolution of Eg (red solid dot) obtained by mean-field self-consistent calculations in Appendix G and
corresponding SC phase transition temperate Tc (blue) according to Eq. (35). As doping density tends to critical point δ∗, Eg also reduces
to zero.

reflects the fact that the spectrum of the b spinons get strongly
suppressed as the LPP ends at δ∗.

Note that the origin of the huge peak of specific heat γ at δ∗
has been attributed [64,65] in the literature to the divergence
in the effective mass m∗ of the quasiparticles, according to
the relation γ ∝ m∗ in a Fermi liquid theory. However, in the
present two-component RVB theory, the electronic structure
of the quasiparticles changes smoothly around δ∗ with Gc

0
remains the same in the Dyson equation Eq. (23) except for
the restoration of the spectral weight near the antinodal region.
Here a sharp divergent specific heat at T = 0 can only come
from the background spin degrees of freedom as shown above.

Finally, it is noted that so far in this subsection only the
contribution of the background b spinons to the spin spec-
trum is considered, while the contribution of the backflow
a spinons is ignored. This is because the a spinons behave
more like the itinerant fermions with a larger energy gap and
its contribution to the dynamic spin susceptibility is a gapped
continuum at higher energies. At the mean-field level, the
low-energy spin correlation is dominated by the RVB-pairing
b spinons originating from local moments, as depicted in
Fig. 7(a). The influence of a spinons on this correlation has
been examined at an RPA level in the other work [66], which
can shed further light on the high-energy spin excitations
probed by resonant inelastic x-ray scattering (RIXS) [67–71]

FIG. 8. (a) The doping evolution of specific heat γ ≡ Cv/T con-
tributed by the b spinons as given in Eq. (H2) at T = 20 K, which
exhibits a large peak as δ → δ∗. (b) The temperature dependence of
γ at different dopings.

and provide an explanation for the detailed hour-glass feature
[72–74] near (π, π ).

The influence of a spinons on this correlation will be ex-
amined at an RPA level in future work, which can shed further
light on the high-energy spin excitations probed by RIXS
[67–71] and provide an explanation for the detailed hour-glass
feature [72–74] near (π, π ).

2. Full Fermi surface at δ > δ∗

With the RVB order parameter �s = 0 at δ > δ∗, the back-
ground b spinons are completely localized in |	b〉 with ξ →
0. A classical Curie-Weiss behavior of the local moments is
expected at finite temperatures in such a phase with �s = 0
[25]. A direct consequence is that the phase in Eq. (20) is
totally spatially disordered such that

f (ri − r j ; τ ) � (2π )2δ(ri − r j ). (36)

This is a duality behavior of the phase-string factor in the so-
called strange-metal phase characterized by �s = 0.

As a result, the fractionalized mean-field propagator of
Eq. (18) is reduced to be local in space such that it is fea-
tureless in k,

Ge
0(k, ω) → �c̃(ω) ∝ 1

L2

∑
q

Dc̃(q, ω), (37)

which means the twisted quasiparticle c̃ defined in Eq. (14)
can no longer coherently propagate in the totally disordered
spin background. Consequently, the Dyson Eq. (23) at the
RPA level can be organized as follows:

Ge(k, ω) = �c̃(ω) + λ2�2
c̃ (ω)

[
Gc

0(k, ω)

+λ2Gc
0(k, ω)�c̃(ω)Gc

0(k, ω) + · · · ]
= �c̃(ω) + λ2�2

c̃ (ω)

Gc
0
−1(k, ω) − λ2�c̃(ω)

= �c̃(ω) + λ2�2
c̃ (ω)

ω − εc
k − λ2�c̃(ω)

. (38)

Therefore, by a simple shift of the chemical potential in
εc

k in the denominator of the second term in Eq. (38), the
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single-particle Green’s function recovers the form of the non-
interacting Fermi gas with an overall reduction of the spectral
weight by a factor of λ2�2

c̃ , besides a trivial first term. The
corresponding large Fermi surface satisfying the Luttinger
volume is shown in Fig. 3(d) in terms of the corresponding
spectral function at ω = 0, namely, as far as the quasiparticle
excitation is concerned, a T = 0 phase at �s = 0 looks like a
Fermi liquid with a large Fermi surface.

However, it is important to note that even though the single-
particle Green’s function at T = 0 describes the coherent
gapless quasiparticle mode near the large Fermi surface in
Eq. (38), the strange metal phase at δ > δ∗ is not simply a
Fermi liquid state. We have pointed out that the background b
spinons are totally decoherent at δ > δ∗, which in turn leads to
the phase incoherence in Eq. (36) such that the single-particle
excitation is effectively decoupled from the dynamics of the
fractionalized particle c̃, except for an overall renormaliza-
tion factor �c̃ in Eq. (38). In other words, the fractionalized
particles can still play an important role, especially in the
finite-temperature regime in such a phase [24,25], where the
overall weight of the quasiparticle is further reduced by an
amount of λ2�2

c̃ in Eq. (38) at T = 0, whose physical meaning
will be further discussed in the next section.

IV. DISCUSSION

As a basic characteristic of the pseudogap phase in the
cuprate, the origin of the Fermi arc observed in the ARPES
experiment has been an intensive focus of theoretical stud-
ies. In the following, we shall further discuss the underlying
physics for the Fermi arc and pseudogap structure in the
present approach based on the analytic structure of the single-
particle Green’s function in Eq. (28). A comparison with other
approaches will also be made to show the important distinc-
tions, which concern the nature of characterizations of strong
correlation effect at δ < δ∗ and beyond.

A. Large Fermi surface vs small Fermi pocket

First, as shown in the top panel of Fig. 9, the pole of
Eq. (28), i.e., the dispersion given in Eq. (29) in the first
quadrant of the Brillouin zone, does give rise to a full large
Fermi surface at ω = 0 (red curve) which still satisfies the
large Luttinger volume consistent with Oshikawa’s topolog-
ical argument [49] for a quasiparticle excitation. On the other
hand, it is the quasiparticle spectral weight Z (k) on such a
Fermi surface that exhibits a strong unconventional suppres-
sion towards the antinodal points, resulting in a Fermi-arc-like
structure shown in Fig. 3. In particular, the edges of the Fermi
arc are bordered by two sharp peaks (the hot spots), which
are separated, by two sharp dips, from the central portion of
the nodal region in the top panel of Fig. 9. Here the dips are
at the intersections between the large Fermi surface with a
Fermi pocket of the a spinon, which is gapped as indicated in
Figs. 5(a) and 5(b), wherein the quasiparticle is well protected
with a significant weight. Outside such a Fermi arc, the frac-
tionalization of the Landau’s quasiparticle into an a spinon
(the h holon is condensed) [cf. Eq. (13)] becomes predom-
inant, which significantly weakens the quasiparticle weight.
In a phenomenological theory of the pseudogap proposed by

FIG. 9. The renormalized spectral weight (blue dot) and the pole
or Fermi surface (red curve) of the single-particle Green’s function in
this paper (upper panel) and in the YRZ theory [75] (bottom panel).
The dashed line denotes the AFM Brillouin zone boundary.

Senthil and Lee [76], a similar picture that the quasiparticle
still retains a portion of the large Fermi surface near the nodal
region has been discussed, with a strongly anisotropic spectral
weight being attributed to the scattering by the fluctuations
of the d-wave SC pairing field [76,77]. In the present micro-
scopic approach, however, the strong reduction of the spectral
weight near the antinodal region is quantitatively realized by
a fractionalization process, where the pairing of the a spinons
does serve as the amplitude of the SC order parameter in
Eq. (15).

An alternative Fermi arc structure is shown in the bottom
panel of Fig. 9 based on a phenomenological description of the
single-particle Green’s function, which has been previously
proposed by Yang, Rice, and Zhang, known as the YRZ theory
[75], based on the Hubbard model. It is given as follows:

GYRZ(k, ω) = gt

ω − εc
k − �2

R/(ω + ξ0,k )
, (39)

where �R denotes a d-wave RVB order parameter and ξ0,k the
dispersion of the fermionic spinons in the spirit of the original
Anderson’s (one-component) RVB theory. In the bottom panel
of Fig. 9, the corresponding pole at ω = 0 and the spectral
weight along the Fermi surface are shown in the first quad-
rant of the Brillouin zone. It clearly indicates that the Fermi
arc appearing here is actually originated from an underlying
small Fermi pocket at ω = 0, which does not obey the large
Luttinger volume until in overdoping where the RVB gap �R

vanishes [75]. As illustrated in the bottom panel of Fig. 9, the
Fermi arc here is due to the suppression of the spectral weight
Z (k) in the half portion of the Fermi pocket which comes in
contact with the AFM Brillouin zone boundary (the dashed
line in Fig. 9).

Based on the spin-fermion model, Qi and Sachdev [78]
also treated a quasiparticle excitation as a bound state of
a spinless fermion and a bosonic spinon with the binding
force mediated by an emergent U (1) gauge field. Here the
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FIG. 10. The DOS spectrum calculated by integrating Gc over
the entire BZ at δ = 0.1. Here the lifetime of twisted quasiparticle
c̃ coming from the drift of free b-spinons takes the value of ς =
10 meV when taking ω → ω + iς in Eq. (19). The dashed lines label
the a-spinon gap.

quasiparticles form small Fermi pockets near the node region
as a result of a reconstruction of the original large Fermi
surface by the fluctuating AFM order, opening a pseudogap
near the antinode region. Similar to the YRZ theory [75],
it has been argued [78] that the quasiparticle weight for the
outer half of the pockets gets suppressed to lead to a Fermi
arc structure as observed in ARPES.

B. Origin of the pseudogap in the single-particle
spectral function

In this paper, we have studied the Landau-like quasipar-
ticle excitation emerging as a collective mode at the RPA
level based on the fractionalized mean-field state described
by Eq. (4). Indeed, according to the equation-of-motion study
[32], a bare hole created by ĉkσ on such a mean-field back-
ground can still propagate coherently with a renormalized
band structure of εc

k before it decays into the fractionalized
elementary particles. Here the quasiparticle excitation obeys
the Luttinger volume with a large Fermi surface as discussed
above. But its fractionalization as characterized by Eq. (13)
will strongly influence the behavior of the single-particle
Green’s function of Eq. (24). The RPA equations in Eqs. (21),
(23), and (24) are determined by the interplay between the
bare quasiparticle propagator Gc

0 [Eq. (27)] and the fractional-
ized propagator Ge

0 [Eq. (18)] with a strength ∝ λ.
The pseudogap behavior in the single-particle spectral

function is thus clearly associated with the gap opening due
to the a-spinon pairing in the fractionalized propagator Ge

0 as
illustrated in Fig. 5(a). Additionally, a more explicit connec-
tion can be uncovered through the investigation of the local
DOS spectrum in Fig. 10, obtained by integrating out the mo-
mentum in quasiparticle spectral function, i.e.,

∑
k Ac(k, ω).

Clearly, the reduced but finite weight at low ω (as dictated by
�a labeled by the dashed line in Fig. 10) is consistent with
the particle-hole asymmetry pseudogap feature observed in
STM experiments [79,80]. It should be noted that the struc-
ture of the phase correlation function in Eq. (20) at finite
frequency remains to be discussed, as it may give rise to some
high-energy spectroscopic details through the convolution in
the Dyson Eq. (23). However, for the sake of simplicity in

this presentation, we assume that the effect of drift for the
free b-spinon is to give the twisted hole c̃ a finite lifetime
of ς = 10 meV through the replacement ω → ω + iς in
Eq. (19).

Within the region covered by the gapped small Fermi
pocket of the a spinons [cf. Figs. 5(a) and 5(b)], the bare
quasiparticle remains decoupled from the fractionalization to
maintain a coherent Fermi arc, whereas a strong suppression
of its spectral weight outside the a pocket is due to the process
of a strongly enhanced decay into the fractionalized objects.
The high-energy spectral weight of Ge

0 above the a-spinon
gap will then dominate such a region which extends over to
the antinodal region outside the Fermi arc, responsible for the
pseudogap feature in the spectral function.

Therefore, the pseudogap phenomenon in the LPP is a di-
rect manifestation of the electron fractionalization of Eq. (13),
which is characterized by Eqs. (15) and (16) with �a �= 0.
The origin of the Fermi arcs in Figs. 3(a)–3(c) at δ < δ∗ is
the natural consequence of such a fractionalization without
violating the Luttinger volume, which then naturally evolves
into a manifest large Fermi surface at δ > δ∗ with �s = 0.
In the latter case, the uniformly reduced quasiparticle weight
λ2�2

c̃ in Eq. (38) also hints at the incoherent components
hidden behind the conventional Fermi liquid, which are the
remaining traces of fractionalized particles in the overdoping.

Finally, note that the primary focus of this research is to
investigate the LPP, which terminates at δ∗, beyond which
the system exhibits behavior consistent with that of a Fermi
liquid. Such a critical point at δ∗ is characterized by a specific-
heat divergence at low temperatures, which is consistent with
experimental observations [64,65]. Notably, this study does
not focus on superconductivity. Previous research, such as that
presented in Ref. [25], has demonstrated that the SC instability
at Tc concludes at δ∗, as depicted in Fig. 7(b). However, it
is plausible that Tc may extend to higher doping concentra-
tions beyond δ∗, as the Fermi liquid phase may not remain
stable against further SC condensation. Thus, while the phase
diagram presented in Fig. 1 reflects the mean-field level re-
sults obtained in Ref. [25], it cannot definitively exclude
the possibility of the endpoints of the SC phase extending
beyond δ∗ [64].

C. Small Fermi pockets emerging at �a = 0

Finally, we point out the existence of a new phase on top
of the LPP with �s �= 0 and 〈h†〉 �= 0. That is, the pairing
of the a spinons vanishes with �a = 0. In this case, |	a〉
in Eq. (4) reduces to a Fermi liquid with the Fermi pockets
shown in Fig. 11, becoming gapless energy contours at ω = 0.
Previously, such a phase, known as the LPP-II [25], has been
argued to be realized in a strong perpendicular magnetic field
which suppresses �a, at least in the magnetic vortex core
region. Consequently, the a spinons become charged particles
and respond to the detection of external electromagnetic fields
in the LPP-II. It is also equivalent to say that the twisted
quasiparticle c̃ becomes gapless, forming the Fermi pockets
in Fig. 11 since the holon is condensed in Eq. (14).

In this �a → 0 limit, the Landau’s quasiparticle is no
longer protected within the gapped a pockets discussed in
the main text, instead they combine with gapless a spinons
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FIG. 11. The Fermi surfaces for a spinons and bare holes when
�a = 0 are illustrated with λ = 0 in (a) and with λ �= 0 in (b).
Near the antinodal regions, as indicated by the gray region in (b),
there is a suppression of spectral weight. The quasiparticle spectral
function A(k, ω) at the Fermi level ω = 0 when �a = 0, with λ = 0
for (c) and λ �= 0 for (d). The yellow arrows in (b) and (d) indicate
a Fermi pocket which may be probed by the quantum oscillation
experiment.

to form slightly smaller Fermi pockets, marked by yellow
arrows in Figs. 11(b) and 11(d). Note that the Fermi pocket
for pure a spinons shown in Figs. 11(a) and 11(c) violates the
transitional Luttinger sum rule, i.e., with an area proportional
to the hole concentration δ rather than 1 + δ. Specifically, the
area of each a pocket shown in Figs. 11(a) and 11(c) is given
by Aa = δ

2 ABZ, where ABZ = 2π2/a2 is the folding Brillouin
zone due to the π flux of a spinons [25]. And the RPA
correction gives rise to the Fermi pockets with a smaller area
A′

a marked by yellow arrows in Figs. 11(b) and 11(d), which
can be measured by some experimental probes, e.g., quantum
oscillation. According to the Onsager relation, F = 	0

2π2 A′
a,

where 	0 is the magnetic flux quanta, giving the quantum
oscillation F = 539.329T at δ = 0.1, which is quite close to
the experimental result (530 ± 20)T in Ref. [38] as compared
to the original F = 697T at the mean-field level [25], corre-
sponding to Fig. 11(c). It should be noted that the existence
of zero poles along the large Fermi surface, indicated by the
blue line in Fig. 11(b), is not complete due to the diminished
spectral weight in the antinodal regions, as identified by the
gray region, resulting in the absence of a detectable quantum
oscillation signal with an associated frequency.

Thus, the pocket physics under strong magnetic fields may
be regarded as a direct experimental probe of the twisted c̃
in the fractionalization Eq. (13), defined by Eq. (14), which
acquires small Fermi pockets at �a = 0, as shown in Fig. 11.
The mechanism here is quite different from previous propos-
als [76,81,82], where the small Fermi pocket originates from
the Fermi surface reconstruction due to a static CDW or spin

order. In addition, together with the LPP, such an LPP-II state
also disappears at δ > δ∗, where c̃ loses the coherence in the
totally disordered spin background of �s = 0.

V. CONCLUSION

The quasiparticle is the most elementary excitation in a
Fermi liquid. In contrast, the quasiparticle may further decay
into more elementary fractionalized particles (i.e., bosonic
b spinons, fermionic backflow a spinons, and bosonic holons)
in a strongly correlated electron system like doped Mott in-
sulators. The fate of a quasiparticle excitation thus becomes
an important manifestation of a non-Fermi-liquid state, even
if it may no longer be the most essential constituent of the
underlying phase.

In this paper, we have studied the single-particle Green’s
function in the doped Mott insulator described by the
t-J model, with the main focus on the evolution of the gap-
less quasiparticle excitation as a function of doping. The
underlying phases under examination are low-temperature
non-SC ones by removing the phase coherence. At low doping
(δ < δ∗), it is known as the LPP or spontaneous vortex phase
[25], which is characterized by the two-component RVB or-
ders. One is primary, persisting to half filling, and the other
is induced by doping. The primary RVB order parameter
vanishes at δ∗ to result in a strange-metal phase at overdoping
(δ < δ∗). Such a phase diagram is regarded as the result of
a mean-field parent state given in Eq. (4) in the phase-string
formulation of the t-J model, in which the true long-range
orders of antiferromagnetism and superconductivity can be
further realized as the low-temperature instabilities [24,25].

The parent mean-field state in Eq. (4) has no quasiparticle
excitations, which are fractionalized according to Eq. (13).
The quasiparticle excitation can emerge at a generalized RPA
level as given by Eq. (24) or Eq. (28), which is a diagrammatic
Dyson equation expression of the following basic fractional-
ization process:

ciσ ↔ c̃iσ ei
̂i . (40)

Since the phase-shift factor ei
̂i is disordered in the par-
ent phase under examination to prevent the SC instability
[cf. Eqs. (15) and (16)], the quasiparticle and its fractionalized
representation in Eq. (40) are two distinct excitations. In the
LPP, they represent the Fermi arc and the gapped incoherent
portions, respectively. In the overdoping at δ > δ∗, ei
̂i is
totally disordered as �s = 0 such that the propagation under
the fractionalization in Eq. (40) is completely suppressed spa-
tially, which leads to a uniform reduction of the quasiparticle
spectral weight in the momentum space. Consequently, the
full Fermi surface is explicitly present in the single-particle
Green’s function even though the spectral weight can be much
reduced in the presence of an incoherent fractionalization in
the background.

Therefore, the Fermi arc feature in the pseudogap phase
is due to the fact that the quasiparticle weight is suppressed
near the antinodal region rather than a true energy gap being
opened in the quasiparticle excitation. On the other hand, the
gap feature in the pseudogap phase actually comes from a
fractionalized fermionic spinon in the single-particle Green’s
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function, with the diminished quasiparticle spectral weight
around the Fermi energy. The coherence of the gapless quasi-
particle at the Fermi arc is protected by the Fermi pocket of
the fermionic spinons, which are paired up to open an s-wave
gap. A direct observation of the Fermi pocket may be realized
by applying a strong magnetic field to suppress the spinon
pairing, leading to a quantum oscillation as the fermionic
spinons become charged at �a = 0. Here, a small Fermi
pocket picture violating the Luttinger volume does emerge
for the twisted quasiparticle c̃. Furthermore, the endpoints of
the Fermi arcs are marked by the hot spots, which leads to a
CDW-like QPI pattern via scatterings between the hot spots.
We have also discussed the consistency of these features with
the experimental observations in the cuprate.
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APPENDIX A: EFFECTIVE HAMILTONIAN

The pseudogap ground state in Eq. (4) is a direct product
of |	h〉, |	a〉, and |	b〉, which are the mean-field solutions
of Hh, Ha, and Hb, respectively, of the effective Hamiltonian
deduced from the phase-string formulation of the t-J model
[24,25]:

Heff = Hh + Ha + Hb, (A1)

with

Hh = −th
∑
〈i j〉

h†
i h je

i(As
i j+eAe

i j ) + H.c.

+λh

(∑
i

h†
i h j − δN

)
, (A2)

Ha = −ta
∑
〈i j〉,σ

a†
iσ a jσ e−iφ0

i j + H.c.

− γ
∑
〈i j〉

(�̂a
i j )

†�̂a
i j + λa

⎛
⎝∑

i,σ

a†
iσ aiσ − δN

⎞
⎠, (A3)

Hb = −Js

∑
〈i j〉,σ

�̂s
i j + H.c. + λb

⎛
⎝∑

i,σ

b†
iσ biσ − N

⎞
⎠. (A4)

Here in Hh, the holon h†
i carries a full electric charge +e

coupling to the external electromagnetic field Ae
i j as well as

the internal gauge field defined by

As
i j = 1

2

∑
l �=i, j

[θi(l ) − θ j (l )]
(
nb

l↑ − nb
l↓

)
, (A5)

which is generated by the background b spinons. In the LPP,
the fluctuations of this gauge field is suppressed, i.e., As

i j � 0,
because of the short-range RVB pairing of the b spinons. Thus,
one expects the Bose condensation of the bosonic h holons.

In Ha, the fermionic a spinons see a uniform static π -
flux per plaquette and form an s-wave BCS-type pairing

�a = 〈�̂a
i j〉 �= 0, where

�̂a
i j =

∑
σ

σa†
iσ a†

jσ̄ e−iφ0
i j , (A6)

which is invariant under the gauge choice of the π -flux
φ0

i j [25].
Inversely, in Hb of Eq. (A4), the bosonic RVB order-

parameter operator is given by

�̂s
i j =

∑
σ

e−iσAh
i j biσ b jσ̄ (A7)

and the b spinons couple with the internal gauge field gener-
ated by the holons,

Ah
i j = 1

2

∑
l �=i, j

[θi(l ) − θ j (l )]nh
l , (A8)

which describes a uniform flux on account of the holon con-
densation in the LPP. In Eq. (A4), Js = Jeff�

s/2, Jeff = J (1 −
δ)2 − 2γ δ2, with �s ≡ 〈�̂s

i j〉 �= 0.
In the above effective Hamiltonians, λh, λa, and λb are the

Lagrangian multipliers implementing the constraints for the
fractionalized particle numbers in Eq. (12). And γ in Eq. (A3)
is the Lagrangian multiplier to enforce δ2|�s|2 ≈ 〈(�̂a

i j )
†�̂a

i j〉,
which originates from the constraint: Sb

i nh
i + Sa

i = 0 [25].
Note that N denotes the total number of lattice sites.

APPENDIX B: MEAN-FIELD SELF-CONSISTENT
CALCULATION

Based on the mean-field Hamiltonian in Eq. (A3), the free
energy for the a spinons is given by

Fa = − 2

β

∑
k,α=±

′ ln
[
2 cosh

(
βEa

k,α/2
)]

+γ 2N (|χa|2 + |�a|2) + λaN (1 − δ), (B1)

where
∑′

k denotes the summation over the half Brillouin

zone due to the π -flux folding, and Ea
k,± =

√
(ξ a

k,±)2 + �2
k

with ξ a
k,± = ±2(ta + γχa)

√
cos2 kx + cos2 ky + λa. Next,

minimizing this mean-field free energy, i.e., ∂Fa/∂χa =
∂Fa/∂�a = ∂Fa/∂λa = 0, gives rise to the self-consistent
equations: ∑

k,α=±

′γ Bk,αAk = N,

∑
k,α=±

′(−1)α
√

AkBk,αξ a
k,α = 2Nχa,

∑
k,α=±

′ξ a
k,αBk,α = (1 − δ)N,

where Ak = cos2 kx + cos2 ky and Bk,α = tanh( 1
2βEa

k,α )/Ea
k,α .

Similarly, based on the mean-field Hamiltonian in
Eq. (A4), the free energy for the b spinons is given by

Fb = 2

β

∑
m

ln
(
1 − e−βEb

m
)

+
∑

m

Eb
m + Jeff |�s|2N − 2λbN, (B2)
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where Eb
m is the energy spectrum of b spinons in Eq. (G2),

and ∂Fb/∂�s = ∂Fb/∂λb = 0 give rise to the self-consistent
equations:

∑
m

(
ξ b

m

)2
coth

(
1
2βEb

m

)
Eb

m

− 2N (�s)2Jeff = 0,

∑
m

λb coth
(

1
2βEb

m

)
Eb

m

= 2N, (B3)

where ξ b
m is determined by the self-consistent equation in

Eq. (G5). Since the bosonic holons are in the condensation
state in the LPP, their contribution to the free energy may be
neglected here such that by minimizing the total free Fa + Fb

over γ , one obtains

δ2|�s|2 = |�a|2 + 4χ2
a . (B4)

APPENDIX C: PHASE FACTOR exp{− i
2 (�0

i − �0
j )} IN Eq. (3)

By inserting a sequence of nearest-neighboring links con-
necting site i and site j (denoting i → j): i1, i2... iM , then
one has

exp

{
− i

2

(
	0

i − 	0
j

)}

= exp

{
− i

2

(
	0

i − 	0
i1 + 	0

i1 − 	0
i2 + · · · + 	0

iM − 	0
j

)}

= exp

[
− i

∑
i→ j

φ0
is,is+1

]

×
∏
i→ j

exp

{
− i

2
[θis (is+1) − θis+1 (is)]

}
, (C1)

where φ0
is,is+1

= 1
2

∑
l �=is,is+1

[θis (l ) − θis+1 (l )]. Note that
θis (is+1) − θis+1 (is) = ±π , the second term in Eq. (C1)
can be further simplified as

∏
i→ j

exp

{
− i

2
[θis (is+1) − θis+1 (is)]

}
= (e±iπ/2)i− j

= eik0·(ri−r j ), (C2)

where k0 = (±π/2,±π/2). Note that, although there exists
a freedom to choose ±π at each link since exp{− i

2θis (is+1)}
here is multivalued, all the branch cuts in Eq. (C2) are chosen
the same to make the phase factor “smooth.” As a result, one
arrives at

exp

{
− i

2

(
	0

i − 	0
j

)} = exp

[
− i

∑
i→ j

φ0
is,is+1

]
× eik0·(ri−r j ).

(C3)

APPENDIX D: SINGLE-PARTICLE GREEN’S FUNCTION
IN THE SC PHASE

As the phase coherence of the phase factor is realized,
i.e., 〈ei	s

i (τ )〉 �= 0, the SC coherence is established in Eq. (15)
and the Nambu representation for the Green’s function will
be needed, with �a = [a†

k↑ a−k↓]T and �c = [ck↑c†
−k↓]T ,

FIG. 12. The contours of the poles of the single-particle Green’s
function near Fermi surface in the LPP (left panel) and the SC phase
(right panel). The doping concentration is at δ = 0.1.

namely, the bare propagators should be extended to

Da(k; ω) → 1

ωτ0 + ξ a
k τz − �kτx

,

Gc
0(k; ω) → 1

ωτ0 − εc
kτz − �c

kτy
, (D1)

where �c
k = Jeff�

a(cos kx − cos ky) is the d-wave pairing or-
der parameter. In addition, the phase can also be rewritten
as e

i
2 	s

i (τ ) → [e
i
2 	s

i (τ ) e− i
2 	s

i (τ )]T , so the phase correlation
function in Eq. (20) is modified as

f
(
ri − r j, τ

) ≈ F0τ0 + F0
〈
ei	s

i
〉
0τx. (D2)

As a result, according to the Dyson Eq. (23), the single-
particle Green’s function in the SC phase is given by

Ge
SC(k; ω) = M · τ

(ω2 − E2+)(ω2 − E2−)
, (D3)

where τ ≡ [τ0 τx τy τz] as well as E± =
√

A/2 ± √
B/2,

with A = (�a
k+k0

)2 + (�c
k )2 + (ξ a

k+k0
)2 + (εc

k )2 + 2λ2 and
B = ((�a

k+k0
)2 − (�c

k )2 + (ξ a
k+k0

)2 − (εc
k )2)2 + 4((�a

k+k0
)2 +

(�c
k )2 + (ξ a

k+k0
− εc

k )2)λ2. Although Eq. (D3) is different
from the Green’s function in traditional BCS theory, its
low-energy branch of the poles E− in the SC phase still open
a d-wave-like gap in the nodal region as shown in the right
panel of Fig. 12 (banana-shaped contours), which is contrary
to the gapless case in the LPP shown in the left panel of
Fig. 12.

Finally, note that as the SC phase coherence is disor-
dered, i.e., 〈ei	s

i (τ )〉 = 0, the anomalous part for Ge
0(k; ω)

vanishes since the phase correlation function in Eq. (D2)
reduces to an identity matrix. Furthermore, the anomalous
part for Gc

0(k; ω) also disappears as �c
k = 0. Therefore, the

single-particle Green’s function in the LPP discussed in the
main text can be smoothly connected to that in the SC phase.
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FIG. 13. Re Ge(k, ω = 0) at δ = 0.1. Here the lifetime of bare
hole takes the value of η = 1meV when taking ω → ω + iη in
Eq. (28). Background weights seem to give nested structure, but the
narrow contours along the large Fermi surface violate the nesting
condition.

APPENDIX E: ORIGIN OF THE SYMMETRIC
PEAK IN THE QPI PATTERN

To understand the origin of the symmetric QPI pattern in
Fig. 6(b), we expand Eq. (33) to the leading term in vi:

δρ(q, ω) � − 1

π
v(q) Im �(q, ω), (E1)

where

�(q, ω) =
∑

k

Ge(q, ω)Ge(k − q, ω). (E2)

Here v(q) = ∑
i vie−iq·ri is a random function of q when the

number of impurities is sufficient, thus all the intrinsic in-
formation about quasiparticles is encoded in the Im �(q, ω),
which can be further decomposed as

Im �(q, ω) ∝
∑

k

Re Ge(q, ω) Im Ge(k − q, ω). (E3)

Note that Im Ge is actually corresponding to the spectral
function illustrated in Fig. 3, but Re Ge gives pseudonesting
structure with nesting vector q0 = (π, 0) and (0, π ) at zero
energy, i.e., Re Ge(q, ω = 0) � Re Ge(q − q0, ω = 0), which
is shown in Fig. 13. More specifically, the background weights
that contribute most to the nested structure in Fig. 13 come
from the perfect nesting condition for twisted hole c̃i, as
shown in Fig. 5(b), while the narrow contours along the
large Fermi surface from bare holes lightly break th enesting
condition (reason for “pseudo” here). At the current set-
ting parameters, the former dominates since the twisted hole
propagator is the leading term for the single-particle Green’s
function in Eq. (25). Therefore, it is the pseudonested struc-
ture of Re Ge results in δρ(q, ω = 0) � δρ(q − q0, ω = 0).
Combined with the relation δρ(q, ω = 0) � δρ(−q, ω = 0),
one finally arrives at

δρ(q, ω = 0) � δρ(q0 − q, ω = 0), (E4)

which explains the cause of the two symmetric peaks about
(π/2, 0) in QPI pattern Fig. 6(b).

In summary, the peak labeled by the dashed line in Fig. 6(b)
originates from the scattering between two parallel neighbor-
ing hot spots, while the peak labeled by the arrow comes
from the special symmetrical structure of the c̃i spectrum. The
latter may not be intrinsic since we can remove its perfect
nesting condition by either introducing more parameters and
higher-order interactions to change its pocket shape, or tuning
parameter, such as coupling constants λ and bare hole life-
time iη, to enhance the bare hole contribution in Ge.

APPENDIX F: DYNAMICAL CHARGE SUSCEPTIBILITY

In this Appendix, we aim to investigate the potential charge
instabilities captured by the dynamical charge susceptibility
within our framework and establish the connection between
the QPI pattern presented in the main text and the dynamical
charge susceptibility calculated in this Appendix.

The standard dynamical charge susceptibility, denoted as
χc, is defined with

χc(i, j, τ ) ≡ 〈T̂ n̂ j (τ )n̂i(0)〉0, (F1)

where n̂i = ∑
σ σc†

iσ (τ )ciσ (τ ) is the number of the electron
operators. By expanding in Wick’s theorem and Fourier trans-
forming, we can express χc with

χc(q, iωn) = − 2

βN

∑
k,vn

Gc∗ (k, ivn)Gc(q − k, iωn − ivn),

(F2)

where Gc and Gc∗ denote the single-particle Green’s function
for quasiparticles and quasiholes, respectively. Further, using
the spectral expansion with

Gc(k, iωn) =
∫ +∞

−∞

d


π

Ac(k,
)

iωn − 

, (F3)

where Ac(k, ω) = − Im Gc(k, ω) represents the spectral func-
tion, and then applying Masubara summation and analytic
continuation, we find that, at the mean-field level (single
bubble diagram), the charge spectrum tends to zero, i.e.,

Imχc(q, ω = 0) = 0, (F4)

which might suggest that there is no static charge order.
However, it is important to note that the potential to induce
CDW instability is actually hidden in χc. We clarify this by
examining the real part of χc:

Re χc(q, ω = 0)

∝
∫ �

0
d


∫ �

0
d
′ ∑

k

Ac(k,−
)Ac(q − k,
′)

× 1


 + 
′ , (F5)

∝
∑

k

Ac(k,
 = 0)Ac(q − k,
′ = 0), (F6)

where Eq. (F6) is obtained by approximating that the main
contribution to Re χc arises from frequencies near zero (i.e.,

 = 
′ = 0) due to the presence of 1/(
 + 
′) in Eq. (F5).
Equation (F6) indicates that the real part of the charge sus-
ceptibility at zero frequency is the result of the convolution of
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FIG. 14. The real part of the free charge susceptibility Re χ

(renormalized by dividing by the maximum value) is shown for
different doping densities. The dashed lines correspond to the peaks,
with momenta aligning with Q0 connecting two parallel hot spots, as
expounded in the main text. The symmetric redundancy peak loca-
tion, mentioned in the main text, is identified using arrows indicating
the momentum.

the spectral function at the Fermi surface. This suggests that
regions with high density at the Fermi surface will make a
significant contribution to the value of Re χc. The calculation
result of Re χc is presented in Fig. 14, which shows a peak
at the same momentum Q0 (indicated by dashed lines) as
discussed in Sec. III A 4.

Next, assuming the presence of residual interactions with
a strength of g that can decompose the charge channel, the
correction at the RPA level yields

χRPA
c (q) = χc(q)

1 − gχc(q)
, (F7)

which shows that the charge susceptibility χRPA
c can be en-

hanced at the momentum Q0 due to the smallest value of
1 − gχc(q) in the denominator of Eq. (F7) at this particular
momentum.

In addition, the charge susceptibility results reveal the
disappearance of additional peaks [marked by arrows in
the QPI mode in Fig. 6(b)] in Fig. 14. This suggests that these
redundant peaks are not intrinsic and are consistent with the
argument presented in Appendix E.

In summary, in the main text and Appendix E, we have
demonstrated that the QPI pattern can reveal information
about the momentum distribution of density at the Fermi
surface [as described in Eq. (E3)]. The scattering between the
hot spots located at the ends of the Fermi arcs leads to a charge
modulation pattern. Additionally, this section shows that any
feature of the quasiparticle spectrum at the Fermi surface
can be represented in the dynamical charge susceptibility at
the mean-field level. This is similar to the case of a free
Fermi liquid, where the hot spots or nesting structure at the
Fermi surface can lead to peaks at corresponding momenta.
However, in the free theory, the peak of the charge suscepti-
bility does not diverge unless the RPA correction is considered
for a specific channel. This implies that the leading order
calculation cannot produce direct static charge order (〈nq〉 =
0) without interactions with specific charge channels. In our

paper, we avoid discussing the specific form of interaction and
instead utilize impurities to mimic the effect of the interaction.
The t-matrix method can then be used to directly obtain the
finite static charge order. In other words, the impurities can
act as a mixture of channels, including the charge channel.

APPENDIX G: DYNAMIC SPIN SUSCEPTIBILITY
OF b-SPINONS

According to the mean-field Hamiltonian Eq. (A4), the
b spinons perceive the uniform static gauge field with δπ flux
per plaquette via Ah

i j generated by holons in the condensate
states. Thus, with the standard diagonalization procedure as
in Hofstadter system, we obtain

Hb =
∑
m,σ

Eb
mγ †

mσ γmσ , (G1)

with the b-spinon spectrum,

Eb
m =

√
λ2

b − (
ξ b

m

)2
, (G2)

via introducing the following Bogoliubov transformation:

biσ =
∑

m

ωmσ (i)
(
ub

mγmσ − vb
mγ

†
m−σ

)
. (G3)

Here, the coherent factors are given by

ub
m =

√
1

2

(
1 + λ

Eb
m

)
,

vb
m = sgn

(
ξ b

m

)√1

2

(
−1 + λ

Eb
m

)
, (G4)

and ξ b
m as well as wm(i) = wmσ (i) = w∗

m−σ (i) are the eigen-
functions and eigenvalues of the following equation:

ξ b
mωm(i) = −J�s

2

∑
j=NN(i)

eiσAh
i j ωm( j), (G5)

where Js = Jeff�
s/2 and Jeff = J (1 − δ)2 − 2γ δ2.

In this scheme, the parameters λb and �s are determined
by self-consistent calculation Eq. (B3). The energy level for b
spinons Eb

m at different doping is shown in Fig. 15, which is
composed of the Landau-level-like discrete levels with a finite
energy gap.

Then, by the relation Sb,z
i = 1

2

∑
σ σb†

iσ biσ , the Matsubara
spin-spin correlation function can be expressed as

χ zz(ri − r j, τ ) = 〈
T̂ Sb,z

j (τ )Sb,z
i (0)

〉
0

(G6)

= 1

4

∑
σσ ′

σσ ′〈T̂ b†
jσ (τ )b jσ (τ )b†

iσ ′ (0)biσ ′ (0)〉0

= 1

4

∑
σσ ′

σσ ′[〈T̂ b†
jσ (τ )b†

iσ ′ (0)〉0〈T̂ b jσ (τ )biσ ′ (0)〉0

+〈T̂ b†
jσ (τ )biσ ′ (0)〉0〈T̂ b jσ (τ )b†

iσ ′ (0)〉0], (G7)

where 〈〉0 denotes the expectation value under the mean-field
state, and the Wick’s theorem is applied in the last line. Then,
by using the Bogoliubov transformation Eq. (G3), together
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FIG. 15. The evolution of b-spinon energy levels with respect
to doping concentration when δ < δ∗ based on the mean-field self-
consistent calculations. The lowest excitation energy gap is labeled
by Eb

min here.

with the Green’s function

Gγ (m, iωn; σ ) ≡ −〈γmσ (iωn)γ †
mσ (iωn)〉0 = 1

iωn−Eb
m
, (G8)

the spin correlation function in momentum and frequency
space at T = 0 can be expressed as

χ zz(Q, iωn) = 1

8

∑
mm′

Cmm′ (Q)

(
λ2 − ξ b

mξ b
m′

Eb
mEb

m′
− 1

)

×
(

1

iωn + Eb
m + Eb

m′
− 1

iωn − Eb
m − Eb

m′

)
,

(G9)

where

Cmm′ (Q) ≡
∑

i j

1

N
e−iQ·(ri−r j )w∗

m(i)w∗
m′ ( j)wm′ (i)wm( j).

(G10)

Finally, the imaginary part of the dynamic spin susceptibil-
ity can be obtained by the analytic continuation χ ′′(Q, ω) =
Im χ zz(Q, iωn)|iωn→ω+i0+ , resulting in

χ ′′(Q, ω) = π

8

∑
mm′

Cmm′ (Q)

(
λ2 − ξ b

mξ b
m′

Eb
mEb

m′
− 1

)

× sgn(ω)δ
(|ω| − Eb

m − Eb
m′

)
. (G11)

APPENDIX H: SPECIFIC HEAT FOR b SPINONS

The contribution to the specific heat from b spinons can be
expressed as

γ ≡ Cb
V

T
= − 1

N

∂2

∂T 2
Fb, (H1)

where Fb is the free energy for b spinons given in Eq. (B2).
Thus, the specific heat can be further written as

γ = 1

N

∑
m

2
(
Eb

m

)2

kBT 3
nB(Eb

m)
[
nB

(
Eb

m

) + 1
]
, (H2)

where nB(ω) = 1/(eβω − 1) is the Bose distribution function
and Eb

m is the b-spinon spectrum given in Eq. (G2).
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