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We study the competition between the electron liquid and solid phases, such as Wigner crystal and bubbles,
in partially filled Landau levels (LLs) of multilayer graphene. Graphene systems offer a versatile platform for
controlling band dispersion by varying the number of its stacked layers. The band dispersion determines the
LL wave functions, and consequently, the LL-projected Coulomb interaction in graphene and its multilayers is
different from that in conventional semiconductors like GaAs. As a result, the energies of the liquid and solid
phases are different in the different LLs of multilayer graphene, leading to an alternative phase diagram for the
stability of these phases, which we work out. The phase diagram of competing solid and liquid phases in the LLs
of monolayer graphene has been studied previously. Here we primarily consider AB- or Bernal-stacked bilayer
graphene (BLG) and ABC-stacked trilayer graphene (TLG) and focus on the Laughlin fractions. We determine
the cohesive energy of the solid phase using the Hartree-Fock approximation, and the energy of the Laughlin
liquid is computed analytically via the plasma sum rules. We find that at the Laughlin fillings, the electron liquid
phase has the lowest energy among the phases considered in the N = 0, 1, 2 LLs of BLG, as well as in the
N = 3, 4 LLs of TLG, while in the N > 2 LLs of BLG and N > 4 LLs of TLG, the solid phases are more
favorable. We also discuss the effect of impurities on the above-mentioned phase diagram.
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I. INTRODUCTION

Two-dimensional electron systems (2DESs) placed under
a strong perpendicular magnetic field and cooled to low tem-
peratures provide a fertile platform to study interaction-driven
electronic phases. Electron-electron interactions in this regime
stabilize a multitude of phases including the fractional quan-
tum Hall effect (FQHE) [1,2], charge density wave (CDW)
states [3] like Wigner crystal (WC) [4,5], bubble phases [4,6],
stripes [4,7–9], etc. Traditionally, these phases have been stud-
ied in 2DESs formed in semiconducting quantum wells or
heterojunctions of GaAs/AlGaAs systems. With the advent of
van der Waals heterostructures, graphene and a few layers of
stacked graphene have provided a new platform for realizing
2DESs, which have properties that are different from those of
conventional GaAs systems. These graphene-based systems
are of particular interest due to their highly tunable band
structure [10–12], presence of additional degrees of freedom
such as spin, orbital, valley, etc., and the ability to control the
interelectronic interactions [13] through knobs such as electric
bias and magnetic field.

Owing to the linear dispersion of electrons around the
Dirac points and nearly degenerate states for spin and valley
degrees of freedom [14], monolayer graphene (MLG) dis-
plays anomalous behavior in both the integer quantum Hall
(IQH) effect and FQHE regimes [15–21]. Depending on the
number of layers and stacking configurations, the electronic
properties of multilayer graphene systems differ from those of
MLG [22,23]. In the case of ABC· · ·-stacked J-layer graphene
(J-LG), which we will focus on, electrons near the band

touching points possess a Berry phase of Jπ , which distin-
guishes them fundamentally from MLG where electrons have
a Berry phase of π [24]. As a result of this Berry phase,
when exposed to a perpendicular magnetic field, a zero-energy
manifold consisting of J-fold degenerate LLs, characterized
by an orbital quantum number N = 0, 1, . . ., J−1 is formed
in J-LG. These orbital degrees of freedom are absent in MLG.
Taking spin and valley degrees of freedom into account, the
zero-energy manifold becomes 4J-fold degenerate, and we
will refer to this manifold as the zeroth LL (ZLL) of J-LG.
The presence of this ZLL leads to an unconventional sequence
of IQH states in J-LG at fillings ν = ±4(n+J/2), where n =
0, 1, . . . [25,26]. In the presence of the Coulomb interaction
between electrons, new IQH states emerge as the degeneracy
associated with spin, valley, and orbital quantum numbers gets
lifted via the mechanism of quantum Hall ferromagnetism
[27–31]. In our study, we will consider the first few LLs
of graphene multilayers, such as AB- or Bernal-stacked bi-
layer graphene (BLG) where J = 2, and ABC-stacked trilayer
graphene (TLG) [24,26] where J = 3.

A strong perpendicular magnetic field in conjunction with
a symmetry-breaking term quenches the dynamics of elec-
trons to a particular LL with a given spin, valley, and orbital
degree of freedom. The interaction physics in the LL of in-
terest is governed by its effective Coulomb interaction, which
is described by a LL-dependent form factor. Electrons con-
fined to the lowest LL (LLL) of GaAs exhibit a plethora of
FQHE liquid phases, which are predominantly described by
the theory of Laughlin [2] and Jain [32]. At very low fillings
in the LLL, electrons are expected to arrange themselves
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in a triangular lattice called the Wigner crystal [5,33,34].
The second LL (SLL) of GaAs also exhibits FQHE, which
can be explained in a unified manner using the framework
of the parton theory [35–39]. In the higher LLs of GaAs,
the effective interaction between electrons becomes attrac-
tive, which favors the formation of stripes or bubble phases
where two, three, or more electrons cluster at a site, and
these clusters are arranged in a triangular lattice [6,7,40–
46]. Competition between the FQHE liquid and electron solid
phases like WC and bubble phases in the higher LLs give
rise to re-entrant IQH effect (RIQHE) [47–53], where the
longitudinal resistance vanishes around a fractional filling
between the usual sequence of FQHE states and develops
a plateau in the Hall conductivity with a value quantized
to the nearest integer. We note that very recently a bubble
phase not of electrons but electron-vortex composites called
composite fermions (CFs) [32] was observed in the LLL of
GaAs [54].

Owing to the linear dispersion in MLG, the effective
interaction in its LLs differs from those in conventional semi-
conducting systems. In the absence of LL mixing, the physics
of the N = 0 LL of MLG is identical to the ideal LLL of
nonrelativistic electrons [55,56] (We thus refer to the N = 0
LL of MLG as LLL.). The effective interaction in the other
LLs of MLG is distinct from those of the higher LLs of
GaAs [55,57]. In the approximation that we will be working
in, the physics of LLs with negative energy (“hole LLs”) is
identical to that of the corresponding LL with positive en-
ergy (“electron LLs”), and thus it suffices to consider only
the latter, i.e., LLs with orbitals N � 0. The N = 1 LL of
MLG has been studied extensively both theoretically [55,58]
and experimentally [57,59] and is known to stabilize liquid
phases. The competition between electron solid and FQHE
liquid phases in the other LLs of MLG has also been explored
[60]. Recently, RIQHE has been observed in the N = 2 LL of
MLG [61], indicating the presence of competing CDW states
as predicted theoretically [60]. Very recently, bubble phases
and phase transitions among bubble crystals with different
numbers of electrons per bubble have also been observed in
several LLs (up to N = 4) of MLG [62].

In this paper, we extend the analysis of the competition
between liquid and solid phases like WC and bubble phases
to the LLs of Bernal-stacked BLG and ABC-stacked TLG,
particularly focusing on the Laughlin fractions [2], i.e., at
fillings ν̄ = 1/(2s+1), where s is a positive integer. For both
BLG and TLG, we consider the LLs ranging from N = 0 to
N = 5. In LLs with orbital quantum number N > 5, electron
solid phases or stripes are expected to prevail. The N = 1
orbital of the ZLL of BLG is special in that the interelectronic
interaction in it can be continuously tuned as a function of
the perpendicular magnetic field [63–65]. The interaction in
this LL interpolates between that in the LLL and the SLL
of GaAs as the magnetic field is tuned from large values to
small ones. The effective Coulomb interaction in the N = 1
ZLL of BLG for low magnetic fields exhibits a short-range
attractive component that can promote the formation of elec-
tronic bubble phases. Like the higher LLs of GaAs and MLG
[48,60,66], the short-range part of the effective interactions
in the higher LLs of BLG for N > 2 and TLG for N > 3
become attractive, favoring the formation of bubble phases.

To quantitatively compute the phase diagram of competing
electron solid and liquid phases, we have calculated the co-
hesive energy of the solid phase using the Hartee-Fock (HF)
approximation while the energy of the liquid phase at the
Laughlin filings is calculated analytically using the plasma
sum rules. To compare with the analytically computed Laugh-
lin liquid energies, we have determined the exact Coulomb
ground-state energies at fillings 1/3 and 1/5 in the LLs of
BLG and TLG by exact diagonalization. To further assess the
accuracy of the Laughlin states as candidate wave functions
at fillings 1/3 and 1/5 in the various LLs of BLG and TLG,
we have also computed its overlap with the exact Coulomb
ground states. We find for all magnetic fields, the Laughlin
liquid dominates over the WC phase in the N = 1 ZLL of
BLG while the bubble phases may appear at non-Laughlin
fillings for small magnetic fields. In the N = 2 LL of BLG,
and in the N = 3 and N = 4 LLs of TLG, the Laughlin liquid
has the lowest energy among the phases considered. In the
other higher LLs of both BLG and TLG, the electron bubble
phases become viable. We also discuss the effect of impurities
on the stability of the electron solid and liquid phases. The
main results of our work are summarized in Table I. A caveat
to keep in mind is that we have not considered phases such as
stripes, nematics, or Wigner crystal or bubble phases of CFs
(we have considered these phases only for electrons) or Fermi
liquid of CFs [67], which can potentially also be feasible in
these LLs. Thus, if any of these phases (which are difficult
to deal with) happen to have the lowest energy in the LLs
that we consider (for example, extensive numerical calcula-
tions have shown that at low fillings in the LLL, the Wigner
crystal of CFs has lower energy than the electron crystal and
strongly competes with the FQHE liquids [34]), we will not
be able to capture that. Therefore, the phase that we predict
has the lowest energy only among the phases that we have
considered.

The rest of the paper is organized as follows: In Sec. II A
we review the four-band and two-band models of BLG that
describe its low-energy properties. We also discuss the effec-
tive two-band Hamiltonian of ABC· · ·-stacked J-LG, which
for J= 2 reproduces the two-band model of BLG. In Sec. II B
we derive the LL-projected Coulomb interaction in the various
LLs of BLG and TLG and discuss its functional form. In
Sec. III we calculate the energy of the electron solid phase,
and in Sec. IV the energy of the Laughlin liquid. In Sec. IV
we also present results obtained from exact diagonalization.
The calculated phase diagram in the various LLs of BLG
and TLG is summarized in Sec. V. The effect of disorder
on the phase diagram is discussed in Sec. VI. The paper is
concluded with a discussion of our results and their exper-
imental ramifications in Sec. VII. Appendixes A–D contain
technical details and additional numerical results. Appendix A
discusses the spectrum of the chiral fermion model for J-LG
in detail. Appendixes B 1 and B 2 present the disk and
spherical Haldane pseudopotentials [68] of the Coulomb in-
teraction in various LLs of J-LG, respectively. In Appendix C
we have tabulated overlaps between the Laughlin and exact
Coulomb ground states in the different LLs of J-LG. In Ap-
pendix D we present the quasiparticle and quasihole energies
above the Laughlin states in the various LLs of BLG and
TLG.
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TABLE I. Lowest energy states among the Laughlin liquid and M-electron bubble phases at fillings 1/3, 1/5, 1/7, and 1/9 in the LLs of
bilayer graphene and trilayer graphene. “Yes” (“No”) represents the presence (absence) of impurities with pinning strength Epin = 10−4.

LLs of bilayer graphene

ν̄ Impurity N = 1 N = 2 N = 3 N= 4 N = 5

1/3 No Laughlin liquid Laughlin liquid 2-bubble 3-bubble 4-bubble
Yes Laughlin liquid Laughlin liquid 2-bubble 3-bubble 4-bubble

1/5 No Laughlin liquid Laughlin liquid Laughlin liquid 2-bubble 2-bubble
Yes Laughlin liquid Laughlin liquid Wigner crystal 2-bubble 2-bubble

1/7 No Laughlin liquid Laughlin liquid Laughlin liquid Laughlin liquid 2-bubble
Yes Wigner crystal Wigner crystal Wigner crystal Wigner crystal 2-bubble

1/9 No Laughlin liquid Laughlin liquid Laughlin liquid Laughlin liquid Laughlin liquid
Yes Wigner crystal Wigner crystal Wigner crystal Wigner crystal Wigner crystal

LLs of trilayer graphene

N = 3 N= 4 N = 5

1/3 No Laughlin liquid Laughlin liquid 3-bubble
Yes Laughlin liquid Laughlin liquid 3-bubble

1/5 No Laughlin liquid Laughlin liquid 2-bubble
Yes Laughlin liquid Wigner crystal 2-bubble

1/7 No Laughlin liquid Laughlin liquid Laughlin liquid
Yes Wigner crystal Wigner crystal Wigner crystal

1/9 No Laughlin liquid Laughlin liquid Laughlin liquid
Yes Wigner crystal Wigner crystal Wigner crystal

II. THE MODEL

A. Noninteracting Hamiltonian of bilayer and J-layer graphene

Bilayer graphene comprises two graphene layers as shown
in Fig. 1(a), with the bottom layer containing sublattices A1

and B1, and the upper layer containing sublattices A2 and
B2, resulting in a unit cell of four atoms. Our focus will
be on Bernal- or AB-stacked BLG where A2 is positioned

directly above B1, and B2 is directly above the center of a
hexagonal plaquette of the bottom layer [see Fig. 1(a)]. Using
the Slonczwski-Weiss-McClure tight-binding parametrization
[69], we consider only the nearest-neighbor intralayer cou-
pling γ0 between Ai and Bi sublattice sites within each layer,
and the nearest-neighbor interlayer coupling γ1 between the
A2 and B1 sublattice sites. We neglect all other couplings be-
tween the sublattice sites as they have relatively minor effects

FIG. 1. Lateral and top view of the stacking configuration in (a) Bernal-stacked bilayer graphene and (b) ABC· · ·-stacked J-layer graphene
are shown schematically. In each layer, the inequivalent sublattice sites A and B are shown by filled red and empty blue circles, respectively.
The coupling parameters γ0 and γ1 denote the nearest-neighbor intralayer coupling in each layer and the nearest-neighbor interlayer coupling
between adjacent layers, respectively.
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on the band structure [70]. The low-energy properties of BLG
are captured by a four-band model that applies in the vicin-
ity of the two inequivalent Fermi points K and K ′ (referred
to as valleys) in the Brillouin zone [71]. The lowest-energy
conduction band and the highest-energy valence band touch
each other at the K and K ′ points with a quadratic dispersion,
in contrast to MLG where the dispersion is linear [14,71].
When a uniform perpendicular magnetic field B is applied, the
Hamiltonian for spin-polarized electrons around the K valley
can be expressed in the basis (A1, B2, A2, B1) as [25]

HK =

⎛
⎜⎜⎜⎜⎝

0 0 0 v0π
†

0 0 v0π 0

0 v0π
† 0 γ1

v0π 0 γ1 0

⎞
⎟⎟⎟⎟⎠. (1)

Here the velocity v0 = √
3aγ0/(2h̄) where a is the lattice con-

stant. The operators π† and π , in the Landau gauge, coincide
with the LL creation and annihilation operators, respectively
[25] (see Appendix A). These operators act on the N th LL
eigenstates |N , X 〉 of a nonrelativistic 2DES as

π†|N , X 〉 = i
h̄

�

√
2(N + 1) |N + 1, X 〉,

π |N , X 〉 = −i
h̄

�

√
2N |N − 1, X 〉 forN > 0, (2)

and π |0, X 〉 = 0,

where the magnetic length � = √
h̄c/(eB) and the quantum

number X labels the degenerate eigenstates within a LL that
are associated with the guiding center coordinates. The Hamil-
tonian HK ′ around the valley K ′ is obtained by replacing π by
π† and π† by π in HK . For both the Hamiltonians HK and
HK ′ , there exist two zero-energy LLs with orbital quantum
numbers N = 0 and N = 1. The eigenstates associated with
these LLs are [63]

∣∣�̃(J=2)
K,N=0,X

〉 =
⎛
⎜⎜⎜⎜⎝

|0, X 〉
0

0

0

⎞
⎟⎟⎟⎟⎠, (3)

∣∣�̃(J=2)
K,N=1,X

〉 =
⎛
⎜⎜⎜⎜⎝

sin(θ )|1, X 〉
0

cos(θ )|0, X 〉
0

⎞
⎟⎟⎟⎟⎠, (4)

∣∣�̃(J=2)
K ′,N=0,X

〉 =
⎛
⎜⎜⎜⎜⎝

0

|0, X 〉
0

0

⎞
⎟⎟⎟⎟⎠, (5)

∣∣�̃(J=2)
K ′,N=1,X

〉 =
⎛
⎜⎜⎜⎜⎝

0

sin(θ )|1, X 〉
0

cos(θ )|0, X 〉

⎞
⎟⎟⎟⎟⎠. (6)

The tunable parameter θ is related to the magnetic field as
tan(θ ) = γ1�/(

√
2h̄v0)∝1/

√
B. The eigenstates and eigenval-

ues of the remaining LLs (those of the other spin and higher
LLs) can be determined similarly.

The low-energy effective theory of BLG can also be de-
scribed by a two-band chiral fermion model [24] with chirality
index J = 2 (see Appendix A for details). The single-particle
chiral Hamiltonian for the spin-polarized electrons under a
perpendicular magnetic field at the valley K is given by
[24–26]

HK = − 1

2m∗

(
0 (π†)2

π2 0

)
, (7)

where the effective mass m∗ = γ1/(2v2
0 ). The above Hamilto-

nian is written on the (B1, A2) basis. The Hamiltonian HK ′ at
the valley K ′ is obtained by replacing π by π† and vice versa.
Due to the presence of inversion symmetry in unbiased (ab-
sence of any perpendicular electric field between the layers)
BLG, the LL spectrum of the Hamiltonians HK and HK ′ are
identical. The single-particle spectrum at the valley K is given
by [24–26]

EK,N = ±h̄ωc

√
N (N − 1),

where N is a non-negative integer that labels the orbital
quantum number of a LL, and the cyclotron frequency ωc =
eB/(m∗c), where m∗ is the effective mass. The ± sign denotes
the electron and hole states, respectively. The LLs with orbital
quantum number N = 0 and N = 1 are degenerate at zero
energy:

EK,N=0 = EK,N=1 = 0.

Including the spin and valley degrees of freedom, the ZLL
of BLG becomes eightfold degenerate. The eigenstates corre-
sponding to the above LLs are given by [24–26]

∣∣�(J=2)
K,N ,X

〉 =
(|N , X 〉

0

)
, N = 0, 1, (8)

∣∣�(J=2)
K,N ,X

〉 = 1√
2

( ∓|N , X 〉
|N−2, X 〉

)
, N � 2. (9)

Similar to the four-band Hamiltonian described in Eq. (1),
the two-band chiral fermion model of Eq. (7) reproduces the
N = 0 and N = 1 LLs with zero energy. Nonetheless, the
structure of the eigenstates corresponding to these LLs in
the four-band Hamiltonian differs from that of the two-band
model. The eigenstates in the ZLL of the chiral fermion model
[as seen in Eq. (8)] have complete weight on one or the other
layer depending upon the valley index. However, the corre-
spondence between valley and layer within the ZLL of the
four-band Hamiltonian is not exact: eigenstates of the N = 0
orbital [see Eqs. (3) and (5)] reside entirely on one or the other
layer depending on the valley index while wave functions of
the N = 1 orbital [see Eqs. (4) and (6)] have support on both
the layers. The experimentally observed quantum Hall states
within the ZLL of BLG can be accounted for by considering
the ZLL eigenstates of the four-band Hamiltonian [65,72–74]
but not by those of the chiral fermion model. Experimental
findings in the higher LLs, particularly in the N = 2 LL, can
be effectively described by the chiral fermion model [55].
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In the N = 2 LL, FQHE states with odd denominators are
observed while even denominator FQHE states are absent
[75]. This can be understood from the structure of the LL wave
functions in the chiral fermion model (although the argument
we provide next does not necessarily rule out the presence
of an even-denominator state in the N = 2 LL since one
has to test using numerics if the interaction in this LL can
stabilize an even-denominator state). In nonrelativistic LLs,
even-denominator states are hosted by the |1, X 〉 LL. The
wave function of the N = 2 LL of BLG in the chiral fermion
model comprises an equal superposition of nonrelativistic LLs
|0, X 〉 and |2, X 〉 [as seen in Eq. (9)], and neither of these
orbitals supports even denominator FQHE states. In our cal-
culations, we shall consider the eigenstates corresponding to
the ZLL manifold of BLG from the four-band Hamiltonian
and those corresponding to the N � 2 LL from the two-band
chiral fermion model. At the moment, we do not know of any
experimental observation in the N � 2 LLs of BLG whose
explanation requires going beyond the two-band model.

Next, we consider ABC· · ·-stacked (also referred to as
rhombohedral-stacked) J-LG where coupling between ad-
jacent layers is γ1 and the coupling within a layer is γ0.
Interlayer couplings beyond the adjacent layers have been
neglected. In this stacking, each pair of adjacent layers forms
a Bernal-stacked BLG with the upper A sublattice site directly
above the lower B sublattice, and the upper B sublattice sits
directly above the center of a hexagonal plaquette of the layer
beneath it [see Fig. 1(b)]. Like BLG, the chiral fermion model
with chirality index J can effectively describe the low-energy
theory of J-LG for a small number of stacking layers. In a
perpendicular magnetic field, the single-particle chiral Hamil-
tonian for J-LG, which acts on the sublattices of the outermost
layers, i.e., (B1, AJ ) has the form [24,26,76]

H(J )
K = −γ1(v0/γ1)J

(
0 (π†)J

π J 0

)
. (10)

The above Hamiltonian pertains to the spin-polarized elec-
trons at the valley K. As before, the Hamiltonian at the valley
K ′ is obtained by replacing π by π† and vice versa. The
single-particle spectrum of H(J )

K is given by [24,26,76]

EK,N = ±h̄ωJ

√
N (N − 1) · · · (N − J + 1),

where h̄ωJ = γ1(2h̄v0/(γ1�))
J∝BJ/2. The ± sign stands for

the electron and hole states, respectively. Similar to BLG,
the zero energy manifold of J-LG consists of 4J degenerate
LLs (including spin and valley degrees of freedom) since the
orbitals N = 0, 1, . . ., J−1 all have zero energy:

EK,N=0 = EK,N=1 = · · · = EK,N=J−1 = 0.

The corresponding eigenstates have the form [24,26,76]

∣∣�(J )
K,N ,X

〉 =
(|N , X 〉

0

)
, N = 0, 1, . . . , J − 1, (11)

∣∣�(J )
K,N ,X

〉 = 1√
2

( ∓|N , X 〉
|N − J, X 〉

)
, N � J. (12)

A derivation of the above energy spectrum can be found in
Appendix A.

In our study, we focus on the spin and valley polarized elec-
trons and confine them to the N th LL of multilayer graphene.
Without loss of generality, we consider spin-polarized elec-
trons at the valley K and omit the explicit mention of the
spin and valley indices. Within the ZLL manifold of BLG,
we consider only the N = 1 orbital. By setting the parameter
θ = 0 in the N = 1 ZLL eigenstates of Eq. (4), we recover
the physics of the N = 0 ZLL. For J−LG (J > 2), we restrict
ourselves to the LLs with N � J . This is because, similar to
the two-band model of BLG, the above two-band Hamiltonian
for J-LG may not correctly capture the structure of its ZLL
eigenstates. A four- or higher-band model may be required
to accurately describe the interaction physics in the ZLL of
J-LG for J > 2, which is beyond the scope of the current
work. We denote the partial filling of the topmost N th LL
as ν̄ = ν−[ν] = N/Nφ , where [ν] denotes the integer part of
ν, N is the number of electrons in this LL and Nφ = A/(2π�2)
is the number of flux quanta passing through the sample of
area A.

B. The Coulomb interaction

As we are interested in the phases of interacting electrons
restricted to a LL, in this section we discuss the Coulomb
interaction projected to a LL that can be written in terms
of the LL-projected density operators. The electron density
operator projected to the N th LL of J-LG (J � 2) is given by
ρ̄

(J )
N (r) = �

†
J (r)�J (r), where �J (r) is the real space electron

annihilation field operator. The operator �J (r) can be re-
expressed in terms of annihilation operators ĉN ,X associated
with the LL basis states as

�J (r) =
{∑

X

〈
r
∣∣�̃(J=2)

N ,X

〉
ĉN ,X for N = 1 ZLL of BLG∑

X

〈
r
∣∣�(J )

N ,X

〉
ĉN ,X for N � J.

The operator ĉ†
N ,X (ĉN ,X ) creates (annihilates) a state |N , X 〉

in the N th LL [see Eq. (4) for the N = 1 ZLL of BLG and
Eq. (12) for N � J LLs]. In reciprocal space, the density
operator can be written as [29,60]

ρ̄
(J )
N (q) = F (J )

N (q)
∑
X,X ′

〈X |e−iq·R|X ′〉c†
N ,X cN ,X ′

≡ F (J )
N (q)ρ̄(q), (13)

where q denotes the magnitude of the wave vector q, and R
is the guiding center operator [77]. The form factor F (J )

N (q),
which captures the form of the LL wave functions in the N th
LL, is written in terms of the yth order Laguerre polynomials
Ly(x) as follows:

In the N = 1 ZLL of BLG (J = 2)

F (J=2)
N=1 (q)=

[
sin2(θ )L1

(
q2�2

2

)
+ cos2(θ )L0

(
q2�2

2

)]
e−q2�2/4,

(14)

and in all other LLs with N � J

F (J )
N (q) = 1

2

[
LN

(
q2�2

2

)
+ LN−J

(
q2�2

2

)]
e−q2�2/4. (15)
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For some special values of the parameter θ , the form factor
of different physical systems can be obtained from the form
factor of the N = 1 ZLL of BLG [see Eq. (14)]. At θ = 0,
the form factor F (J=2)

N=1 (q) coincides with the form factor of
the N = 0 orbital of the ZLL of J-LG and also the n = 0 LL
(LLL) of nonrelativistic 2DESs [48]. For θ = π/4 and π/2,
the form factor of the N = 1 ZLL of BLG coincides with that
of the N = 1 LL of MLG [58,60] and the n = 1 LL (second
LL) of GaAs, respectively [48]. In J-LG, the form factor
of the LLs with N � J [see Eq. (15)] is an equal weighted
admixture of the form factors associated with the N th and
(N−J )th LLs of nonrelativistic 2DESs. We note here that
an even more accurate description of the ZLL of BLG (or
ABA-stacked TLG) can be obtained by introducing some ad-
mixture of the |2, X 〉 state (a more sophisticated version of the
four-band model that we presented can result in such a term),
i.e., to consider the form factor [70]

F (J=2)
N=1 (q) =

[
sin2(φ) sin2(θ )L2

(
q2�2

2

)

+ cos2(φ) sin2(θ )L1

(
q2�2

2

)

+ cos2(θ )L0

(
q2�2

2

)]
e−q2�2/4, (16)

where it suffices to consider 0 � θ, φ � π/2 since the form
factor is only dependent on sin2(φ) and sin2(θ ). (Similar ideas
can be applied to higher LLs and for other values of J .)
However, it is not precisely clear how exactly the weight of the
|2, X 〉 state is dependent on external parameters, such as the
magnetic field. Moreover, it remains to be seen if this admix-
ture of the |2, X 〉 state is significant and necessary to account
for any experimental observation. Therefore, we shall not be
considering the model given in Eq. (16) in the current work.

Since the electrons are restricted to a particular LL, their
kinetic energies are quenched, and the Hamiltonian consists
of only the Coulomb interaction v(r) [which is spherically
symmetric so v(r)≡v(r), where r = |r|] between them, which
we write as

H = 1

2

∫
d2rd2r′ρ̄ (J )

N (r)v(|r − r′|)ρ̄ (J )
N (r′).

Moving to the momentum space and using the expression of
the projected density operator defined in Eq. (13), the above
Hamiltonian can be rewritten as

H = 1

2

∑
q

v
(J )
N (q)ρ̄(−q)ρ̄(q), (17)

where
∑

q = A
∫

d2q/(2π )2 and v
(J )
N (q) is the effective inter-

action in the N th LL of J-LG, which is related to the Fourier
transform of the usual Coulomb interaction v(q) = 2πe2/εq
as follows:

v
(J )
N (q) = v(q)

[
F (J )
N (q)

]2
, (18)

where ε denotes the dielectric constant of the background host
material. Throughout this study, unless otherwise specified,
we shall consider the bare Coulomb interaction and neglect
the effects of screening by gates, LL mixing, and disorder.

Before proceeding to the detailed ground-state energy calcu-
lations, we present some qualitative analysis on the possibility
of the CDW states, in particular, the electronic bubble phases,
in the different LLs of J-LG. The analysis is based on the
structure of the real space form of the effective potential
v

(J )
N (q). Previously, it has been shown that the real space form

of the effective potential vn(q) = v(q)[Ln(q2�2/2)]2e−q2�2/2

corresponding to the n > 0 LLs of GaAs satisfies the scal-
ing law vn(r) = ṽ(r/RC )/(RC/�) [66], where the cyclotron
radius RC = √

2n+1�. For all n > 0, the scaled interaction
ṽ(r) exhibits a plateau of width 2RC . Due to the presence of
this plateau, two electrons separated by r < 2RC can come
close together with a low-energy penalty, thus allowing for the
formation of a cluster of electrons that can arrange themselves
to form electronic bubble phases [41].

In general, the form factor of J-LG is built from the
form factors of two different LLs of GaAs. To construct
a scaled real-space potential for J-LG, we define an ap-
propriately averaged cyclotron radius as follows: R̄ZLL

C =
�[

√
3 sin2(θ ) + cos2 θ ] for the N = 1 ZLL of BLG (J = 2)

and R̄(J )
C = (�/2)[

√
2N+1 + √

2(N−J )+1 ] for the N � J
LL of J−LG (J � 2). The corresponding real-space scaled
potentials ṽ(J )(r) are defined as

v
(J=2)
N=1 (r) = ṽ

(J=2)
N=1

(
r/R̄ZLL

C

)
R̄ZLL

C /�
,

v
(J )
N (r) = ṽ

(J )
N
(
r/R̄(J )

C

)
R̄(J )

C /�
.

In Fig. 2(a) the scaled potentials in the N = 1 ZLL of BLG for
different values of the parameter θ are shown. A plateau-like
structure starts to emerge around θ = π/3.4, at length scales
R̄ZLL

C < r < 2R̄ZLL
C and becomes fully developed at θ = π/2.

This can be understood by noting that the form factor in the
ZLL of BLG is a weighted superposition of the form factors
of the n = 0 and n = 1 LLs of GaAs, where the weights are
controlled by θ as seen in Eq. (14). The n = 0 LL interaction
potential develops no plateau, so it remains scale-free while
the n = 1 LL interaction potential develops a plateau around
2RC [48,66]. As the parameter θ increases, the amplitude of
the n = 0 LL decreases. Beyond a critical value of θ , a length
scale of 2R̄ZLL

C starts to emerge. Consequently, we anticipate
that bubble phases in the ZLL of BLG can occur only for
θ > π/3.4. In the higher LLs of BLG as shown in Fig. 2(b),
the scaled potentials fall on top of each other and develop a
plateau at length scales R̄(J=2)

C < r < 2R̄(J=2)
C , except in the

N = 2 LL. As in BLG, the scaled potentials in TLG [see
Fig. 2(c)], for LLs with N > 3 fall on top of each other at
length scales R̄(J=3)

C < r < 2R̄(J=3)
C , except in the N = 3 LL.

As shown in Fig. 2(c), the scaled potentials in the N > 3 LLs
of TLG also exhibit plateaus in the range r � R(J=3)

C . The
absence of a plateau in the scaled interaction in the N = 2
LL of BLG and the N = 3 LL of TLG can be attributed to the
fact that these LLs have a form factor that has 50% weight in
the LLL, which does not exhibit any plateau.

III. ENERGY OF ELECTRON SOLID PHASES

We will use the Hartree-Fock (HF) mean-field approxi-
mation, which is known to give an accurate description of
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FIG. 2. Effective scaled real-space Coulomb potentials in
(a) N = 1 zeroth LL of bilayer graphene for several values of the
parameter θ [defined in Eq. (6)], (b) nonzero energy LLs of bilayer
graphene, (c) nonzero energy LLs of trilayer graphene.

the electronic solid phases like WC and bubbles and stripes
[41,48], to find the energy of the solids under consideration.
The HF mean-field analysis provides a quantitative under-
standing of the RIQHE observed in higher LLs of GaAs that
arises due to the presence of the bubble phases [48]. Very
recently, phase transitions between bubble crystals in the LLs
of MLG have been observed and shown to be in quantitative
agreement with the HF results [62]. This suggests that the
same HF method can give a reasonable description of the
bubble crystals in few-layer graphene. Following Ref. [48],
the interaction Hamiltonian H [see Eq. (17)] in the HF

FIG. 3. Sketch of M-electron bubble phases for M = 1, 2, and 3,
with lattice constants M . Solid blue circles represent electrons, and
black circles represent bubbles.

approximation is given by

HHF = 1

2

∑
q

uHF,(J )
N (q)〈ρ̄(−q)〉ρ̄(q),

where

uHF,(J )
N (q) = uH,(J )

N (q) − uF,(J )
N (q).

Here the Hartree term uH,(J )
N is equivalent to the effective

interaction, i.e., uH,(J )
N = v

(J )
N (q), and the Fock exchange term

is related to the effective interaction v
(J )
N (q) as [48]

uF,(J )
N (q) = 1

Nφ

∑
p

v
(J )
N (p)e−i�2(p×q)z .

The cohesive energy Ecoh = 〈HHF〉/N corresponding to a
CDW state with the order parameter �(q) = 〈ρ̄(q)〉/Nφ is
given by [48]

ECDW,(J )
coh = Nφ

2Aν̄

∑
q

uHF,(J )
N (q)|�(q)|2.

We consider the order parameter corresponding to a M-
electron bubble phase, where clusters of M (M is a positive
integer) electrons are arranged in a triangular lattice of lattice

constant M =
√

4πM/(
√

3ν̄)�. Note that the electron bubble
phase with M = 1 is equivalent to the WC. A schematic of
electron bubble phases is shown in Fig. 3. The cohesive energy
of the M-electron bubble is [48]

EB,(J )
coh (N ; M, ν̄ ) = Nφν̄

AM

∑
l

uHF,(J )
N (Gl )

J2
1 (

√
2M�|Gl |)
�2G2

l

,

(19)

where Gl are the reciprocal lattice vectors of the triangular
lattice formed by the clusters of electrons and J1(x) is the
first-order Bessel function. The summation in the cohesive
energy converges rapidly, and thus, it suffices to obtain it by
summing over a few dozen reciprocal lattice vectors Gl of
different magnitudes.

Figure 4 shows the computed energy of the WC and two-
electron bubble phase in the N = 1 zero-energy LL of BLG
at θ = π/6. Other higher electron bubble phases have larger
energies and are not shown in the figure. This particular value
of θ serves as a representative of the observed trends in the
energy of solid phases for the entire range of the parameter
θ from 0 to π/2. We observe that for fillings ν̄ > 0.44, the
two-electron bubble phase has lower energy than the WC.
Similarly, across all other values of θ , the two-electron bubble
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FIG. 4. Cohesive energies of the Wigner crystal (M = 1) and
two-electron bubble phase in the N = 1 zero-energy LL of bilayer
graphene at θ = π/6 [see Eq. (6) for definition of the parameter θ ].

exhibits the lowest energy near half-fillings. However, for
0 < θ < π/3.4, we anticipate the WC phase to have the low-
est energy at all fillings as discussed in Sec. II B. This slight
deviation from the expectation may be due to the first-order
approximation employed in the computation of the solid phase
energy.

IV. FQH LIQUID

A. Energy of the Laughlin liquid and its excitations

Unlike in the solid phases, the HF approximation does
not capture the electronic correlations present in the FQHE
liquids. Thus, to evaluate the energy of the liquid state, we
rely on trial wave functions and exact diagonalization. We re-
strict ourselves to the states at filling fractions ν̄ = 1/(2s+1),
where s is a positive integer. In the lowest LL (N = 0), the
FQH states at these fillings are well described by Laughlin’s
wave functions [2]. In higher LLs, the true FQH ground state
(if FQH is stabilized in the first place) may not necessarily
have a good overlap with the Laughlin ansatz [78–80], and
other candidate FQHE states could compete with it [80–84].
Nevertheless, in this work, we consider only the possibility
that a Laughlin state is stabilized since unlike other competing
states, its energy can be computed semianalytically.

Following Ref. [48], the total energy of the Laughlin state
in the N th LL of J-LG can be written as

U = EL,(J )
coh (N , s) − ν̄

2A

∑
q

v
(J )
N (q), (20)

where EL,(J )
coh (N , s) is the cohesive energy of the Laughlin

liquid. The cohesive energy can be written in terms of the
Haldane pseudopotentials [68]

V (J,N )
m = 1

Nφ

∑
q

v
(J )
N (q)Lm(q2�2)e−q2�2/2, (21)

which is the energy of two electrons in a state of relative an-
gular momentum m, where m is an integer. Since we consider
electrons confined to a single LL, only the odd Haldane pseu-
dopotentials are relevant to determine the electron-electron
interaction energy. The pseudopotentials for the ZLL of
BLG and the higher LLs of BLG and TLG are given in

TABLE II. Comparison of the analytically obtained energy U
of the Laughlin liquid in the thermodynamic limit with the numer-
ically obtained energies (extrapolated to the thermodynamic limit
from finite-size systems) of the exact Coulomb ground state and the
Laughlin state at ν̄ = 1/3 and 1/5 in the spherical geometry using the
spherical pseudopotentials in the following LLs of bilayer graphene
(BLG) and trilayer graphene (TLG): (a) In the N = 1 zero-energy
LL of BLG for θ = 0, θ = π/4, and θ = π/2, (b) In the N = 2 LL
of BLG, (c) In the N = 3 LL of TLG. All energies are quoted in
units of e2/(ε�).

Analytical Numerical

Laughlin Laughlin Exact
LL ν̄ (U ) ansatz ground state

N = 1 BLG
θ = 0 1/3 −0.409 −0.40982(1) −0.41015(5) [83]
(LLL) 1/5 −0.3265 −0.3275(1) −0.328(1)
θ = π/4 1/3 −0.37 −0.37130(1) −0.3718(1)
(N = 1 MLG) 1/5 −0.311 −0.3119(2) −0.3128(4)
θ = π/2 1/3 −0.3245 −0.32644(2) −0.328(2) [83]
(SLL) 1/5 −0.294 −0.2952(2) −0.296(1)

1/3 −0.334 −0.3356(7) −0.336(1)N = 2 BLG
1/5 −0.292 −0.294(1) −0.296(2)
1/3 −0.297 −0.2993(2) −0.3001(4)N = 3 TLG
1/5 −0.272 −0.275(1) −0.276(2)

Appendixes B 1 and B 2. The cohesive energy of the Laughlin
state at filling 1/(2s+1) is given by [48]

EL,(J )
coh (N , s) = ν̄Nφ

πA

∞∑
m=0

cs
2m+1V

(J,N )
2m+1 , (22)

where cs
2m+1 are dimensionless coefficients. By exploiting the

plasma analogy of the Laughlin wave function [2], these co-
efficients are found to satisfy three sum rules that are related
to the charge neutrality, perfect screening, and compressibil-
ity of the two-dimensional plasma [85]. The coefficients are
obtained by using the sum rules as constraints and fitting the
pair-distribution function of the Laughlin state to large-scale
Monte Carlo calculations [85]. Alternatively, they can also be
computed analytically by assuming cs

2m+1 = 0 for m � s+3,
along with the aforementioned sum rules and using the con-
dition that electrons at short distance repel each other, which
yields cs

2m+1 = −1 for m < s [86]. The coefficients obtained
by this procedure can be found in Table II of Ref. [60] and
will be utilized here for the analytic computation of energy
of the Laughlin state. The total energies, which include the
contribution of the positively charged background, U of the
Laughlin liquid at ν̄ = 1/3 and 1/5 in the LLs of BLG and
TLG are given in Table II.

Around the immediate vicinity of the Laughlin filling ν̄ =
1/(2s+1), the system can be viewed as consisting of a dilute
density of quasiparticles (for ν̄+ > ν̄) or quasiholes (for ν̄− <

ν̄). The cohesive energy at fillings ν̄+ or ν̄− can be obtained
by considering the energy cost for creating quasiparticles or
quasiholes above the Laughlin liquid, respectively. The energy
cost associated with the formation of quasiparticles (�+) and
quasiholes (�−) can be obtained analytically by using Murthy
and Shankar’s Hamiltonian theory [87,88]. For the nth LL of
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GaAs, they are given by

�n
+(s, p) = 1

2

∫
q
vn(q)〈p|ρ̄ p(−q)ρ̄ p(q)|p〉

−
∫

q
vn(q)

p−1∑
j′=0

|〈p|ρ̄ p(q)| j′〉|2 (23)

and

�n
−(s, p) = −1

2

∫
q
vn(q)〈p − 1|ρ̄ p(−q)ρ̄ p(q)|p − 1〉

+
∫

q
vn(q)

p−1∑
j′=0

|〈p − 1|ρ̄ p(q)| j′〉|2. (24)

The matrix elements in the above equations are given explic-
itly as

〈 j|ρ̄ p(q)| j′〉 =
√

j′!
j!

(
−i
(
qx − iqy

)
�∗C√

2

) j− j′

× e−|q|2�∗2C2/4

[
L j− j′

j′

( |q|2�∗2C2

2

)

−C2(1− j+ j′ )e−|q|2/2C2
L j− j′

j′

( |q|2�∗2

2C2

)]
,

where �∗ = �/
√

1 − C2, C2 = 2ps/(2p + 1) with s and p
being integers, and L j

y (x) is the yth-order associated Laguerre
polynomials for some integer j. For the Laughlin states, p = 1
since the Hamiltonian theory uses the CF states, and in the CF
language, the Laughlin state of electrons at filling 1/(2s+1)
can be viewed as CFs carrying 2s vortices that fill the lowest
CF-LL (p = 1) completely [32].

The quasiparticle and quasihole energies in the N th LL
of J-LG are calculated by substituting v

(J )
N (q) for vn(q)

in Eqs. (23) and (24) and are denoted as �
(J )
+ (N , s) and

�
(J )
− (N , s), respectively. The computed quasiparticle and

quasihole energies of the Laughlin states in the several LLs of
BLG and TLG are given in Appendix D. The cohesive energy
of the liquid phase around ν̄ = 1/(2s+1) formed by quasi-
holes at ν̄− and quasiparticles at ν̄+ can be approximated as

EL,(J )
coh (ν̄±,N , s) = EL,(J )

coh (N , s) + [ν̄±(2s+1)−1]�(J )
± (N , s).

(25)

The energy of the liquid phase between two Laughlin fillings
is computed by taking the minimum of the liquid phase
energy formed by quasiparticles around the lower Laughlin
filling and quasiholes around the higher Laughlin filling. We
reemphasize that the energy of the liquid phase away from the
Laughlin fillings obtained from Eq. (25) is an approximate
one and used to just compare with the energy of the solid
phase. Note that the cohesive energy of the liquid phase,
shown by black dotted lines in Figs. 8(b), 8(c), and 9(a), does
not form a continuous curve. This is due to the very small
energy of quasiholes, which prevents the energy of the liquid
phase formed by quasiholes of the higher Laughlin filling
and that of quasiparticles of the lower Laughlin filling from
intersecting with each other.

TABLE III. Landau levels in MLG, BLG, and TLG where the
Laughlin states at ν̄ = 1/3 and 1/5 have high overlap with the exact
Coulomb ground states.

ν̄ MLG BLG TLG

1/3 N = 0, 1 N = 0, 1 (for 0 � θ � π/4), 2 N = 0, 3, 4
1/5 N = 0, 1, 2 N = 0, 1 (for all θ ), 2, 3 N = 0, 1, 3

B. Exact diagonalization results

In this section, we will discuss results obtained from nu-
merical exact diagonalization, which allows us to check the
accuracy of the Laughlin wave function in the LLs of J-LG.
All our numerical calculations are carried out in the spherical
geometry [68] where N electrons move on the surface of a
sphere that is pierced by a radial magnetic flux of strength
2Qhc/e that emanates from a magnetic monopole that sits
at the center of the sphere. For the LL indexed by N , the
shell-angular momentum l is related to the flux as l = Q+N .
On the sphere, the ν̄ = 1/(2s+1) Laughlin state occurs when
2l = (N−1)/ν̄. We shall use the planar disk and spherical
pseudopotentials (see Appendixes B 1 and B 2) to carry out
exact diagonalization at ν̄ = 1/3 and 1/5 in the different
Landau levels of multilayer graphene. We have also obtained
the energy of the Laughlin state (which serves as a varia-
tional upper bound) in these Landau levels and overlaps of
the Laughlin state with the exact Coulomb ground states. The
contribution of the positively charged background, which is
required to obtain the per-particle energies, is accounted for
following the procedure outlined in the supplemental material
of Ref. [83]. Before an extrapolation to the thermodynamic
limit, the per-particle energies are density-corrected [89], i.e.,
the energies are multiplied by a factor of

√
2l ν̄/N , which

mitigates the N dependence of the energies.
In Figs. 5 and 6, numerically computed energies along

with their thermodynamic extrapolation of the exact Coulomb
ground state and the Laughlin state at ν̄ = 1/3 and 1/5 are
shown for the N = 1 ZLL of BLG and the N = 2 LL of
BLG and N = 3 LL of TLG, respectively. Additionally, in
Fig. 6 we have also presented the exact Coulomb ground-
state energies in the N = 1 LL of MLG (equivalent to the
N = 1 LL of BLG for θ = π/4) obtained using spherical
geometry, and find that these energies are consistent with
those obtained using torus geometry in Ref. [60]. In Table II
we have compared the energies of the Laughlin liquid with
the exact Coulomb ground-state energy in these LLs and find
a reasonable agreement between them, which suggests that
the Laughlin liquid phase could be stabilized in these LLs.
We find an excellent agreement between the analytically and
numerically computed energies of the Laughlin liquid, which
validates the analytic procedure described in the previous
section to determine the energy of the Laughlin state. The
overlaps between the Laughlin and exact Coulomb ground
state in the several LLs of BLG and TLG are given in Ap-
pendix C. Below we briefly summarize our results.

The overlaps of the Laughlin state with the exact Coulomb
ground state in the LLs of BLG and TLG follow certain
rules (determined empirically and tabulated in Table III)
that depend on the weight of the n = 0 or n = 1 LLs of
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FIG. 5. Thermodynamic per-particle density-corrected Coulomb energies of the ν̄ = 1/3 and 1/5 Laughlin states in the N = 1 zero-energy
LL of BLG as a function of the parameter θ obtained using the spherical and disk pseudopotentials in the spherical geometry. The error bars
are obtained from the uncertainty in the linear fit as a function of 1/N . “MLG1” represents the N = 1 LL of MLG, which is equivalent to the
N = 1 LL of BLG for θ = π/4 [see Eq. (6)]. Similarly, for θ= 0 and θ = π/2, the N = 1 LL of BLG, is equivalent to the LLL (n = 0) and
SLL (n = 1) of GaAs, which are indicated adjacent to these θ values.

nonrelativistic 2DESs in its form factor [see Eqs. (3) to (6)
for zero-energy LLs and Eq. (9) for nonzero energy LLs of
BLG; for TLG, see Eqs. (11) and (12)]. In the LLs that have at

least half of the n = 0 LL wave function, the Laughlin state at
1/3 filling shows a very high overlap with the exact Coulomb
ground state. This is because the Laughlin states build good
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FIG. 6. Thermodynamic extrapolation of the per-particle density-corrected energies of the ν̄ = 1/3 and 1/5 Laughlin and exact Coulomb
ground states in the N = 1 Landau level of MLG, N = 2 Landau level of BLG, and N = 3 Landau level of TLG obtained using the spherical
and disk pseudopotentials in the spherical geometry. The numbers shown in parentheses are the uncertainty in the linear fit as a function of
1/N .
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correlations to efficiently minimize the short-range repulsion
that is strongest in the n = 0 LL. Specifically, in the N = 0
ZLL of BLG, in the N = 1 ZLL of BLG for 0 � θ � π/4,
in the N = 2 LL of BLG and in the N = 0, 3 LLs of TLG,
the Laughlin state at 1/3 filling has high overlap with the
exact Coulomb ground state. In the LLs of BLG and TLG that
contain at least half of the n = 0 or n = 1 LLs, the ν̄ = 1/5
Laughlin state has a good overlap with the exact Coulomb
ground state. To be specific, we observe a very high overlap
between the Laughlin state and exact Coulomb ground state at
ν̄ = 1/5, in the N = 1 ZLL of BLG for all θ , in the N = 2, 3
LLs of BLG, and in the N = 0, 1, 3 LLs of TLG. As we shall
see later, the above rules are also consistent with our studies of
the energy of the liquid and solid phases that find the Laughlin
liquid state to prevail in the above-mentioned LLs. In the
N = 3 LL of BLG at ν̄ = 1/3, the solid phase dominates [see
Sec. V B] and exact diagonalization shows the absence of a
uniform ground state. Similarly, in the N = 4 LL of BLG at
ν̄ = 1/3 and 1/5, in exact diagonalization, we find no uniform
ground state or negligibly small overlap of the Laughlin state
with the exact Coulomb ground state. Consistently, our studies
of the energy of the liquid and solid phases given in Sec. V B
indicate the dominance of the solid phase at these fillings.

We note one exception to the rules mentioned above. In the
N = 4 LL of TLG, we find reasonably high overlap between
the Laughlin and exact Coulomb ground state at ν̄ = 1/3 but
a low number for the corresponding overlap at ν̄ = 1/5. This
is surprising since the N = 4 LL of TLG contains the n = 1
LL as a component (and no n = 0 LL), which would suggest
a high overlap of the ν̄ = 1/5 Laughlin state with the exact
Coulomb ground state. In our study of competing phases in
the N = 4 LL of TLG [see Sec. V C], too, we find the 1/5
Laughlin liquid to have the lowest energy among the phases
considered. It is plausible that phases like stripes or nematics
that we have not considered may have even lower energy than
the Laughlin liquid at these fillings in the N = 4 LL of TLG,
which can explain the anomalous overlaps we find.

For completeness, in Table III we have also given the LLs
of MLG where the Laughlin states have high overlap with
the exact Coulomb ground states [80] [see also Appendix C].
Surprisingly, even though the Laughlin state at ν̄ = 1/5 in the
N = 1 LL of MLG has high overlap with the exact Coulomb
ground state (see Table IV of Ref. [80]), to the best of our
knowledge, an FQHE state at this filling has not yet been
observed in an experiment [57,90].

V. COMPETITION BETWEEN ELECTRON SOLID
AND ELECTRON LIQUID PHASES

In this section, we discuss the phase diagram in the various
LLs of BLG and TLG by comparing the energy of the electron
solid phase computed using Eq. (19) with the energy of the
liquid phase that is computed using Eqs. (22) and (25). Due
to the ν̄↔1−ν̄ particle-hole symmetry in a given LL [91], we
limit our discussion to filling fractions in the ν̄ � 1/2 range.
Next, we will discuss the possible phases in the different LLs
individually. For ease of access, the calculated phase diagram
at the Laughlin filling fractions is summarized in Table I.

A. Phases in the N = 1 ZLL of BLG

From Fig. 7 we observe that at ν̄ = 1/(2s+1), where
s = 1, 2, 3, 4, among the phases we consider, the Laughlin
states have the lowest energy in the N = 1 ZLL of BLG,
for all values of the parameter θ . At ν̄ = 1/7 and ν̄ = 1/9,
for θ = 0 (LLL), it is known that a Wigner crystal of CFs
is in close competition with the liquid [34]. At fillings 1/3
and 1/5, FQHE has been observed in the n = 0 (θ = 0) and
n = 1 (θ = π/2) LLs of GaAs [1,92]. In the N = 1 LL of
MLG (θ = π/4), FQHE has been observed only at 1/3 but
not at 1/5 yet [57,59,90]. As one deviates from the Laugh-
lin fillings, the energy of the liquid phase [computed using
Eq. (25)] increases due to the finite energy of the quasiparticle
or quasihole excitations and shows nonmonotonic behavior.
Due to this nonmonotonicity, the ground state alternates be-
tween the solid and liquid phases for π/2.4 < θ � π/2. In
Fig. 8(a) we show the energies of bubble and liquid phases at
θ = π/2 that represent the observed trend in their energies in
the region π/2.4 < θ � π/2. At ν̄ < 0.23, the liquid phases
have the lowest energy, while for 0.23 < ν̄ < 0.28, the WC
phase becomes the ground state. The solids quantum melt
to the liquid phase around 0.28 < ν̄ < 0.4. For ν̄ > 0.4, the
two-electron bubble phase appears as the ground state. For all
other values of the parameter, i.e., 0 � θ < π/2.4, the liquid
state has the lowest energy [a couple of representative phase
diagrams are shown in Figs. 8(b) and 8(c)]. The reason for the
liquid state to prevail in this parameter range is that its energy
has a small slope that keeps its energy below that of the solid
phases. The phase diagram of the N = 1 ZLL of BLG in this
parameter regime resembles that of the LLL and the N = 1
LL of MLG [48,60].

We note that LL mixing (that we have neglected) between
the N = 0 and N = 1 orbitals in the ZLL of BLG, which
can be controlled by the applied electric bias, can stabilize
the WC phase at ν̄ = 1/3 instead of the Laughlin liquid [93].
We have not taken into account the potential presence of other
phases, such as stripe phases, a CF Fermi liquid state, or in-
compressible FQH states that might arise near half-fillings. At
ν̄ = 1/2, in the LLL, the CF Fermi liquid is the ground state
while an FQH state occurs in the SLL [92]. Recent numerical
calculations show that at ν̄ = 1/2, the system transitions from
the CF Fermi liquid to a paired FQH state as the parameter θ

is increased from 0 to π/2 [64,65].

B. Phases in the higher LLs of BLG

In the N = 2 LL of BLG, we find that the Laughlin states
are lower in energy than the solid phases [see Fig. 9(a)].
The 1/3 Laughlin state is more stable than other Laughlin
states, as evidenced by the fact that it has the largest energy
difference from its closest competitor. Consistent with our
findings, in the N = 2 LL of BLG, FQHE has been observed
experimentally at ν̄ = 1/3, as well as at certain other fillings
that correspond to the Jain sequence ν̄ = p/(2p±1) [75,94].
FQHE has not been observed at ν̄ = 1/5 and lower fillings.
As we discuss in the next section (see Sec. VI), this may be
due to the presence of impurities that can effectively decrease
the energy of the solid phase at low fillings, thereby favoring
it over the liquid phase.
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FIG. 7. Cohesive energies of the WC (M = 1) and electron liquid at the Laughlin fillings (a) ν̄ = 1/3, (b) ν̄ = 1/5, (c) ν̄ = 1/7, and
(d) ν̄ = 1/9 as a function of the parameter θ [see Eq. (6) for definition of the parameter θ ] in the N = 1 zero-energy LL of BLG. Note that
the Laughlin state energies in panels (a) and (b) are different from those shown in Fig. 5 since in Fig. 5 the total energy of the Laughlin states
is shown while in this figure only the cohesive part of the total energy is shown.

In the N = 3 LL of BLG, as depicted in Fig. 9(b), the
energy of the Laughlin state at ν̄ = 1/3 is comparable to
that of the two-electron bubble phase, suggesting that the
ground state at this filling is a solid phase. The liquid phase
has the lowest energy at other Laughlin fillings. In the range
0.28 < ν̄ < 0.4, the two-electron bubble phase is the ground
state while for ν̄ > 0.4, the three-electron bubble phase has
the lowest energy. In the vicinity of the half-filled LL, the
energy difference between the two-, three-, and four-electron
bubble phases is very small, which prevents us from defini-
tively determining which among these is the true ground state.

In the N = 4 LL of BLG, as shown in Fig. 9(c), at ν̄ >

0.19, multiple bubble phases are energetically more favorable
than the liquid phase. This suggests that FQHE is absent at
ν̄ = 1/3 and 1/5. In the range of fillings 0.19 < ν̄ < 0.28,
the two-electron bubble phase has the lowest energy while
the three-electron bubble phase is the ground state for 0.28 <

ν̄ < 0.4. The four-electron bubble phase becomes the ground
state for ν̄ > 0.4. The energy differences between the various
bubble phases are quite small for ν̄ > 0.4. In particu-
lar, around the half-fillings, the energy of the five-electron
bubble phase is in close competition with that of the
four-electron bubble phase. For ν̄ < 0.19, the solid phases
may undergo quantum melting to the liquid phase lead-
ing to the appearance of the Laughlin states at ν̄ = 1/7
and 1/9.

In the N = 5 LL of BLG, as shown in Fig. 9(d), the
solid phases have the lowest energy at the fillings 1/3, 1/5,
and 1/7 while the liquid state has the lowest energy at 1/9.
Therefore, predominantly solid phases are stabilized in this
LL. In the range 0.13 < ν̄ < 0.22 and 0.22 < ν̄ < 0.32, the
two- and three-electron bubble phases have the lowest energy,
respectively. At higher fillings, the four- and five-electron
bubble phases successively become the ground state, but their
energy differences remain small.

C. Phases in the higher LLs of TLG

For the N = 3, 4 LLs of TLG, as shown in Figs. 10(a) and
10(b), the liquid states have the lowest energy at all fillings. In
the N = 4 LL, the two-electron bubble phase can potentially
be stabilized between fillings ν̄ = 1/3 and 1/5. In the N = 5
LL of TLG, as shown in Fig. 10(c), the solid phases domi-
nate at ν̄ = 1/3 and 1/5, suggesting the absence of FQHE at
these fractions. At ν̄ = 1/7 and 1/9, the Laughlin states have
the lowest energy. In the range of fillings 0.18 < ν̄ < 0.24,
the two-electron bubble phase has the lowest energy. Similar
to the N = 4 and N = 5 LL of BLG, in this LL as well,
with the increase in fillings, the higher M-electron bubble
phases (2 < M � 5) successively become the lowest en-
ergy states, although their relative energy separations remain
small.
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FIG. 8. Cohesive energies of the M-electron bubble and liquid
phases in the N = 1 zero-energy LL of BLG at (a) θ = π/2.2,
(b) θ = π/3, (c) θ = π/10 [the parameter θ is defined in Eq. (6)]
as a function of the filling fraction ν̄.

VI. THE EFFECT OF IMPURITIES ON THE
COMPETITION BETWEEN PHASES

To compare against experiments, it is important to take
into account the effects of impurities on the phase diagram.
For weak disorder, the cohesive energy of the incompress-
ible liquid phases changes by a small amount that we can
neglect. However, the solid phases can lower their energies
by following the landscape of the impurity potential. In the
weak-pinning limit, wherein the impurities individually can-
not deform the electron solid, allowing it to maintain its local
ordering, we model the impurity by a short-range Gaussian
potential with strength V0 and correlation length ξ . A collec-

FIG. 9. Cohesive energies of the M-electron bubble and liquid
phases in the higher LLs of BLG: (a) N = 2 LL, (b) N = 3 LL,
(c) N = 4 LL, (d) N = 5 LL.

tion of these impurities can deform the lattice at a pinning
length L0 � . The energy density associated with the com-
petition between the elastic energy cost for the deformation
of the solid and the energy gain resulting from the collective
effect of impurities is given by [95,96]

ε(L0) = μξ 2

L2
0

− V0

√
nel

L0
, (26)
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FIG. 10. Cohesive energies of the M-electron bubble and liquid
phases in the higher LLs of TLG: (a) N = 3 LL, (b) N = 4 LL,
(c) N = 5 LL.

where nel = N/A is the density of electrons in the uppermost
LL; the elasticity constant μ of the M-electron bubble is
0.25M2e2n3/2

M /ε, where nM = ν̄/(2πM�2) is the density of
the corresponding bubble phase [48]. The reduction in the
cohesive energy of the solid phase can be determined by
minimizing the energy density given in Eq. (26) with respect
to L0 and is given by [48]

δEB
coh(M, ν̄ ) = − e2

ε�

(2π )3/2

ν̄3/2
√

M
E2

pin,

where the dimensionless pinning energy Epin =
(V0/ξ )/(e2/ε�2). The energy of the M-electron bubble
phase in J-LG [see Eq. (19)] in the presence of impurities is

modified as

EB,(J )
coh (M, ν̄ ) → EB,(J )

coh (M, ν̄ ) + δEB
coh(M, ν̄ ).

We have reevaluated the cohesive energy of the solid phases
in the presence of impurities (the strength of the impurity is
in the range given in Ref. [48]), and the results are presented
in Figs. 11 and 12, and the modified phase diagram in the
presence of impurities is summarized in Table I.

In the N = 1 ZLL of BLG, the FQH states at ν̄ = 1/3
and 1/5 survive even in the presence of impurities since their
energies are well separated from that of the WC phase [see
Figs. 11(a) and 11(b)], across the entire range of the parameter
θ . In the presence of strong impurity potentials, the WC phase
dominates over the FQH states at ν̄ = 1/7 and 1/9, for all
values of θ as indicated by the dashed lines in Figs. 11(c) and
11(d). Thus, our results suggest that the FQHE state at these
fillings likely arises only in pristine samples.

In the presence of impurities, the Laughlin state at ν̄ = 1/3
in the N = 2 LL of BLG shown in Fig. 12(a) has significantly
lower energy than those of the solid phases, indicating that
it is the ground state consistent with its experimental obser-
vation [75]. Strong impurity potentials [see dashed lines in
Fig. 12(a)] may wipe out the FQH states at ν̄ = 1/7 and 1/9.
However, the FQH state at ν̄ = 1/5 possibly remains stable.
At ν̄ < 0.2, the WC phase becomes the ground state. In the
N = 3 LL of BLG, as depicted in Fig. 12(b), strong impurity
potentials lead to the dominance of the WC phase over the
FQH states at ν̄ < 0.22. Consequently, only solid phases,
ranging from the WC phase at low fillings to the three-electron
bubble phase at high fillings, prevail in this LL. In the N = 4
LL of BLG, as shown by the dash-dotted lines in Fig. 12(c),
the presence of very weak impurity potentials can destabilize
FQH states at ν̄ = 1/7 and 1/9. At low fillings for ν̄ < 0.18,
the WC phase becomes energetically favorable. As shown in
Fig. 12(d), in the N = 5 LL of BLG, the impurity potentials
lower the energy of the WC phase, which then becomes the
ground state at low fillings. For strong impurities [see dashed
lines in Fig. 12(d)], the WC phase starts to appear around
ν̄ < 0.14.

In the N = 3 LL of TLG, we expect to observe the FQH
state at ν̄ = 1/3 even in the presence of strong impurities,
as its energy is well separated from that of electron solids
[see Fig. 12(e)]. At lower fillings, in the presence of strong
impurities, the WC phase dominates over the liquid phase. In
particular, strong impurities may suppress the FQH state at
ν̄ = 1/5, as its energy is in close proximity to that of the WC.
In the N = 4 LL of TLG [see dashed lines in Fig. 12(f)], at
ν̄ � 0.2 the presence of a large number of impurities stabilizes
the WC. At ν̄ = 1/3, the Laughlin state remains the ground
state since the cohesive energy of the solid phases changes by
only a very small amount in the presence of impurities. In the
N = 5 LL of TLG [see dash-dotted lines in Fig. 12(g)], even
weak impurities can wipe out the possible FQH states at low
fillings, resulting in complete dominance of the solid phases
in this LL.

VII. DISCUSSION

We have investigated the competition between the electron
solid and liquid phases in the various LLs of bilayer and
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FIG. 11. Cohesive energies of the WC (M = 1) and electron liquid at the Laughlin fillings as a function of parameter θ [defined in Eq. (6)],
in the presence of impurities in the N = 1 zero energy LL of BLG. The dashed (dash-dotted) lines indicate the energies of the WC phase in
an impurity potential with Epin = 10−4 (Epin = 2.5 × 10−5). Cohesive energies of the WC at the Laughlin fillings in the absence of impurities
are also shown by solid lines for comparison.

trilayer graphene. We focused at filling fractions ν̄ =
1/(2s+1) and studied the competition between the M-electron
bubble phases (M = 1−6) and the Laughlin liquid.

In the N = 1 zero-energy LL of BLG, the electron-
electron interaction can be continuously varied from LLL-like
(for large magnetic fields or small θ ) to SLL-like (for small
magnetic fields or θ around π/2). In this LL, at the Laughlin
fillings 1/3 and 1/5, for all magnetic fields, we find that the
liquid phase dominates over the solid phases. This behavior
is similar to the lowest two LLs of GaAs, where the liquid
phase dominates at 1/3 and 1/5. In the LLs of BLG and TLG,
with increasing LL index, as expected from the form factor,
we observe the range of fillings in the vicinity of the Laughlin
fractions where the liquid phase is stabilized diminishes while
the range of filling fractions where solid phases have the
lowest energy expands. Considering only the solid phases, we
observe that in a given LL, as the filling fraction increases,
the number of electrons per site in the lowest energy bubble
crystal increases to minimize the Coulomb interaction energy.

Due to the presence of the WC phase between the FQH
states at ν̄ = 1/3 and 1/5 in the N = 1 ZLL of BLG for
π/2.4 < θ � π/2, one expects RIQHE to be observed in
this parameter regime. In the presence of impurity potentials,
the WC phase becomes the ground state for ν̄ � 1/7 across
all values of the magnetic field, thereby broadening the Hall
plateau at the integer fillings [48]. In the N = 2 LL of BLG
and the N = 3 LL of TLG, the Laughlin state at ν̄ = 1/3

survives even in the presence of strong impurities while the
WC phase becomes the ground state at low fillings. In the
N = 3 LL of BLG, for weak impurities, together with the
FQH state at ν̄ = 1/5, RIQHE is anticipated due to the domi-
nance of two-electron bubble phase between 0.28 < ν̄ < 0.4,
suppressing the ν̄ = 1/3 FQH state. Similarly, in the N = 4
LL of TLG, RIQHE is expected between the FQH states at
ν̄ = 1/3 and 1/5 due to the presence of energetically favored
two-electron bubble phase. The N = 4 and 5 LLs of BLG,
as well as the N = 5 LL of TLG, are entirely dominated
by the bubble phases. This suggests the plateau of the IQH
effect extends all the way up to the half-fillings in these LLs.
However, this simplified perspective may be incomplete, as
there could be other phases, such as the stripes, that we have
not considered here, which may have even lower energies than
the states we considered.

Apart from the observations of RIQHE, the bubble phases
can also be inferred from longitudinal conductance measure-
ments upon microwave irradiation [97–101] or from the radio
frequency absorption measurements [102]. In the low-energy
effective description of graphene multilayers, the electron
bubble phases reside on the outer layers; thus, the local
density of states (LDOS) can be measured in the scan-
ning tunneling microscopy to tell them apart from FQH
liquids [94,103–107].

In our calculations, we have focused on the spin-valley
polarized LLs, and for the ZLL of BLG, complete orbital
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FIG. 12. Cohesive energies of the M-electron bubble and liquid phases in many higher LLs of BLG and TLG in the presence of impurities.
The dashed (dash-dotted) lines indicate the energies of the M-electron bubble phases in an impurity potential with pinning strength Epin =
10−4 (Epin = 2.5 × 10−5). For comparison, the cohesive energies of the electron solid phases in the absence of impurities are also shown by
solid lines.
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polarization is assumed. The experimental filling fraction
range of the ZLL of BLG corresponds to −4 � ν � 4. The
effective single-particle LL diagram given in [108] suggests
that in the presence of a large electric bias, there exists fully
spin-valley polarized LL with N = 1 orbital character in the
filling fraction range −2 < ν < −3. This would be the ideal
setting to test our computed phase diagram for the N = 1
ZLL of BLG. In general, the N th LL of BLG corresponds
to the experimental fillings 4(N−1) < ν � 4N (for N � 2)
and that of TLG corresponds to 2(2N−3) < ν � 2(2N−1)
(for N � 3). For instance, in experiments, the electron solid
phases in the N = 3 LL of BLG are expected to occur around
ν0+1/3, where ν0∈(8, 9, 10, 11). Methods used in the re-
cent experimental observation of a series of bubble phases
in multiple higher LLs of MLG [62] can be adapted to test
our computed phase diagram in LLs of BLG and TLG. Ex-
perimentally [62], the physics of bubble phases in MLG is
entirely governed by the orbital quantum number of a LL and
is independent of its spin and valley quantum numbers, which
suggests that our assumption of a spin-valley polarized LL
could serve as a valid starting point.

Although we have neglected the effect of LL mixing
throughout this work, for the sake of completeness, we will es-
timate its strength and discuss its effects on the phase diagram.
We shall discuss the effect of LL mixing on the two-band
model of multilayer graphene. The two-band model remains
valid when the energy of the LLs is much smaller than the
interlayer coupling γ1, i.e., the energy of the LLs is smaller
than the energy of higher energy bands. For BLG and TLG
for up to N = 5 LLs, this regime is accessed for B < 28 T
and B < 13 T, respectively. The LL mixing κ is parametrized
by the ratio of the Coulomb energy to the energy difference
between the LLs. The Coulomb energy Ec scales as Ec =
e2/(ε�) ∼ (55/ε)

√
B meV, where ε is the relative dielectric

constant of the surrounding environment, which we take to
be 6 [109]. In MLG, the LL gap around the charge neutrality
point is �(J=1) = 3.6

√
B meV, which leads to κ = 0.21. (Here

we set γ0 = 3 eV and γ1 = 0.39 eV [110].) In contrast to
nonrelativistic 2DEGs, the LL mixing parameter in MLG is
independent of the magnetic field and can be controlled only
by the dielectric constant of the surrounding environment.
As the LL index increases, the energy gap between them
decreases, and hence the LL mixing increases. Nevertheless,
surprisingly, it has been found that the LL mixing does not
change the phase diagram of electron solid phases in higher
LLs [111]. Also, for κ � 2 in the N = 0 LL and κ � 1 in
the N = 1 LL of MLG, the LL mixing has negligible ef-
fect on the ν̄ = 1/3 Laughlin liquid in the respective LLs
[112]. In BLG, the energy gap between higher LLs remains
approximately the same and is given by �(J=2)∼4.1B meV.
The corresponding LL mixing parameter in BLG is κ =
2.2/

√
B, which decreases with increasing magnetic field. On

the other hand, in TLG, the energy separation between the LLs
increases with increasing LL index and can be approximated
as �

(J=3)
N ∼ 0.43B3/2

√
N−1 meV. In the N th LL of TLG,

κ = 21.3/(B
√
N−1) for N � 3. In BLG and TLG, the value

of κ for B < 28 T and B < 13 T, respectively, is larger than
that of the MLG. A complete treatment of the effects of LL
mixing is beyond the scope of the present work. However,
it is possible that as in the higher LLs of MLG, the phase

diagram of electron solid and liquid phases is not significantly
altered by LL mixing. The energy gap between LLs belonging
to the ZLL of multilayer graphene is controlled by the applied
electric bias [63] and remains primarily independent of the
magnetic field. When the energy of these LLs is close to each
other, LL mixing is important and can significantly alter the
phase diagram. As we noted earlier, recently it has been shown
that in the ZLL of BLG, a WC gets stabilized at ν̄ = 1/3
instead of the Laughlin liquid when LL mixing is taken into
account [93]. Our results apply only when the LLs in the ZLL
of multilayer graphene are sufficiently far from each other.

It would be worth generalizing our results to fractions
beyond the Laughlin ones considered here. The FQH state
at many of these fractions can be well represented by trial
wave functions constructed using the CF [32] or parton theory
[35,113–117], which can be used to get an accurate estimate
of the energy of the liquid state. We note that the inclusion of
a trigonal warping term [118] (which has been ignored in our
calculations) in the four-band Hamiltonian of BLG can po-
tentially stabilize non-Abelian parton states [113,119,120] in
its ZLL. Additionally, consideration of other phases, such as
stripes, nematics, CF Fermi liquid, etc., would provide a more
comprehensive phase diagram than the one we have obtained.
To make a more thorough comparison with experiments, it
would also be important to take into account the effects of LL
mixing and screening by gates that we have ignored here. We
leave these interesting directions for future exploration.
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APPENDIX A: DIRAC EQUATION IN PLANAR
J-LAYER GRAPHENE

The single-particle Hamiltonian for two-dimensional chiral
fermions with a chirality index J , around the valley K is given
by [24]

H (J )
K = λJ

(
0 (p†)J

(p)J 0

)
, (A1)

where λJ is a proportionality constant which has dimensions
of [energy/(momentum)J ], p = px + ipy is the momentum
measured from the Fermi point K in the Brillouin zone.
In the zeroth-order approximation, i.e., neglecting interlayer
hopping beyond the adjacent layers, sublattice symmetry
breaking, absence of strain, and electric fields, etc., this effec-
tive Hamiltonian describes the low-energy physics of ABC· · ·
stacked J-layer graphene [24,25,55,71,113,122]. The valid-
ity of this approximation and the energy range over which
the Hamiltonian of Eq. (A1) applies to J-LG goes down
with the increasing value of J . For J-LG, the proportionality
constant λJ = −γ1(v0/γ1)

J
as given in the main text [see

Eq. (10)].
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In the presence of a uniform magnetic field (Bẑ) perpendicular to the plane of the 2DES, the canonical momentum p in
Eq. (A1) is replaced by the mechanical momentum π = p − (e/c)A and the Hamiltonian is given by

H (J )
K = λJ

(
0 (π†)J

π J 0

)
, (A2)

where A = Ax + iAy and A is the vector potential for which we choose the Landau gauge A = (0, Bx, 0). The operators π and
π† satisfy the commutation relation [π, π†] = 2h̄2/�2 [25], which shows that they act as lowering and raising operators in the
space of LL eigenstates |N , X 〉 corresponding to a nonrelativistic 2DES [see Eq. (2)]. Using the algebra of these operators, the
eigenenergies and normalized eigenstates of H (J )

K can be worked out and are given by〈
�

(J )
K,N=0,X

∣∣= (|0, X 〉, 0),〈
�

(J )
K,N=1,X

∣∣= (|1, X 〉, 0),

...〈
�

(J )
K,N=J−1,X

∣∣= (|J−1, X 〉, 0),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

constitute the zero-energy Landau levels:
EK,N=0 = EK,N=1 = · · · = EK,N=J−1 = 0

〈
�

(J )
K,N�J,X

∣∣= 1√
2

(∓|N , X 〉, |N−J, X 〉),

EK,N = ±h̄ωJ

√
N (N−1) · · · (N−J + 1),

where h̄ωJ = γ1(2h̄v0/(γ1�))J . The positive eigenenergies in the spectrum correspond to the electron states while the negative
eigenenergies correspond to the hole states. The zero-energy manifold has a 4J-fold degeneracy arising from two spins and two
valleys, and the quantum number J denotes the orbital degrees of freedom. The orbital degree of freedom labels the LL index
N = 0, 1, 2, . . . ,J−1. For J = 1, 2, 3, the Hamiltonian in Eq. (A2) describes the low-energy physics of monolayer, bilayer, and
trilayer graphene, respectively, in the presence of a constant perpendicular magnetic field.

APPENDIX B: HALDANE PSEUDOPOTENTIALS IN J-LAYER GRAPHENE

The spherically symmetric Coulomb interactions between electrons in any given LL indexed by N are conveniently
parametrized using the Haldane pseudopotentials [68] Vm, which is the energy of two electrons in a state of relative angular
momentum m. These Haldane pseudopotentials in the N th LL in the disk geometry are given by (the magnetic length � is set to
unity for convenience)

V N
m =

∫
d2q

(2π )2

2π

q
[FN (q)]2e−q2/2 Lm(q2) =

∫ ∞

0
dq [FN (q)]2e−q2/2 Lm(q2), (B1)

where Lm(x) is the Laguerre polynomial, FN is the so-called form factor, and in going to the last step, we have made use of the
spherical symmetry of the interaction whereby the form factor depends only on the magnitude of the planar wave vector q = |q|.
The form factor in the N th LL of J-LG is given by

F (J )
N (q) = e−q2/4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 N = 0

L1
( q2

2

)
N = 1

...

LJ−1
( q2

2

)
N = J − 1

1
2

[
LN−J

( q2

2

)+ LN
( q2

2

)]
N � J.

(B2)

1. Planar (disk) pseudopotentials in J-layer graphene

In the following, we provide analytic expressions of the Coulomb pseudopotentials V (J,N )
m on the disk geometry for

different LLs of bilayer graphene (J = 2) and trilayer graphene (J = 3). These pseudopotentials are computed using Eq. (B1)
in conjunction with Eq. (B2) for LLs where N � J , and Eq. (14) for the N = 1 zero-energy LL of bilayer graphene. The
computed disk pseudopotentials starting from the N = 1 zero-energy LL to the N = 4 LL of bilayer graphene are as follows:

V (J=2,N=1)
m (θ ) =

√
π

32

[
16 2F1

(
1

2
,−m; 1; 1

)
− 8 2F1

(
3

2
,−m; 1; 1

)
sin2(θ ) + 3 2F1

(
5

2
,−m; 1; 1

)
sin4(θ )

]
, (B3)
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V (J=2,N=2)
m = �

(
m − 7

2

)
131 072 �(m + 1)

(65 536m4 − 507 904m3 + 1 299 968m2 − 1 219 520m + 296 625), (B4)

V (J=2,N=3)
m = �

(
m − 11

2

)
8 388 608 m!

(4 194 304m6 − 73 400 320m5 + 496 074 752m4

− 1 624 174 592m3 + 2 627 746 368m2 − 1 866 183 792m + 380 654 505), (B5)

V (J=2,N=4)
m =

√
π

3 3554 432

[
16 777 216 2F1

(
1

2
,−m; 1; 1

)
− 25 165 824 2F1

(
3

2
,−m; 1; 1

)
+ 39 321 600 2F1

(
5

2
,−m; 1; 1

)

− 43 909 120 2F1

(
7

2
,−m; 1; 1

)
+ 35 123 200 2F1

(
9

2
,−m; 1; 1

)
− 19 998 720 2F1

(
11

2
,−m; 1; 1

)

+ 7 835 520 2F1

(
13

2
,−m; 1; 1

)
− 1 921 920 2F1

(
15

2
,−m; 1; 1

)
+ 225 225 2F1

(
17

2
,−m; 1; 1

)]
, (B6)

where 2F1 is the Gauss hypergeometric function and �(x) is the gamma function. The calculated Coulomb pseudopotentials in
the disk geometry for trilayer graphene LLs ranging from N = 3 to N = 5 are as follows:

V (J=3,N=3)
m =

√
π

131 072

{
8

[
8192 2F1

(
1

2
,−m; 1; 1

)
− 6144 2F1

(
3

2
,−m; 1; 1

)
+ 5760 2F1

(
5

2
,−m; 1; 1

)

− 4640 2F1

(
7

2
,−m; 1; 1

)
+ 2730 2F1

(
9

2
,−m; 1; 1

)
− 945 2F1

(
11

2
,−m; 1; 1

)]

+ 1155 2F1

(
13

2
,−m; 1; 1

)}
, (B7)

V (J=3,N=4)
m =

√
π

33 554 432

(
128

{
131 072 2F1

(
1

2
,−m; 1; 1

)
− 163 840 2F1

(
3

2
,−m; 1; 1

)
+ 227 328 2F1

(
5

2
,−m; 1; 1

)

− 35

[
7168 2F1

(
7

2
,−m; 1; 1

)
− 6080 2F1

(
9

2
,−m; 1; 1

)
+ 3816 2F1

(
11

2
,−m; 1; 1

)

− 1650 2F1

(
13

2
,−m; 1; 1

)
+ 429 2F1

(
15

2
,−m; 1; 1

)]}
+ 225 225 2F1

(
17

2
,−m; 1; 1

))
, (B8)

V (J=3,N=5)
m =

√
π

536 870 912

[
8

(
64

{
32

[
16 384 2F1

(
1

2
,−m; 1; 1

)
− 28 672 2F1

(
3

2
,−m; 1; 1

)
+ 54 528 2F1

(
5

2
,−m; 1; 1

)

− 80 320 2F1

(
7

2
,−m; 1; 1

)
+ 91 420 2F1

(
9

2
,−m; 1; 1

)
− 80 451 2F1

(
11

2
,−m; 1; 1

)]

+ 1 725 108 2F1

(
13

2
,−m; 1; 1

)
− 849 849 2F1

(
15

2
,−m; 1; 1

)}
+ 18 468 450 2F1

(
17

2
,−m; 1; 1

)

− 3 828 825 2F1

(
19

2
,−m; 1; 1

))
+ 2 909 907 2F1

(
21

2
,−m; 1; 1

)]
. (B9)

2. Spherical pseudopotentials in J-layer graphene

The spherical pseudopotentials, which are obtained by directly solving the Schrödinger equation on the sphere, can be
computed following the procedure outlined in Refs. [65,123]. In particular, for |N | � J , the pseudopotentials in the LL indexed
by N are given by

VL =
l∑

m1=−l

l∑
m2=−l

l∑
m′

1=−l

l∑
m′

2=−l

〈L, m|l, m′
1; l, m′

2〉〈l, m1; l, m2|L, m〉 (1′, 2′|V (r)|1, 2) δL,m1+m2δm1+m2,m′
1+m′

2
, (B10)
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TABLE IV. Squared overlaps of the exact Coulomb ground state |�N=1 LL, MLG
ν̄ 〉 with the Laughlin state |�Laughlin

ν̄ 〉 at ν̄ = 1/3 and 1/5 in
the N = 1 LL of monolayer graphene, which is equivalent to the N = 1 zero-energy LL of bilayer graphene for θ = π/4. These overlaps
are obtained in the spherical geometry for N electrons at shell angular momentum 2l = ν̄−1(N−1) using the disk (D) and spherical (S)
pseudopotentials [see Eqs. (B3) and (B10), respectively]. A dash “−” indicates numbers that are currently unavailable.

N |〈�N=1 LL, MLG(S)
1/3 |�Laughlin

1/3 〉|2 |〈�N=1 LL, MLG(S)
1/5 |�Laughlin

1/5 〉|2 |〈�N=1 LL, MLG(D)
1/3 |�Laughlin

1/3 〉|2 |〈�N=1 LL, MLG(D)
1/5 |�Laughlin

1/5 〉|2

4 0.9945 0.9736 0.9993 0.9916
5 0.9976 0.9956 0.9975 0.9949
6 0.9905 0.9092 0.9834 0.8254
7 0.9907 0.9587 0.989 0.9478
8 0.9883 0.9277 0.989 0.935
9 0.9848 0.8814 0.9871 0.9127
10 0.9821 0.8654 0.984 0.8845
11 0.9804 − 0.9807 −
12 0.9772 − 0.9761 −
13 0.9744 − 0.9733 −

where l = |Q|+N is the shell-angular momentum and 〈 j1, m1; j2, m2| j3, m3〉 is the Clebsch-Gordan coefficient. If we take the
Coulomb interaction, V (r) = 1/r, then the quantity (1′, 2′|1/r|1, 2) is given by(

1′, 2′
∣∣∣∣1r
∣∣∣∣1, 2

)
= 1

4
(VC (Q + J, Q + J, m1, m2, m′

1, m′
2, Q,N ) + VC (Q + J, Q, m1, m2, m′

1, m′
2, Q,N )

+ VC (Q, Q + J, m1, m2, m′
1, m′

2, Q,N ) + VC (Q, Q, m1, m2, m′
1, m′

2, Q,N )).

Here VC (Q1, Q2, m1, m2, m′
1, m′

2, Q,N ) is the two-body Coulomb matrix element for a pair of nonrelativistic fermions, which is
given by

VC (Q1, Q2, m1, m2, m′
1, m′

2, Q,N ) = e2

εR
(2l + 1)2(−1)Q1+Q2−m′

1−m′
2

2l∑
l ′=0

l ′∑
m′=−l ′

(−1)m′
(

l l ′ l

m′
1 m′ −m1

)

×
(

l l ′ l

−Q1 0 Q1

)(
l l ′ l

m′
2 −m′ −m2

)(
l l ′ l

−Q2 0 Q2

)
,

where ([ j1, j2, j3]; [m1, m2, m3]) is the Wigner 3 j symbol, l = |Q|+N is the shell-angular momentum and R = √
l� is our

choice for the radius of the sphere. Usually, the radius is defined as R = √
Q�, and therefore our results, in particular for finite

systems, might slightly differ from those given in the literature.

APPENDIX C: OVERLAPS OF EXACT COULOMB GROUND STATE WITH LAUGHLIN STATE IN J-LAYER GRAPHENE

Using the above-computed disk pseudopotentials, we have carried out numerical exact diagonalization on the spherical
geometry [68]. We have calculated overlaps between the exact Coulomb ground state and Laughlin state at ν̄ = 1/3 and ν̄ = 1/5,
in the various LLs of BLG and TLG. Additionally, in the N = 1 ZLL of BLG at θ = π/4 (which is equivalent to the N = 1 LL
of MLG), N = 2 LL of BLG, and N = 3 LL of TLG, we have calculated the aforementioned overlaps with the exact Coulomb
ground state obtained from the spherical pseudopotentials given in Eq. (B10). These overlaps are presented in Tables IV to XIV.
We note that the overlaps in the N = 1 LL of MLG are in agreement with those given in Ref. [80]. The overlaps at filling
ν̄ = 1/3 in the N = 1 ZLL of BLG for θ = 0 (LLL) and θ = π/2 (SLL) can be found in the supplemental material of Ref. [83].
Overlaps at ν̄ = 1/5 can be found in the Table I of Ref. [38]. The low overlaps of the Laughlin state with the exact Coulomb
ground state for N = 6, particularly at ν̄ = 1/5 (see Tables V and X), can potentially be attributed to the electrons’ tendency to
form a hexagonal Wigner crystal for this particle number [124].

APPENDIX D: ENERGIES OF QUASIPARTICLES AND QUASIHOLES

The quasiparticle (QP) and quasihole (QH) energies above the Laughlin state at ν̄ = 1/(2s+1) are computed following the
Hamiltonian theory proposed by Murthy and Shankar [87,88]. The energies of the QPs and QHs are calculated using Eqs. (23)
and (24) for s = 1−4, in the various LLs of BLG from N = 2−5 and TLG from N = 3−5, and are tabulated in Tables XV to
XVIII. As described in the main text, the effective interaction vn(q) in Eqs. (23) and (24) should be replaced by v

(J=2)
N (q) for

BLG (J = 2) and by v
(J=3)
N (q) for TLG (J = 3).
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TABLE V. Same as Table IV, but in the N = 2 LL of bilayer graphene. The exact Coulomb ground state is computed using the disk and
spherical pseudopotentials given in Eqs. (B4) and (B10), respectively.

N |〈�N=2 LL, BLG(S)
1/3 |�Laughlin

1/3 〉|2 |〈�N=2 LL, BLG(S)
1/5 |�Laughlin

1/5 〉|2 |〈�N=2 LL, BLG(D)
1/3 |�Laughlin

1/3 〉|2 |〈�N=2 LL, BLG(D)
1/5 |�Laughlin

1/5 〉|2

5 0.9983 0.9909 0.9976 0.9907
6 0.9954 0.8306 0.9857 0.7604
7 0.9937 0.9266 0.9905 0.9192
8 0.9917 0.8670 0.9902 0.8817
9 0.9896 0.7863 0.9898 0.8326
10 0.9868 0.7669 0.9872 0.7961
11 0.9849 − 0.9843 −
12 0.9825 − 0.9806 −
13 0.9800 − 0.9777 −
14 0.9776 − 0.9755 −

TABLE VI. Squared overlaps of the exact Coulomb ground state |�N=3 LL, BLG(D)
1/3 〉 and the Laughlin state |�Laughlin

1/3 〉 at ν̄ = 1/3 in the
N = 3 LL of bilayer graphene, calculated using the disk (D) pseudopotentials [as given in Eq. (B5)] in the spherical geometry for N electrons.
The table also includes the dimensions of the total orbital angular momentum L = 0 and its z component Lz = 0 sectors. † indicates that the
ground state does not have L = 0.

N 2Q Dimension of Lz = 0 subspace Dimension of L = 0 subspace |〈�N=3 LL, BLG(D)
1/3 |�Laughlin

1/3 〉|2

13 36 44 585 180 21 660 †

14 39 259 140 928 100 123 †

TABLE VII. Same as Table VI, but at ν̄ = 1/5 in the N = 3 LL of bilayer graphene.

N 2Q Dimension of Lz = 0 of subspace Dimension of L = 0 subspace |〈�N=3 LL, BLG(D)
1/5 |�Laughlin

1/5 〉|2

9 40 4 323 349 2082 0.8391
10 45 42 611 589 14 664 0.7898

TABLE VIII. Same as Table VI, but at ν̄ = 1/3 in the N = 4 LL of bilayer graphene. The exact Coulomb ground state is obtained using
the disk pseudopotentials given in Eq. (B6).

N 2Q Dimension of Lz = 0 subspace Dimension of L = 0 subspace |〈�N=4 LL, BLG(D)
1/3 |�Laughlin

1/3 〉|2

13 36 44 585 180 21 660 †

14 39 259 140 928 100 123 †

TABLE IX. Same as Table VI, but at ν̄ = 1/5 in the N = 4 LL of bilayer graphene. The disk pseudopotentials appropriate for this LL are
given in Eq. (B6).

N 2Q Dimension of Lz = 0 subspace Dimension of L = 0 subspace |〈�N=4 LL, BLG(D)
1/5 |�Laughlin

1/5 〉|2

9 40 4 323 349 2082 0.49 × 10−6

10 45 42 611 589 14 664 0.16 × 10−6
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TABLE X. Same as Table IV, but in the N = 3 LL of trilayer graphene. The exact Coulomb ground state is computed using the spherical
and disk pseudopotentials given in Eqs. (B7) and (B10), respectively.

N |〈�N=3 LL, TLG(S)
1/3 |�Laughlin

1/3 〉|2 |〈�N=3 LL, TLG(S)
1/5 |�Laughlin

1/5 〉|2 |〈�N=3 LL, TLG(D)
1/3 |�Laughlin

1/3 〉|2 |〈�N=3 LL, TLG(D)
1/5 |�Laughlin

1/5 〉|2

5 0.9631 0.9960 0.9859 0.9946
6 0.8398 0.9312 0.9134 0.8378
7 0.9223 0.9625 0.9536 0.9493
8 0.9071 0.9358 0.9491 0.9357
9 0.9010 0.8996 0.9479 0.9215
10 0.8959 0.8682 0.9365 0.8828
11 0.9031 − 0.9277 −
12 0.8868 − 0.9077 −
13 0.8820 − 0.9011 −
14 0.8768 − 0.8968 −

TABLE XI. Same as Table VI, but at ν̄ = 1/3 in the N = 4 LL of trilayer graphene. The disk pseudopotentials pertinent to this LL are
given in Eq. (B8).

N 2Q Dimension of Lz = 0 subspace Dimension of L = 0 subspace |〈�N=4 LL, TLG(D)
1/3 |�Laughlin

1/3 〉|2

11 30 1 371 535 1160 0.7252
12 33 7 764 392 4998 0.6472

TABLE XII. Same as Table VI, but at ν̄ = 1/5 in the N = 4 LL of trilayer graphene. The disk pseudopotentials relevant for this LL are
given in Eq. (B8).

N 2Q Dimension of Lz = 0 subspace Dimension of L = 0 subspace |〈�N=4 LL, TLG(D)
1/5 |�Laughlin

1/5 〉|2

9 40 4 323 349 2082 0.143
10 45 42 611 589 14 664 0.1633

TABLE XIII. Same as Table VI, but at ν̄ = 1/3 in the N = 4 LL of trilayer graphene. The disk pseudopotentials for this LL are given in
Eq. (B9).

N 2Q Dimension of Lz = 0 subspace Dimension of L = 0 subspace |〈�N=5 LL, TLG(D)
1/3 |�Laughlin

1/3 〉|2

11 30 1 371 535 1160 0.2958
12 33 7 764 392 4998 0.1734

TABLE XIV. Same as Table VI, but at ν̄ = 1/5 in the N = 4 LL of trilayer graphene. The disk pseudopotentials relevant for this LL are
given in Eq. (B9).

N 2Q Dimension of Lz = 0 subspace Dimension of L = 0 subspace |〈�N=5 LL, TLG(D)
1/5 |�Laughlin

1/5 〉|2

9 40 4 323 349 2082 †

10 45 42 611 589 14 664 0.144 × 10−5
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TABLE XV. Quasiparticle energies �
(J=2)
+ (N , s) above the Laughlin states at fillings 1/(2s+1) (where s = 1 to s = 4) in the various LLs

of bilayer graphene (J = 2). The energies are given in units of e2/(ε�).

LLs �
(J=2)
+ (N , s = 1) �

(J=2)
+ (N , s = 2) �

(J=2)
+ (N , s = 3) �

(J=2)
+ (N , s = 4)

N = 2 0.105 0.071 0.058 0.05
N = 3 0.099 0.075 0.065 0.057
N = 4 0.09 0.07 0.062 0.057
N = 5 0.085 0.066 0.059 0.054

TABLE XVI. Quasihole energies �
(J=2)
− (N , s) above the Laughlin states at fillings 1/(2s+1) (where s = 1 to s = 4) in the various LLs of

bilayer graphene (J = 2). The energies are given in units of e2/(ε�).

LLs �
(J=2)
− (N , s = 1) �

(J=2)
− (N , s = 2) �

(J=2)
− (N , s = 3) �

(J=2)
− (N , s = 4)

N = 2 0.013 −0.012 −0.016 −0.016
N = 3 −0.009 −0.023 −0.023 −0.021
N = 4 −0.014 −0.026 −0.026 −0.024
N = 5 −0.016 −0.027 −0.027 −0.025

TABLE XVII. Same as Table XV, but for trilayer graphene (J = 3).

LLs �
(J=3)
+ (N , s = 1) �

(J=3)
+ (N , s = 2) �

(J=3)
+ (N , s = 3) �

(J=3)
+ (N , s = 4)

N = 3 0.106 0.075 0.062 0.054
N = 4 0.095 0.077 0.067 0.061
N = 5 0.083 0.069 0.064 0.059

TABLE XVIII. Same as Table XVI, but for trilayer graphene (J = 3).

LLs �
(J=3)
− (N , s = 1) �

(J=3)
− (N , s = 2) �

(J=3)
− (N , s = 3) �

(J=3)
− (N , s = 4)

N = 3 0.001 −0.018 −0.02 −0.019
N = 4 −0.014 −0.027 −0.026 −0.024
N = 5 −0.016 −0.029 −0.028 −0.026
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[104] Z. Papić, R. S. K. Mong, A. Yazdani, and M. P. Zaletel, Imag-
ing anyons with scanning tunneling microscopy, Phys. Rev. X
8, 011037 (2018).

[105] S. Pu, A. C. Balram, and Z. Papić, Local density of states
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