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Case for polar uranium octupoles in cubic U2N3
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Uranium ions in the sesquinitride α-U2N3 occupy independent acentric and centrosymmetric sites according
to conventional x-ray diffraction patterns [R. Troć, J. Solid State Chem. 13, 14 (1975)]. We submit that polar
uranium multipoles in acentric sites are revealed in resonant x-ray diffraction data recently published by
Lawrence Bright et al. [Phys. Rev. B 100, 134426 (2019)]. To this end, their diffraction data gathered with a
primary x-ray energy in the vicinity of the uranium M4 absorption edge are compared to symmetry-informed
diffraction amplitudes calculated for the bixbyite α-Mn2O3 lattice structure. Bragg spots forbidden in this lattice
diffraction pattern appear to provide clear-cut evidence for high-order polar uranium multipoles.
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I. INTRODUCTION

X-ray diffraction patterns gathered on crystalline materials
can contain Bragg spots that do not exist in patterns created
by spheres of atomic charge located at points on the particular
lattice. Their inherent weakness is off-set by tuning the energy
of primary x-rays from a synchrotron source to a specific
atomic resonance. The process is often called T & T scattering
to acknowledge early experimental studies by Templeton and
Templeton [1–5], or anisotropic tensor scattering [6–8]. The
weak Bragg spots are not indexed by Miller indices for the
lattice symmetry, i.e., they are space-group forbidden. Depar-
tures from spheres of atomic charge are usually labeled by
components of an electronic quadrupole (multipole rank = 2)
that are invariant with respect to operations in the symmetry
of sites occupied by the resonant ions (Neumann’s Principle
[9]). Specifically, acentric sites in a crystal can harbor polar
(parity-odd) multipoles.

Following Lawrence Bright et al., we use the bixbyite
α-Mn2O3-type lattice depicted in Fig. 1, with uranium ions
in acentric sites 24d (U2) and centrosymmetric sites 8b (U1)
[10,11,12]. The authors mention forbidden reflections (1, 1,
0), (3, 1, 0), and (3, 3, 0), and display data for the (0, 1, 3)
Bragg spot, which is equivalent to (3, 1, 0) in cubic bixbyite.

From a historical perspective, it was standard practice to
use Cartesian tensors to describe bulk properties of crystals
at the time Nye’s [13] monograph was published. Spheri-
cal electronic tensors (multipoles) in x-ray dichroic signals
and diffraction amplitudes can be formulated with Racah
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techniques used in atomic physics [14,15]. Example cal-
culations that incorporate sum rules for absorption edges
[16] include neptunium and copper multipoles in NpO2 and
CuO [17,18]. Many compounds and the electronic multipoles
they harbor have been successfully examined with ab initio
techniques [19,20]. In our study of space-group forbidden
reflections by (cubic) α-U2N3, we encounter uranium dipoles
(rank = 1), quadrupoles, and octupoles (rank = 3) that must be
present in a meaningful model of the electronic structure. By
way of an example of the high value of information that can be
extracted from the intensity of a space-group forbidden Bragg
spot, we mention resonant x-ray diffraction by TbB4 [21].
An observed coupling of such intensity with helicity (circular
polarization) in the primary x-ray beam implies that the crystal
class of TbB4 is not a conventional one mentioned by the
authors [21]. Instead, the available evidence is that TbB4 and
an altermagnet possess similar symmetries [22].

II. LATTICE STRUCTURE

Space group Ia3̄ (No. 206) describes the (cubic) bixbyite
α-Mn2O3-type lattice [10]. (We use the Belov-Neronova-
Smirnova (BNS) setting of space groups, and the Bilbao
Crystallographic Server [23].) A body-centered translation
requires that integer Miller indices h, k, l have an even sum.
Equivalent reflections for No. 206 are listed in Appendix A.
A magnetic diffraction pattern observed below TN ≈ 73.5 K
is consistent with an antitranslation and odd (h + k + l ) [12].
The measured lattice constant a ≈ 10.69 Å (this is one of two
values cited in Ref. [12]).

Lawrence Bright et al. [12] made measurements on thin
epitaxial films of U2N3 grown on CaF2 substrates (a0 =
5.451 Å). The lattice parameter in the direction of growth
was 10.80(1) Å, compared to 2a0 (CaF2) = 10.9 Å, and the
in-plane parameters were 10.60(2) Å. The implication is that
for their thin films, where the mosaicity is low, the symmetry
is metrically orthorhombic and not cubic. For thicker films
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FIG. 1. The bixbyite structure No. 206 has sixfold coordinated
cations (large spheres) occupying centrosymmetric 8b (U1) and
acentric 24d (U2) Wyckoff sites [23]. Cation sites are surrounded
by local octahedra with oxygen (small spheres) at their vertexes.

where the mosaicity is larger, this might mean the induced
orthorhombic strain has been relaxed and the bulk of a film is
cubic. Diffraction by an appropriate orthorhombic lattice sym-
metry appears in Sec. V, and we continue to study diffraction
by uranium ions in cubic Ia3̄ (No. 206).

III. RESONANT X-RAY DIFFRACTION

States of x-ray polarization, Bragg angle θ , and the plane of
scattering are shown in Fig. 2. The x-ray scattering length in
the unrotated channel of polarization σ → σ ′, say, is modeled
by (σ ′σ )/D(E ). In this instance, the resonant denominator is
replaced by a sharp oscillator D(E ) = [(E−� + i�/2)/�],
with the x-ray energy E in the near vicinity of an atomic
resonance � of total width �, namely, E ≈ � and � � �

[24]. The cited energy-integrated scattering amplitude (σ ′σ ),
one of four amplitudes, is studied using standard tools and
methods from atomic physics and crystallography. Resonant
processes from M edges utilize atomic states 3d to 5 f (elec-
tric dipole, E1) and 3d to 7s, 6d (electric quadrupole, E2).
The meaningful comparison of E1 and E2 radial integrals in

FIG. 2. Primary (σ, π ) and secondary (σ ′, π ′) states of x-ray
polarization. Corresponding wavevectors q and q′ subtend an angle
2θ . The Bragg condition for diffraction is met when q − q′ coincides
with a reflection vector (h, k, l). Crystal vectors in Fig. 1 and the
depicted Cartesian (x, y, z) coincide in the nominal setting of the
crystal, and the start ψ = 0 of an azimuthal angle scan (rotation of
the crystal by an angle ψ about the reflection vector).

diffraction amplitudes includes the photon wavelength λ in E2
[24]. In the present case, (3d|R|5 f ) should be compared with
[(2π/λ)(3d|R2|7s)] or [(2π/λ)(3d|R2|6d )]. One finds the di-
mensionally correct E2 integrals are a factor ≈ 16 smaller
than the standard E1 radial integral (3d|R|5 f ) for λ ≈ 3.33 Å
(based on � ≈ 3.73 keV). An E1-E1 (E1-E2) scattering event
is parity even (parity odd) and exposes axial (polar) electronic
properties.

In our adopted description of electronic degrees of free-
dom, uranium ions are assigned spherical multipoles 〈OK

Q〉 of
integer rank K with projections Q in the interval −K � Q �
K . Multipoles obey sum rules that relate values evaluated at
absorption events labeled by the core spin-orbit interaction
[16,18,24]. A unit-cell electronic structure factor 
K

Q is com-
piled from all symmetry operations for uranium ions in space
group No. 206 [23]. An axial structure factor, with a parity
signature σπ = +1 in Eq. (A3), say, defines space-group for-
bidden reflections. For these reflections, an axial 
K

Q is zero
with Q = 0 and even K. Previously published axial and polar

K

Q include results suitable for the compounds GdB4, Cr2O3,
LaMnO3, NpO2, and CuO [17,18,24]. Our 
K

Q (24d) and 
K
Q

(8b) are reported in Appendix A. The main text of this work
is given over to a discussion of key implications for weak
(space-group forbidden) Bragg spots available from resonant
x-ray Bragg diffraction.

Cartesian and spherical components Q = 0,±1 of a vec-
tor n = (ξ, η, ζ ) are related by ξ = (n–1 − n+1)/

√
2, η =

i(n–1 + n+1)/
√

2, ζ = n0. A complex conjugate of a multi-
pole is defined as 〈OK

Q〉∗ = (−1)Q〈OK
–Q〉, meaning the diagonal

multipole 〈OK
0 〉 is purely real. The phase convention for real

and imaginary parts labeled by single and double primes is
〈OK

Q〉 = [〈OK
Q〉′ + i〈OK

Q〉′′]. Whereupon, Cartesian dipoles are

〈O1
ξ 〉 = −√

2〈O1
+1〉′ and 〈O1

η〉 = −√
2〈O1

+1〉′′.

IV. WEAK REFLECTIONS: CUBIC Ia3̄

We consider a Bragg reflection vector (h, k, 0) with even
(h + k) in keeping with Table I in Ref. [12]. Odd integer
Miller indices h and k produce space-group forbidden reflec-
tions, e.g., 
K

Q (8b) = 0 for the projection Q = 0 with even K,
and (1, 1, 0), (3, 1, 0), and (3, 3, 0) are specifically mentioned
[12]. The electronic structure factor [Eq. (A2)] for 
K

Q (8b) can
different from zero for odd Q, however. Axial multipoles have
an even rank and K = 2 in an E1-E1 absorption event [25].
Since the quadrupoles 〈T 2

±1〉b are not invariant with respect
to 3±

xyz in the full 8b site symmetry, uranium ions in the
centrosymmetric sites do not contribute to the defined pattern
of weak Bragg spots. We continue the discussion of weak
Bragg spots with diffraction by uranium ions in acentric 24d
sites.

Evaluated for (h, k, 0), the electronic structure factor
[Eq. (A3)] for 
K

Q (24d) reduces to


K
Q (24d) = 〈

OK
Q

〉
d
[α(h) + α(h)∗σπ ][1 − (−1)Qσπ ]

+2α(k)′γ (h)3+
xyz

〈
OK

Q

〉
d
[1 − σπ ]

(2n + 1, 2m + 1, 0). (1)

Spatial phase factors are α(h) = exp(i2πhx), with x ≈ −0.02
[12], and γ (h) = exp(iπh/2). Notably, multipoles 3−

xyz〈OK
Q〉

d

235151-2



CASE FOR POLAR URANIUM OCTUPOLES IN CUBIC … PHYSICAL REVIEW B 108, 235151 (2023)

are wholly absent in Eq. (1), and axial 3+
xyz〈T K

Q 〉
d

with parity
signature σπ = +1 are absent.

Universal results for diffraction amplitudes are listed in
Ref. [25] as functions of two electronic quantities, even and
odd, with respect to the sign of projections Q, namely, AK

−Q =
AK

Q and BK
−Q = −BK

Q . They are functions of the azimuthal
angle ψ (angle of rotation of the crystal about the reflection
vector), with the crystal c-axis normal to the plane of scat-
tering at the beginning of a scan ψ = 0. For the case in hand
[equivalent reflections for space group Ia3̄ (No. 206) are listed
in Appendix A],

AK
Q + BK

Q = e(iQχ )
K
Q , (h, k, 0) (2)

where cos(χ ) = −h/
√

[h2 + k2].
Axial multipoles (σπ = +1) contribute standard T & T

scattering proportional to the uranium quadrupole 〈T 2
Q 〉

d
with

odd Q [1–5]. The E1-E1 amplitude (σ ′σ )11 is purely real,

(σ ′σ )11 = cos(χ ) sin(2ψ ) α(h)′
〈
T 2

+1

〉′′
d , (h, k, 0), (3)

with α(h)′ = cos(2πhx). The diffraction amplitude in which
x-ray polarization is rotated from σ to π ′ contains an addi-
tional contribution [25],

(π ′σ )11 = α(h)′
〈
T 2

+1

〉′′
d [sin(θ ) cos(χ ) cos(2ψ )

+ cos(θ ) sin(χ ) cos(ψ )], (h, k, 0), (4)

and (σ ′π )11 is obtained by changing the sign of the Bragg
angle θ .

Uranium polar multipoles (σπ = −1) are denoted 〈U K
Q 〉

[18,24], and we henceforth safely drop the subscript d given
that they are exclusive to 24d. It is convenient to write the E1-
E2 amplitude (σ ′σ )12 as a sum of two parts, one proportional
to α(h)′′ (labeled V) and one proportional to αk (k)′ (labeled
W), i.e., (σ ′σ )12 = V + [γ (h)W ]. The amplitude (σ ′σ )12 de-
pends on the Bragg angle, unlike (σ ′σ )11. We find V is a sum
of multipoles with even projections, two quadrupoles (rank
K = 2), and an octupole (rank K = 3) [25],

V = (1/
√

30)α(h)′′ sin(θ ) sin(2ψ )
[√

(3/2)
〈
U 2

0

〉

+ cos(2χ )
{〈

U 2
+2

〉′ + 2
√

2
〈
U 3

+2

〉′′}]
, (h, k, 0). (5)

There are seven purely imaginary contributions to W, which is
proportional to sin(θ ). The factor γ (h) = exp(iπh/2) renders
[γ (h)W ] in (σ ′σ )12 real for odd h. An actual expression for
W can be read off from Eq. (D1) in Ref. [25] by inserting
multipoles listed in Appendix A to this work. For the special
case cos(2χ ) = 0 and h = 2n + 1,

(σ ′σ )12 = sin(θ )
[
(1/

√
20) α(h)′′ sin(2ψ )

〈
U 2

0

〉

− (i/5)
√

6γ (h) α(h)′

× {
Ê1

1 + (1/2)
√

(5/6) sin(2ψ ) Â2
0

+ (i/3)
√

5 cos (2ψ )Â2
1 + (1/6) [5 cos (2ψ ) + 3]

× Ê3
1 − √

(5/3)sin2(ψ )Ê3
3

}]

(2n + 1, 2n + 1, 0). (6)

Polar dipoles, quadrupoles, and octupoles Ê1
1 , Â2

Q, Ê3
Q ap-

pearing in Eq. (6) are listed in Eq. (A6). In summary, the
dependence of (σ ′σ )12 on ψ is a linear combination of

cos(2ψ ) and sin(2ψ ) on a background set by a dipole Ê1
1

directed along the a-axis in Fig. 1.
By way of a contrast to forbidden reflections considered

thus far in our work, we give an amplitude for reflection
vectors (2n, 0, 0) parallel to a dyad axis of rotation symmetry.
It is classified as a weak reflection in Table I of Ref. [12].
Diffraction by uranium ions 8b are allowed using axial events
E1-E1 or E2-E2. The unrotated polar amplitude is

(σ ′σ )12 = (4/5)
√

6 α(h)′′ sin(θ )
[〈

U 1
+1

〉′

− (1/3)
√

5 cos(2ψ )
〈
U 2

+1

〉′′ + (1/6)

× [5 cos(2ψ ) + 3]
〈
U 3

+1

〉′ − √
(5/3) sin2(ψ )

〈
U 3

+3

〉′]

(2n, 0, 0), (7)

with the crystal c-axis is normal to the plane of scattering
for ψ = 0. The amplitude (σ ′σ )12 is an even function of
the azimuthal angle, namely, cos(2ψ ), unlike the result for
(2n + 1, 2n + 1, 0), which has a lower symmetry with re-
spect to crystal axes. The dyad imposes twofold symmetry
in ψ .

V. REDUCED LATTICE SYMMETRY: Ibca

The parent cubic space group Ia3̄ (No. 206) does not
contain any fourfold axes. In consequence, a strained film
can only be orthorhombic. If we take into account the or-
thorhombic macroscopic strains (imposed by the misfit with
the substrate), the reduced symmetry is orthorhombic Ibca
(No. 73), which keeps the lattice vectors and origin of the
parent structure and origin. This lattice symmetry still forbids
(3, 1, 0) or any other reflection (h, k, 0) with odd h, k.
Electronic structure factors for uranium ions are given in
Appendix B. An accompanying list of equivalent reflections
confirms that (3, 1, 0) and (1, 3, 0) are not equivalent in
the orthorhombic space group. To begin with, we compare
some forbidden (h, k, 0) scattering amplitudes with foregoing
results derived for the cubic space group Ia3̄.

Uranium ions in sites 8b contribute diffraction enhanced by
an E1-E1 event, whereas special sites do not contribute in the
cubic lattice. Axial T & T scattering with odd h and k include

(σ ′σ )11 = sin(χ ) sin(2ψ )
〈
T 2

+1

〉′
b
, (2n + 1, 2m + 1, 0), (8)

(π ′σ )11 = 〈
T 2

+1

〉′
b

[sin(θ ) sin(χ ) cos(2ψ )

− cos(θ ) cos(χ ) cos(ψ )]. (9)

The amplitude (σ ′π )11 is obtained from Eq. (9) by a change
in sign of the Bragg angle θ . Contributions to T & T scattering
in (σ ′σ )11 from sites 8c and 8d are proportional to sin(2ψ ), as
in Eq. (8). The remaining factors in (σ ′σ )11 for the two sites
are [α(h)′ cos(χ )〈T 2

+1〉′′c ] and [iα′′(k)γ (h) sin(χ )〈T 2
+1〉′d ].

The polar amplitude (σ ′σ )12 for sites 8c is also propor-
tional to sin(2ψ ). A uranium octupole 〈U 3

+2〉′′c is engaged:

(σ ′σ )12 = (1/
√

20) sin(θ ) α(h)′′ sin(2ψ )

× [〈
U 2

0

〉
c + cos(2χ )

√
(2/3)

〈
U 2

+2

〉′
c

+ (4/
√

3)
〈
U 3

+2

〉
c

′′]
, (2n + 1, 2m + 1, 0). (10)
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The corresponding result for sites 8d is obtained by the sub-
stitution α(h)′′ → −iα(k)′ γ (h) along with 〈U K

Q 〉
c
→ 〈U K

Q 〉
d
.

The octupole is a greater presence in the rotated channel, for
which we find

(π ′σ )12

= polar quadrupoles + (2/
√

15) sin(θ ) α(h)′′
〈
U 3

+2

〉′′
c

× [cos(θ ) sin(2χ ) cos(ψ ) + sin(θ ) cos(2χ ) cos(2ψ )],

(2n + 1, 2m + 1, 0), (11)

with a similar result for sites 8d.
Turning to site 8e, the electronic structure factor [Eq. (B3)]

is zero for σπ = +1 using odd k and l = 0. The polar am-
plitude (σ ′σ )12 can be different from zero, however, and an
octupole is engaged. We find

(σ ′σ )12 = (i/
√

30) sin(θ ) α(h)′′γ (k) sin(2ψ ) sin(2χ )

× [〈
U 2

+2

〉′′
e − (4/

√
3)

〈
U 3

+2

〉′
e

]
,

(2n + 1, 2m + 1, 0). (12)

There is not scope from the azimuthal angle dependences of
(σ ′σ )12 to differentiated between sites. However, for site 8e,
(σ ′σ )12 = 0 for χ = 0, while contributions are allowed from
8c and 8d for this reflection vector.

Diffraction amplitudes for reflections (0, k, l) with even
(k + l ) and odd k can be derived starting from Eq. (B4).
Axial amplitudes for the special sites 8b are absent,
namely, (σ ′σ )11 = (π ′σ )11 = 0. The electronic structure fac-
tor 
K

Q (8c) in Eq. (B1) vanishes for axial multipoles with
σπ = +1, while (σ ′σ )12 ∝ sin(2χ ) with cos(χ ) = k/

√
[k2 +

l2]. Axial T & T scattering by uranium ions in general sites
8d and 8e is performed by quadrupoles 〈T 2

+1〉′d and 〈T 2
+2〉′′e ,

respectively. Polar multipoles (σπ = −1) that arise in the
unrotated channel (σ ′σ )12 are similar for the two sites. Specif-
ically, (σ ′σ )12 contains a contribution from an octupole ∝
[cos(2χ )〈U 3

+2〉′′].

VI. CONCLUSION

It is argued that the observation of a space-group forbidden
Bragg spot in resonant x-ray diffraction by cubic U2N3 is solid
evidence of uranium electronic multipoles in the material
[8,12,26,27]. Multipoles include a dipole parallel to the crystal
a-axis, and octupoles. Such results take our case beyond axial
quadrupoles engaged in conventional Templeton-Templeton
scattering, as in Eqs. (3) and (4) [1–5]. Looking ahead, our
predicted azimuthal angle scans, intensity versus rotation of
the sample about the reflection vector, need testing. The out-
come could sway a debate about the relevant significance of
axial and polar uranium multipoles in cubic U2N3, as we see
in Eqs. (3) and (6) for diffraction amplitudes (σ ′σ )11 and
(σ ′σ )12.

Electronic structure factors [Eqs. (A2) and (A3)] for ura-
nium ions have been used mainly to interpret resonant x-ray
diffraction in the unrotated channel of polarization (σ ′σ ) [12].
Universal expressions for all four amplitudes in Ref. [25] per-
mit an exhaustive investigation at the time data are available,
using electric dipole-electric dipole (E1-E1), electric dipole-
electric quadrupole (E1-E2) or E2-E2 absorption events. For

the moment, we have used E1-E1 and E1-E2, and included
a few statements about the rotated channel (π ′σ ). Beyond
resonant x-ray diffraction, structure factors [Eqs. (A2) and
(A3)] can be used to calculate neutron diffraction patterns
[28].

Our theoretical investigation is motivated by diffraction
patterns collected from thin epitaxial films of U2N3 [12].
Lawrence Bright et al. [12] report in-plane lattice parameters
that are different from the growth directions. This piece of
information plants the idea that the lattice symmetry for the
diffraction patterns of interest is metrically orthorhombic and
not cubic, an idea we pursue in Sec. V and Appendix B.
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APPENDIX A: CUBIC Ia3̄ (NO. 206)

An electronic structure factor is


K
Q = [

exp(iκ · e)
〈
OK

Q

〉
e

]
, (A1)

where the reflection vector κ = (h, k, l ) and the implied sum
is over resonant ions in the unit cell at positions e. Values of

K

Q suitable for GdB4, Cr2O3, LaMnO3, NpO2, and CuO, for
example, are found in Refs. [17,18,24].

Returning to U2N3, sites 8b in space group No. 206 (crystal
class m3̄) are centrosymmetric (Fig. 1), and axial multipoles
are denoted by 〈T K

Q 〉
b

[24]. Additional site symmetries for 8b
require 〈T K

Q 〉
b

to be invariant with respect to angular rotations
3+

xyz and 3−
xyz. We find [23],


K
Q (8b) = eiπ (h+k+l )/2[1 + (−1)h(−1)Q]

× [〈
T K

Q

〉
b
+ (−1)k (−1)K

〈
T K

−Q

〉
b

]
. (A2)

Sites 24d possess symmetry 2x, and 2x〈OK
Q〉

d
=

(−1)K 〈OK
−Q〉

d
= (−1)K+Q〈OK

Q〉∗
d

[13]. Thus, a generic
multipole 〈OK

Q〉
d

is purely real (imaginary) for even (odd)
K + Q. Spatial phase factors in 
K

Q (24d) include α(h) =
exp(i2πhx), γ (h) = exp(iπh/2), etc., with x ≈ −0.02 [12].
A parity signature σπ = +1(−1) for axial (polar) multipoles.
After tedious algebra,


K
Q (24d) = γ (l )

〈
OK

Q

〉
d
[α(h) + (−1)lα(h)∗σπ ]

× [1 + (−1)h(−1)Qσπ ] + γ (h)3+
xyz

〈
OK

Q

〉
d

× [α(k) + (−1)lα(k)∗][1 + (−1)kσπ ]

+ γ (k)3−
xyz

〈
OK

Q

〉
d
[α(l ) + (−1)hα(l )∗]

× [1 + (−1)lσπ ]. (A3)

A derivation of 
K
Q (24d) exploits the identities 3+

xyz(x, y, z) =
(z, x, y) = 2x3+

−xy−z(x, y, z), and 3−
xyz(x, y, z) = (y, z, x) =
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2x3−
−x−yz(x, y, z), which can be derived from tables in

Appendix 1 of Ref. [31]. In the unrealistic case of
identical uranium ions at the two independent sites,
[
K

0 (8b) + 
K
0 (24d)] = 0 for even K, (h, h, 0), γ (h) = −1,

and σπ = +1. Multipoles 3±
xyz〈OK

Q〉 in Eq. (A3) can be
constructed from

3+
xyz

〈
OK

Q

〉 = exp(iqβ )dK
Qq(β )

〈
OK

q

〉
, (A4)

3−
xyz

〈
OK

Q

〉 = exp(iQβ )(−1)qdK
Qq(β )

〈
OK

q

〉
, (A5)

with a sum on projections q, and dK
Qq(β ) is a standard Wigner

rotation matrix with an argument β = π/2 [32]. The identity
dK

−Qq(β ) = (−1)K+qdK
Qq(β ) is useful in calculations.

We list multipoles exposed at a reflection (2n + 1, 2m +
1, 0) with cos(χ ) = −h/

√
[h2 + k2]. Polar (σπ = −1) ura-

nium multipoles in W are defined by (σ ′σ )12 = [V + γ (h)W ],
and they are

Ê1
1 = − sin(χ )

〈
U 1

+1

〉′ = sin(χ )
〈
U 1

a

〉
/
√

2,

Â2
2 = (1/2) cos(2χ )

[√
(3/2)

〈
U 2

0

〉 − 〈
U 2

+2

〉′]
,

Â2
1 = i sin(χ )

〈
U 2

+1

〉′′
,

Â2
0 = − [

(1/2)
〈
U 2

0

〉 + √
(3/2)

〈
U 2

+2

〉′]
,

Ê3
3 = (1/4) sin(3χ )

[ − √
15

〈
U 3

+1

〉′ + 〈
U 3

+3

〉′]
,

Ê3
2 = i cos(2χ )

〈
U 3

+2

〉′′
,

Ê3
1 = (1/4) sin(χ )

[〈
U 3

+1

〉′ + √
15

〈
U 3

+3

〉′]
. (A6)

Space group: equivalent reflections for cubic No. 206:

(1)h, k, l; (2) − h,−k, l; (3) − h, k,−l; (4)h,−k,−l;

(5)l, h, k; (6)l,−h,−k; (7) − l,−h, k;

(8) − l, h,−k; (9)k, l, h; (10) − k, l,−h;

(11)k,−l,−h; (12) − k,−l, h; (13) − h,−k,−l;

(14)h, k,−l; (15)h,−k, l; (16) − h, k, l;

(17) − l,−h,−k; (18) − l, h, k; (19)l, h,−k; (20)l,−h, k;

(21) − k,−l,−h; (22)k,−l, h; (23) − k, l, h; (24)k, l,−h.

(A7)

APPENDIX B: ORTHORHOMBIC Ibca (NO. 73)

Miller indices h, k, l have an even sum for space group
Ibca (No. 73, crystal class mmm). Uranium ions occupy four
independent sites, one special (8b) and three general (8c, 8d,
8e) [10,23]. The electronic structure factor 
K

Q (8b) is identical
to Eq. (A2), with site symmetry reduced from 3̄ in No. 206
to inversion alone in No. 73. The remaining three electronic
structure factors are


K
Q (8c) = γ (l )

〈
OK

Q

〉
c
[α(h) + (−1)lα(h)∗σπ ]

× [1 + (−1)h(−1)Qσπ ], (B1)


K
Q (8d) = γ (h)

〈
OK

Q

〉
d
[α(k) + (−1)hα(k)∗σπ ]

× [1 + (−1)k (−1)Qσπ ], (B2)


K
Q (8e) = γ (k)

〈
OK

Q

〉
c
[α(l ) + (−1)kα(l )∗σπ ]

× [〈
OK

Q

〉
e
+ (−1)l (−1)Kσπ

〈
OK

−Q

〉
e

]
. (B3)

Sites symmetries in Eqs. (B1), (B2) and (B3) are 2x (8c),
2y (8d), and 2z (8e), leading to 〈OK

Q〉
c∗ = (−1)K+Q〈OK

Q〉
c
,

〈OK
Q〉

d∗ = (−1)K〈OK
Q〉

d
, and even Q (8e). The general coordi-

nate in a spatial factor α(h) = exp(i2πhy), say, is not known.
Data for bixbyite α-Mn2O3 suggest y ≈ −0.035 [10].

Scattering amplitudes for reflections (0, k, l) with even
(k + l ) and odd k can be derived from

AK
Q + BK

Q = γ (Q)e(iQχ )dK
Qq(β )
K

q, (0, k, l ), (B4)

with a sum on projections q. In the present case, cos(χ ) =
k/

√
[k2 + l2], β = π /2, and γ (Q) = exp(iπQ/2), as before.

The crystal a-axis is parallel to –z in Fig. 2 at the start of an
azimuthal angle scan ψ = 0.

Space group: equivalent reflections for orthorhombic
No. 73:

(1)h, k, l; (2) − h,−k, l; (3) − h, k,−l; (4)h,−k,−l;
(5) − h,−k,−l; (6)h, k,−l; (7)h,−k, l; (8) − h, k, l.

(B5)
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