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Many-body multipole index and bulk-boundary correspondence
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We propose dipole and quadrupole indices for interacting insulators with point group symmetries. The
proposed indices are defined in terms of many-body quantum multipole operators combined with the generator
of the point group symmetry. Unlike the original multipole operators, these combined operators commute with
the Hamiltonian under symmetry and therefore their eigenvalues are quantized. This enables a clear identification
of nontrivial multipolar states. We calculate the multipole indices in representative models and show their
effectiveness as order parameters. Furthermore, we demonstrate a bulk-boundary correspondence: a nonzero
index implies the existence of edge/corner states under the point group symmetry.
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I. INTRODUCTION

Multipoles provide essential information on charge degrees
of freedom in materials. There are characteristic charge distri-
butions on the surface of a material as a result of a uniform
multipole order in the bulk. Therefore, it is naturally consid-
ered that there exists a “bulk multipole moment” which is
defined for a system with the periodic boundary condition.
This has been a subject of intensive research for decades,
and it is now widely recognized that the bulk dipole moment
Px is described by the Berry-Zak phase of a wave function
[1–5]. Furthermore, the bulk dipole moment can also be de-
scribed by the dipole moment operator Ux ∼ eiPx [6,7]. The
dipole moment operator Ux is closely related to the Lieb-
Schultz-Mattis theorem and it works as an order parameter
of symmetry protected topological states in one dimension
[8,9]. Therefore, the dipole moment operator is regarded as a
fundamental quantity not only for electric insulators but also
for general gapped quantum states. Unfortunately, however,
there are several subtleties in applications of the dipole op-
erator Ux to general systems. For example, although it was
proved that the argument of the expectation value 〈Ux〉 agrees
with the dipole moment evaluated by the Berry phase formula
in gapped one-dimensional systems, such an equivalence may
break down in higher dimensions [10]. This stems from the
fact that Ux is not a conserved charge, and thus its expectation
value can vanish in the thermodynamic limit. While it may be
still possible that the argument (phase factor) is well defined
and gives the dipole moment in the thermodynamic limit even
if the expectation value vanishes, this makes the formulation
rather subtle.

Compared to the dipoles, bulk characterizations of higher
order multipoles such as the quadrupole Qxy are even less un-
derstood. There are gapless corner or hinge states in multipole
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insulators with open boundaries and emergence of such gap-
less modes can be characterized by state-based quantities such
as the nested Wilson loops, Wannier centers, and symmetry in-
dicators in non- (or weakly) interacting systems [11–18]. For
general interacting systems, “bulk multipole operators,” such
as the bulk quadrupole moment operator Uxy ∼ eiQxy , were
introduced as generalizations of the bulk dipole operators
[19,20]. As in the case of the dipole operator, its ground-state
expectation value generally vanishes in the thermodynamic
limit. This leads to a subtlety in (and possibly to the ill de-
finedness of) the bulk operator formulation of the multipole
moments. Furthermore, the bulk operator formulation of the
multipole moments is shown to have more pathological fea-
tures, such as the dependence on the choice of the origin [21].
So far, several other topological indices have been proposed
for characterizations of bulk multipole insulators [22–32], but
their relations to multipole moments are not well understood.

In this paper, we propose many-body indices for dipole
and quadrupole insulators, which have natural interpretation
in terms of the response to an external electric field and
are closely related to bulk multipole operators, but are de-
fined by exact quantum numbers of a deformed system. As
a consequence, the indices are quantized under point group
symmetries. As another advantage, unlike the bulk multipole
operators, the indices are compatible with the periodicity of
the system. Finally, the present formulation can describe a
bulk-boundary correspondence in multipole insulators.

II. DEFINITION OF THE QUANTIZED MULTIPOLE INDEX

Here we sketch the key ideas, and define multipole in-
dices. While our discussions apply to more general systems, to
be concrete, we consider the one-dimensional Su-Schrieffer-
Heeger (SSH) model for dipoles [33] and the two-dimensional
Benalcazar-Bernevig-Hughes (BBH) model for quadrupoles
[11,12] [Figs. 1(a) and 1(b)]. Both models can be represented
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FIG. 1. (a) SSH model and (b) BBH model, where squares rep-
resent sites with multiorbitals. (c) The gauge configuration for L = 3
with the periodic boundary condition. Each number on the bonds
corresponds to Ajk in units of 2π/L2 = 2π/9. The site at the left-
bottom corner is defined as the origin (x, y) = (0, 0). This gauge
configuration can be defined for general models [34].

by the Hamiltonian of the form

H (A) =
∑
jk,μν

eiAjk tμν

jk c†
jμckν +

∑
j,μν

w
μν
j c†

jμc jν + Hint, (1)

where tμν

jk is the intersite hopping and w
μν
j is the intrasite

hybridization between local orbitals. Details of tμν

jk and w
μν
j

are explained in Appendix A. The vector potential Ajk is an
external probe field which is distinguished from phases in
tμν

jk and w
μν
j . We have also added the interaction

Hint =
∑

Vjkn jnk . (2)

Here the particle number operator n j at site j is defined as

n j =
∑

μ

c†
jμc jμ − ρ, (3)

where ρ is the average particle number per site. Note that we
define n j differently from the standard one by subtracting the
average particle number ρ, for later convenience. In this paper,
we focus on integer filling ρ ∈ Z. Thus n j ∈ Z still holds. The
interaction Vjk does not necessarily have translation symme-
try, but is assumed to be point group symmetric.

We consider a finite system of linear size L, and impose
the periodic boundary conditions. Let x j and y j be the x and
y components of the coordinate of the site j. The multipole
moments are probed by electric fields, as follows. In terms of
the electron number operator nj , the dipole moment is given
as Px = ∑

j x jn j , and the xy component of the quadrupole
moment is given as Qxy = ∑

j x jy jn j . The dipole moment
couples to the external electric field through the dipole energy

Hdipole = −ExPx. (4)

Likewise, the quadrupole moment couples to the gradient of
the electric field as −∑

α,β ∂αEβQαβ .
Now, we can express the electric field in terms of a time-

dependent vector potential �A, instead of the gradient of the
scalar potential [19,20]. For example, in the SSH model,
we can take the ground state at �A = 0 as the initial state,
and consider the time-dependent uniform vector potential
Ax = (−Ext ) for 0 < t < T , which can be interpreted as
an insertion of an Aharonov-Bohm (AB) flux. Here we set

ExT = −2π/L, where L is the linear system size, and fur-
thermore take the “quench” limit T → 0. In the quench limit,
the wave function remains unchanged during the process.
On the other hand, the Hamiltonian changes due to the time
dependence of the vector potential. At the end of the process
t = T , the system contains an AB flux of 2π , which can be
eliminated by the large gauge transformation

Ux = exp

⎛
⎝i

2π

L

∑
j

x jn j

⎞
⎠, (5)

where n j was defined in Eq. (3). In order to compare the wave
function before and after the flux insertion, we must apply
the large gauge transformation H → U †

x HUx to get back to
the original gauge. Including the effect of the large gauge
transformation, the quantum state (wave function) of the
system is

U †
x |�0( �A = 0)〉. (6)

In this paper, we are interested in insulators with an excitation
gap, for which the polarization density is well defined. In
such systems, the sudden insertion of the AB flux, which is
equivalent to the application of a delta-function pulse of the
electric field Ex = −(2π/L)δ(t ), is expected to preserve the
ground state. Namely, the postquench state essentially remains
the ground state. Nevertheless, we expect the phase factor due
to the dipolar energy (4)

∫ T
0 dt ExPx = −2πPx/L = −2πPx,

where Px ≡ Px/L is the polarization density. This implies
〈�0( �A = 0)|U †

x |�0( �A = 0)〉 ∝ e−2π iPx , or equivalently

Px = 1

2π
arg [〈�0( �A = 0)|Ux|�0( �A = 0)〉]. (7)

This is nothing but the Resta formula [6] for many-body
polarization.

There are a few subtleties concerning this formula. First,
even though we are usually interested in the polarization at
�A = 0, the above flux insertion process would give a certain
average over 0 � Ax � 2π/L. We can however expect that the
dependence on the vector potential vanishes in the thermody-
namic limit L → ∞. The more serious issue is the robustness
of the ground state against the sudden insertion of the AB flux.
In one dimension, the robustness is supported by the agree-
ment [10] between the Resta formula (7) and the Berry phase
formula which corresponds to an adiabatic AB flux insertion.
However, in higher dimensions, the fidelity |〈�0|Ux|�0〉| is
generally smaller than unity even in the thermodynamic limit,
implying the significance of excitations due to the sudden AB
flux insertion. We may still hope that Eq. (7) is valid even in
such cases, but it is still an open question.

As we mentioned in the Introduction, the subtlety of the
Resta formula (7) is related to the fact that Ux is not a
conserved charge. In order to resolve this issue (for inversion-
symmetric systems), let us consider the following setup.
Instead of �A = 0, we now choose the ground state at �A =
�AP

0 = (−π/L) as the initial state. This gauge field is writ-
ten as Aj+x̂, j = −π/L in the SSH model (1). Following the
sudden insertion of the 2π AB flux, we apply the spatial
inversion Mx : x → −x. After the process, the wave function
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is M̃x|�0( �AP
0 )〉, where

M̃x = MxUx. (8)

The crucial observation is that M̃x commutes with the
Hamiltonian H ( �AP

0 ), since Ux shifts �AP
0 → �AP

1 = − �AP
0 . As a

consequence, the ground state |�( �AP
0 )〉 should be an eigenstate

of M̃x and the eigenvalue of M̃x can be regarded as a quantum
number. Since M̃x is unitary, its eigenvalue is unimodular
(phase factor). The phase of the eigenvalue of M̃x must contain
the dipole energy contribution 2πPx, as in the Resta formula
(7). However, it also contains the response of the ground state
to the inversion operation Mx. In order to subtract the latter
effect, let us consider the ratio

e2π i
p ≡
〈
�0

( �AP
0

)∣∣M̃x

∣∣�0
( �AP

0

)〉
〈�0( �A = 0)|Mx|�0( �A = 0)〉 . (9)

Since the denominator in the right-hand side represents the
inversion parity of the ground state, the ratio would give
the information on the dipole moment. It should be noted,
however, that in the denominator we use the ground state at
zero vector potential, so that it is an eigenstate of the inversion
Mx. Although the ground-state response to the inversion could
be different between |�0( �AP

0 )〉 and |�0( �A = 0)〉, we expect
that they can be identified in the thermodynamic limit. The
advantage of the formula for the polarization density 
p is
that both the numerator and the denominator are quantum
numbers (eigenvalues of operators).

We can extend this idea to the quadrupole moment (den-
sity). The electric field which couples to the quadrupole
moment is generated by

�A = �AQ
0 + t

T

( �AQ
1 − �AQ

0

)
, (10)

such that �AQ
0 = (2π/L2)(−y, 0) and �AQ

1 = (2π/L2)(0, x). To
be precise, we have introduced the vector potentials Ajk in the
gauge configuration shown in Fig. 1(c) for the BBH model
[34–36] corresponding to �AQ

0 . This induces the desired electric
field �E ∝ (y, x). After the application of the delta-function
pulse of the electric field by switching the vector potential
instantaneously from �AQ

0 to �AQ
1 , we can perform the gauge

transformation by

Uxy = exp

⎛
⎝i

2π

L2

∑
j

x jy jn j

⎞
⎠ (11)

to go back to the original gauge. While we may expect that
the ground-state expectation value Uxy gives the quadrupole
moment (density), which was in fact what was proposed in
Refs. [19,20], we encounter various issues [21]. First, al-
though the expression (11) is applied to systems with periodic
boundary conditions, it lacks the periodicity. In case of the
dipole moment, Ux defined in Eq. (5) is manifestly invariant
under the translation x j → x j + L because n j ∈ Z, and thus
is consistent with the periodic boundary conditions. However,
Eq. (11) lacks the invariance because of the factor L2 in the
denominator. Furthermore, the expectation value of Uxy shows
a peculiar dependence on the choice of the origin, although the
physical quadrupole moment should not.

In these respects, there are even more subtleties in the
many-body quadrupole moment defined by the expectation
value of Eq. (11) than the dipole moment based on Eq. (5).
Moreover, the subtleties in the dipole moment defined by
Ux are also inherited by the quadrupole moment defined by
Uxy. Following Eqs. (8) and (9), we introduce an operator to
study the quadrupole moment in many-body systems with C4

discrete rotation symmetry, by combining the gauge transfor-
mation with the π/2 rotation as

C̃4 = C4Uxy. (12)

The composite operator C̃4 also commutes with the Hamilto-
nian H ( �AQ

0 ) with an appropriate definition. In order to subtract
the ground-state response to the C4 rotation, we again divide
the expectation value of C̃4 by the eigenvalue of C4 for the
ground state at �A = 0:

e2π i
q ≡
〈
�0

( �AQ
0

)∣∣C̃4

∣∣�0
( �AQ

0

)〉
〈�0( �A = 0)|C4|�0( �A = 0)〉 . (13)

As in the case of the dipole moment (9), the quadrupole
moment is now defined in terms of quantum numbers. This
also partially resolves the additional issues in the many-body
quadrupole moment, such as the origin dependence, as we will
demonstrate later.

Summarizing both cases, we define the multipole indices
as


r = r̃ − r, (14)

where r̃ = p̃, q̃ represents the eigenvalue e2π ir̃ of the compos-
ite operator M̃x or C̃4 for the ground state of the Hamiltonian
with the background vector potential �A = �AP,Q

0 , and r = p, q
represents the eigenvalue e2π ir of Mx or C4 for the ground
state of the reference Hamiltonian H ( �A = 0). Since M̃2

x =
Mx

2 = C̃4
4 = C̃4

4 = 1, the indices are quantized as p, p̃,
p ∈
{0, 1/2} and q, q̃,
q ∈ {0, 1/4, 1/2, 3/4} modulo 1
(see Appendix B). While the indices admit a natural
interpretation in terms of the response to an external electric
field similarly to the many-body multipole operator proposed
in the past [6,19,20], our proposal resolves various issues
related to the fact that Ux and Uxy do not commute with the
Hamiltonian and thus do not represent quantum numbers
by themselves. Besides, the indices have several advantages
thanks to their definitions based on the quantum numbers;

r is robust to model parameters and it enables a rigorous
analytic derivation of the bulk-boundary correspondence.
Details will be discussed in the remainder of this paper.

III. GAUGE TRANSFORMATION

An advantage of the combined symmetry operator C̃4 is
that it naturally has a periodicity (x, y) → (x ± L, y ± L)
(any double sign) thanks to gauge transformations, in con-
trast to Uxy alone [19,20]. To see this, let us first consider
the trivial symmetry x → x ± L for dipoles from the view-
point of the gauge transformation. We introduce a scalar
function f j = ±π for 0 � x j � (L − 1)/2(0 � x j�L/2 − 1)
and f j = ∓π otherwise when L is odd (even), and

235150-3



YASUHIRO TADA AND MASAKI OSHIKAWA PHYSICAL REVIEW B 108, 235150 (2023)

consider a gauge transformation A → A f = A + df by U =
exp(i

∑
j f jn j ). The transformed operator is

M̃ f
x = UM̃xU−1 = Mx exp

⎛
⎝i

2π

L

∑
j

(x j ± L)n j

⎞
⎠, (15)

which is a spatially translated version of M̃x and matches the
periodicity of the system. Similarly for quadrupoles, the scalar
function f j = ±(2π/L)(x j ± y j ) for 0 � x j, y j � L − 1 leads
to

C̃ f
4 = UC̃4U−1 = C4 exp

⎛
⎝i

2π

L2

∑
j

(x j ± L)(y j ± L)n j

⎞
⎠
(16)

(any double sign). This well matches the periodic boundary
condition. It should be noted that the index 
r does not
change under the gauge transformation on both the symme-
try operator and the wave function. This is simply because
g̃|�〉 = ei2π r̃ |�〉 readily implies g̃f |� f 〉 = ei2π r̃ |� f 〉 for g̃ =
M̃x, C̃4, where |� f 〉 = U |�〉 is the ground state of H (A f ) =
UH (A)U−1. Therefore, our discussions based on 
r work for
the gauge fields A f as well.

IV. CALCULATION OF THE MULTIPOLE INDEX

We can explicitly calculate the indices 
r in the SSH
model and BBH model to show their effectiveness as a variant
of order parameters.

A. Calculation of �p for the SSH model

We first show that 
p is nonzero in the topologically
nontrivial phase of the SSH model and zero in the trivial state.
For this problem, we emphasize that our index 
p does not
change in presence of interactions as long as the many-body
spectrum is gapped under the symmetry, because it is defined
by the quantum numbers. Therefore, we can focus on the
noninteracting limit Vjk = 0 at half filling (ρ = 1) and it is
sufficient to consider two limiting cases with either t = 0 or
w = 0, which greatly simplifies the calculations. Thus calcu-
lated results hold true for all the states adiabatically connected
to the limit.

In the trivial phase with w �= 0, the ground state of H (A) is
adiabatically connected to that of t = 0 which is independent
of A:

|�0(A)〉 =
∏

j

1√
2

(c†
ja + c†

jb)|0〉. (17)

The fermions are localized at each site and the index is 
p =
0 in this phase. On the other hand, in the nontrivial phase
with t < 0, the ground state is smoothly connected to that of
w = 0:

|�0(A)〉 =
∏

j

1√
2

(e−iAx/2c†
ja + eiAx/2c†

j+1,b)|0〉, (18)

where Ax = 0,−π/L. In this case, the fermions are localized
on each bond. One can easily evaluate the eigenvalues of

Mx and M̃x for Ax = 0 and − π/L respectively, and obtain a
nonzero value 
p = 1/2.

B. Calculation of �q for the BBH model

Similarly, we compute 
q for the BBH model at half
filling (ρ = 2) to find 
q = 0 for the topologically trivial
phase and 
q = 1/2 for the nontrivial phase. As in the SSH
model, it is sufficient to focus on the noninteracting case. The
ground-state wave function in the trivial phase in the limit
t = 0,w �= 0 is independent of Ajk , where the fermions are
localized at each site and correspondingly 
q = 0. On the
other hand, for the topologically nontrivial phase, the ground-
state wave function in the limit t < 0,w = 0 is

|�0(A)〉 =
∏

j

γ
†
j1γ

†
j0|0〉,

γ
†
(0,0),0 = 1

2
(ω1/4c†

0a + c†
x̂,b + ω−1/4c†

x̂+ŷ,c + ω1/2c†
ŷ,d ),

γ
†
(0,0),1 = 1

2
(ω1/4c†

0a + ic†
x̂,b − ω−1/4c†

x̂+ŷ,c − iω1/2c†
ŷ,d ),

(19)

where ω = exp(i2π/L2 + iθt ), and θt �= 0 is a model parame-
ter which induces a nonzero band gap at half filling [11,12,20]
(see Appendix A). The operators γ jn at general sites have
structures similar to that of γ(0,0),n. In this state, the fermions
are localized at each plaquette. Then, one finds 
q = 1/2 =
2×1/4 which basically arises from the factors ω1/4 in γ jn (see
Appendix C).

C. Application to strongly interacting systems

Our argument and indices are applicable equally to
strongly interacting systems. Here, we discuss SSH and BBH
models with sufficiently large interactions Hint = ∑

jk Vjkn jnk

with on-site translation symmetry T in addition to point group
symmetry. To be precise, the range of Vjk is assumed to be
within the nearest neighbor sites. Although the on-site V0 =
Vj j will be larger than the intersite V1 = Vjk (| j − k| = 1) in
a realistic system, we consider the opposite limit V0 � V1 to
demonstrate efficiency of our argument to interacting systems
in a simple manner. In this case, the ground state for the strong
coupling limit V1 → ∞ will be a charge-density-wave state.
In this phase, the ground state wave functions for the SSH
model (at half filling ρ = 1 for an even system size L under
the periodic boundary condition) are adiabatically connected
to

|�±〉 = 1√
2

(|�1〉 ± |�2〉),

|�1〉 =
∏

j:even

c†
jac†

jb|0〉, |�2〉 =
∏
j:odd

c†
jac†

jb|0〉. (20)

This holds true for both the zero vector potential Ax = 0
and the nonzero vector potential Ax = −π/L. The two wave
functions |�1,2〉 break the translation symmetry of the Hamil-
tonian, while |�±〉 are translationally symmetric and are
eigenstates of the translation operator, Tx|�±〉 = ±|�±〉.
They correspond to the degenerate ground states of the
charge-density-wave phase, which hold for both |t | < |w| and
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|t | > |w| as long as the interaction V1 is sufficiently large.
Besides, |�1,2〉 are common eigenstates of Mx and Ux. Both
of |�1〉 and |�2〉 (and thus |�±〉) have the mirror eigen-
values p = L/4 (mod 1) for Mx where L is even, because
Mx(c†

jac†
jb)M−1

x = c†
L− j,bc†

L− j,a = eiπ c†
L− j,ac†

L− j,b for each j
and there are L/2 such factors in Eq. (20). They also have the
common eigenvalue p̃ = 1/2 + L/4 for M̃x = MxUx, because

Ux|�1,2〉 = exp

⎛
⎝±i

2π

L

∑
j

(−1)x j x j

⎞
⎠|�1,2〉

= exp(∓iπ )|�1,2〉 = −|�1,2〉 (21)

at the half filling ρ = 1. [Because of our definition of the
number operator (3) used in Ux (5), n j = ±(−1)x j in the ideal
charge-density-wave states |�1,2〉.] Therefore 
p = 1/2 for
both states (and thus for |�±〉). We emphasize that the index

p = 1/2 is not limited to Vjk → ∞ and does not change in
the entire charge-density-wave phase, because it is defined by
the conserved quantum numbers. The nonvanishing 
p cor-
responds to the fact that the charge-density-wave states |�1,2〉
with broken translation symmetry have nonzero polarization.
Indeed, the polarization is Px = (1/L)

∑
j x jn j = ±1/2 for

|�1,2〉 under the open boundary condition. This means that
the index 
p can describe the dipole moment not only in
topologically nontrivial band insulators but also in topologi-
cally trivial correlated insulators. Note that 
p is no longer
a topological index for degenerate gapped states, which is
distinguished from the characterization of (uniquely gapped)
symmetry protected topological states.

A similar argument applies to the BBH model (at half fill-
ing ρ = 2) with |t |, |w| � V and an even L. The ground states
show a staggered charge-density-wave order when V0 � V1,
because the square lattice is a bipartite lattice with A and B
sublattices. The translationally symmetric states are adiabati-
cally connected to

|�±〉 = 1√
2

(|�1〉 ± |�2〉),

|�1〉 =
∏

j:A−sublattice

c†
jac†

jbc†
jcc†

jd |0〉,

|�2〉 =
∏

j:B−sublattice

c†
jac†

jbc†
jcc†

jd |0〉.

(22)

Again, this holds true for both zero and nonzero vector po-
tentials. These two states are common eigenstates of C4 and
Uxy. The C4 eigenvalues for |�1,2〉 are q = L2/4 ≡ 0 (because
L is assumed to be even) similarly to p in the SSH model.
Furthermore, in the limiting charge-density wave states |�1,2〉,
the average particle number per unit cell is ρ = 2 and the
particle number is given as

nj = ±2(−1)x j+y j . (23)

Thus

Uxy|�1,2〉 = exp

⎛
⎝±i

4π

L2

∑
j

(−1)x j+y j x jy j

⎞
⎠|�1,2〉

= e±iπ |�1,2〉. (24)

FIG. 2. Excitation energy 
Emn = Em − En in the interacting
SSH model for t = −1.0, w = 0.5t with ρ = 1, L = 4. The vector
potential is (a) Ax = 0 and (b) Ax = −π/L.

As a consequence, |�1,2〉, and thus their superpositions |�±〉,
belong to the eigenvalue q̃ = 1/2 + L2/4 ≡ 1/2 of the com-
posite operator C̃4. Therefore


q = 1
2 , (25)

indicating that the charge-density-wave states belong to
the phase with a nontrivial quadrupole index which is
distinct from the trivial phase under the C4 symmetry.
This is consistent with the fact that the charge-density-
wave states |�1,2〉 have nonzero quadrupole moments Qxy =
(1/L2)

∑
j x jy jn j = ±1/2 under the open boundary condi-

tion. On the other hand, 
q is well defined for the periodic
boundary condition. Furthermore, 
q is invariant within each
phase under the C4 symmetry. Therefore, similarly to 
p, the
index 
q can describe the quadrupole moments not only in
topologically nontrivial band insulators but also in topologi-
cally trivial correlated insulators.

As shown above, the multipole indices are nontrivial in the
strong interacting regime |t |, |w| � V , which is independent
of the ratio w/t . On the other hand, the ground states are
topologically nontrivial for |w| � |t | and trivial for |w| � |t |
at the weakly interacting regime |t |, |w| � V . There must be a
quantum phase transition at V1 = Vc between a band insulator
for V1 < Vc and the charge-density-wave ordered state for
V1 > Vc, and the many-body energy gap will close there in
a thermodynamically large system. (There might be multiple
quantum phase transitions between V = 0 and V → ∞, but
here we just suppose that there is a single phase transition
for simplicity.) The phase transition is smeared in a finite
size system, but the gap closing remains even for small L
when the level crossing takes place between two states with
different quantum numbers. Therefore, the topologically triv-
ial band insulator with 
p = 0 is separated by gap closing
from the charge-density-wave state with 
p = 1/2 for finite
L. This can be demonstrated in the exact diagonalization of
the interacting SSH model with V0 = 0 and V1 �= 0. In the
numerical calculations, we choose a small system size L = 4
so that each of the nth energy levels En is clearly visible, and
we have checked that the results are qualitatively unchanged
for larger L. As shown in Fig. 2 for |w/t | < 1, the energy
difference 
E10 = E1 − E0 between the ground state and the
first excited state is nonzero due to finite size effects, and the
dipole index 
p = 1/2 does not change for all 0 � V1 < ∞
in a finite size system. 
E10 will vanish in the thermodynamic
limit corresponding to the (nearly) degenerate states |�±〉 in
Eq. (20). On the other hand, for |w/t | > 1 as seen in Fig. 3, the
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FIG. 3. Excitation energy 
Emn = Em − En in the interacting
SSH model for t = −1.0, w = 2t with ρ = 1, L = 4. The vector
potential is (a) Ax = 0 and (b) Ax = −π/L.

energy difference 
E10 = E1 − E0 at |w/t | > 1 becomes zero
at a critical point Vc(L) � 2.4|t | when the vector potential is
Ax = 0, while the gap remains nonzero for Ax = −π/L. Con-
sequently, the ground state has 
p = 0 − 0 = 0 for V1 < Vc

and 
p = 1/2 − 0 = 1/2 for V1 > Vc.
In absence of the additional translation symmetry of the

Hamiltonian, the two states |�1,2〉 are no longer degenerate in
general. To be concrete, we introduce a staggered potential,

Hstag =
∑

j

(−1) jusn j, (26)

which favors one of |�1〉 or |�2〉. Then, the ground state for
|w/t | < 1 is unique for all V1 � 0 with the index 
p = 1/2,
where V1 = 0 and V1 → ∞ are adiabatically connected with
each other without a phase transition as shown in Fig. 4(a).
Therefore, the dipole band insulator and charge-density-wave
state are essentially the same state when us �= 0. On the other
hand, in the topologically trivial case |w/t | > 1, the ground
states for V1 = 0 and V1 → ∞ can still be well distinguished
by 
p, where 
p = 0 for the former and 
p = 1/2 for the
latter. One can clearly see gap closing even in presence of the
staggered potential in Fig. 4(b). Note that the site-centered
mirror symmetry is kept in both states and this phase transi-
tion is not related to spontaneous mirror symmetry breaking.
(There is no bond-centered mirror symmetry in presence of
the staggered potential.) Numerical calculations suggest that
the gap approaches zero at some V � Vc as L increases also
in the π -flux system at |w/t | > 1 (not shown), which implies
that there exists a phase transition irrespective of boundary
conditions. Therefore, the trivial band insulating state and
charge-density-wave state are distinguishable only by the

FIG. 4. Excitation energy 
Emn = Em − En in the interacting
SSH model for t = −1.0: (a) w = 0.5t and (b) w = 2t with ρ = 1,

L = 4. The vector potential is Ax = 0 and the staggered potential is
us = 0.1|t |.

site-centered mirror symmetry. This means that there is no
adiabatic path connecting the trivial band insulator and non-
trivial band insulator even in an enlarged Hamiltonian space
with Hint and Hstag under mirror symmetry. Similar arguments
may apply to quadrupole insulators.

V. BULK-BOUNDARY CORRESPONDENCE

By using the combined operators, we can naturally
describe a bulk-boundary correspondence for interacting mul-
tipole insulators with the point group symmetry and particle
number U(1) symmetry, which is a many-body generaliza-
tion of the previous studies [12,14,15,18,37–39]. We first
formulate our bulk-boundary correspondence focusing on in-
teracting band insulators where the ground state is uniquely
gapped. That is, we will show that a nontrivial index 
r �= 0
requires that a gap closing must take place when the boundary
condition is deformed from periodic to open. Then, rela-
tions to the filling anomaly [40] are discussed. Furthermore,
bulk-boundary correspondence is confirmed by numerical cal-
culations. We emphasize that our argument holds in presence
of interactions and is applicable not only to a band insulator
but also to a correlated insulator whose energy gap is driven
by interactions.

A. Statement and proof

In this paper, we are interested in gapped insulators. Ro-
bustness of the many-body excitation gap is widely accepted
(and often assumed) although not mathematically proven in
general. One of the aspects of the robustness is the robustness
against the insertion of the AB flux [41,42]. That is, the ex-
citation gap is expected not to close for any finite AB flux.
Another is the robustness of the many-body excitation gap
against a cut in a trivially gapped phase. That is, if the system
is in a trivial phase, the gap is expected to remain nonzero
when the system is cut, and there appear no edge/surface
states. In contrast, gapless edge states often appear in topolog-
ical phases. This is a typical manifestation of bulk-boundary
correspondence.

Indeed, here we show that a nontrivial multipole index

r �= 0 implies the existence of edge states. More concretely,
we prove the following statement

Claim. If the multipole index is nontrivial, 
r �= 0, under
the periodic boundary condition, gap closing takes place in the
many-body energy spectrum of either H (A = 0) or H (A �= 0)
when the periodic boundary condition is continuously tuned
to the open boundary condition.

The precise meaning of “tuning the boundary condition”
will be explained later.

We illustrate our argument using the examples of SSH
and BBH models, although it is naturally applicable to more
general models. First, let us consider dipole insulators by
using the SSH model under the periodic boundary condition
as shown in Fig. 5(a). The system size L is now assumed to be
odd, so that the corresponding system with the open boundary
condition also has site-centered mirror symmetry. Then we
can define the index 
p as in Eq. (9). We will show that a
gap closing must take place during the “cut,” namely when
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FIG. 5. (a) SSH model and (b) BBH model with t ′ = λt on the
bonds with red colored broken lines. λ = 0 corresponds to an open
chain with the center x = 0 and an open square with the center (0,0),
respectively. If there are other hoppings and intersite interactions,
they are scaled by λ in a similar manner.

the boundary condition is modified from periodic to open, if

p = 1

2 .
The cut is implemented by changing the hopping inte-

gral t ′ = λt between the sites x j = (L − 1)/2 and (L + 1)/2,
while other hopping integrals are fixed to t . λ = 1 corresponds
to the periodic boundary condition and λ = 0 does to the open
boundary condition. In presence of other hoppings and inter-
site interactions, they are scaled by the parameter λ in a similar
manner. Furthermore, we introduce the AB flux parametrized
by s as Ax(s) = −sπ/L. Therefore we consider a family of
Hamiltonians in the two-dimensional parameter space (λ, s).

Let us define the operator U ′
x (s) = exp(is2π/L

∑
j Xjn j ),

where 0 � s � 1. We have introduced the coordinate Xj =
x j for 0 � x j � (L − 1)/2 and Xj = x j − L for (L + 1)/2 �
x j � L − 1. In general, U ′

x (s) introduces a twisted boundary
condition and thus can be used to define a symmetry of the
system, only at s = 0, 1. In other words, U ′

x (s) corresponds
to insertion of s flux quantum as the AB flux and cannot
be related to the large gauge invariance except for s = 0, 1.
However, for the open boundary condition λ = 0, the system
is completely insensitive to the AB flux, as there is no path
encircling the AB flux. Equivalently, the vector potential Ax(s)
can be eliminated by the gauge transformation U ′

x (s) for any
0 � s � 1. [Since there is no hopping term at the boundary
for the open boundary condition λ = 0, the twist introduced
by U ′

x (s) can be ignored.] Thus the Hamiltonian on the lines
(λ, s = 0, 1) and (λ = 0, s) is invariant under

M̃ ′
x(s) ≡ MxU

′
x (s). (27)

We can then define p̃′(λ, s) by the eigenvalue e2π i p̃′(λ,s) of
M̃ ′

x(s) for the ground state under the boundary condition
λ. This eigenvalue is quantized as p̃′(λ, s) = 0, 1/2 and can
change only when gap closing occurs, because [M̃ ′(s)]2 = 1
holds for 0 � s � 1 (Appendix B).

Now let us connect the two points (λ, s) = (1, 0) and
(1,1) along the lines (0 � λ � 1, s = 1), (λ = 0, 0 � s � 1),
and (0 � λ � 1, s = 0), as shown in Fig. 6. On the second
segment (λ = 0, 0 � s � 1) represented by the red line in
Fig. 6, the Hamiltonian is always gauge equivalent. Thus the
eigenvalue p̃′(λ = 0, s) of the symmetry generator remains
unchanged. Furthermore, along the first and third segment,
M̃ ′

x(s) remains the exact symmetry. Therefore, if no gap

FIG. 6. The (λ, s)-lane and lines connecting the two points
(λ, s) = (1, 0), (1, 1), where λ and s characterize the boundary
condition and the flux, respectively. r̃′(λ, s) corresponds to the eigen-
value of M̃ ′

x (s) or C̃′
4(s) in the ground state with the boundary

condition λ. These operators commute with the Hamiltonian on the
colored segments, but not on other regions.

closings take place along 0 � λ � 1 at both s = 0 (green line)
and s = 1 (blue line), p̃′(λ, s) remains unchanged. Therefore,
under this assumption, p̃′(λ = 1, s = 1) = p̃′(λ = 1, s = 0).
On the other hand, by definition, M̃ ′

x(s = 1) = M̃x and thus
p̃′(λ = 1, s = 1) = p̃. Similarly, M̃ ′

x(s = 0) = Mx and thus
p̃′(λ = 1, s = 0) = p. Thus the assumption of no gap closing
implies p̃ = p and thus the dipole index is trivial: 
p = 0. As
a contraposition, if 
p �= 0, there must be a gap closing along
either the first or third segments (0 � λ � 1, s = 0, 1). This
signals the presence of gapless edge states.

We note that, in a finite-size system, the gapless edge state
(ground-state degeneracy) does not necessarily appear exactly
at λ = 0. Nevertheless, the above argument implies that the
gap closing must take place at a critical value λc(L) ∈ [0, 1]
depending on the system size L, which we confirm numeri-
cally later. In the thermodynamic limit L → ∞, λc(L) → 0
is expected, corresponding to the gapless edge states for the
open boundary conditions. This can be also interpreted as the
existence of filling anomaly when 
p �= 0 [40] as will be
discussed later.

A similar argument applies to quadrupole insulators with
an odd linear system size L. In this case, our argument is based
on the spectral robustness against the flux in each plaquette,
where the flux 2π/L2 = O(L−2) is so small that the spectra
for H (0) and H (A) will be essentially the same [36]. The cut
is implemented by the hopping t ′ = λt for the bonds between
((L − 1)/2, y j ) and ((L + 1)/2, y j ), and (x j, (L − 1)/2) and
(x j, (L + 1)/2) as shown in Fig. 5(b), for which the open
boundary condition is realized at λ = 0. If there exist other
hoppings and intersite interactions, they are scaled by λ in a
similar manner. Then, it is convenient to introduce the coordi-
nate Xj,Yj ∈ {−(L − 1)/2, . . . , 0, . . . , (L − 1)/2} similarly
to dipole insulators. Accordingly, we make a gauge trans-
formation by U = ei

∑
j f j n j with f j = 0 for Yj � 0 and f j =

(2π/L)Xj for Yj < 0. The combined operator is transformed
to C̃4 = C4 exp(i2π/L2 ∑

j XjYjn j ) and commutes with the
Hamiltonian for 0 � λ � 1.

Now we introduce the operator C̃′
4(s) = C4U ′

xy(s) with
U ′

xy(s) = exp(i2πs/L2 ∑
j XjYjn j ) which commutes with the

Hamiltonian with the open boundary condition λ = 0, in
the gauge: [C̃′

4(s), H (A(s), λ = 0)] = 0. It is straightforward
to see (C̃′

4(s))4 = 1 for 0 � s � 1 and its eigenvalues are
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quantized (Appendix B). Again, for the periodic boundary
condition λ = 1, the eigenvalue of C̃′

4(s) is given by q at s = 0
and by q̃ at s = 1. Given these definitions and properties, we
can repeat the same argument as before. That is, if there is
no gap closing while tuning the boundary condition along
0 � λ � 1, the quadrupole index 
q = 0. This implies that
there must be a gap closing for λ = λc ∈ [0, 1].

We note that the square geometry with corners for the open
boundary condition is crucial in the above discussion, which
is consistent with corner modes in a quadrupole insulator. The
above argument does not apply to a cylindrical system, where
t ′ is introduced only in one of the x or y direction, because
the C4-rotation symmetry is explicitly broken in such a case.
This would suggest that the gapless modes appear at corners
of the system but not at edges, although their spatial positions
cannot be identified in our argument for the bulk-boundary
correspondence.

In the above discussion, we have used the property that
the small flux 2π/L2 does not close an energy gap and the
spectra for H (0) and H (A) are essentially the same in two
dimensions. This can be proved when H (0) has no flux [36],
but the gap might close otherwise because the total flux in
the entire system is

∑
j 2π/L2 = 2π = O(1) which is compa-

rable with the preassumed gap O(1). Although the argument
in the previous study [36] cannot be directly applied to the
BBH model with a flux parameter θ �= 0 which breaks the
time-reversal symmetry, the quadrupole phase is stable [20]
for an extended region of θ and the energy gap should not
close when the tiny external flux 2π/L2 is added, which will
be true even in presence of interactions [43,44]. Therefore, our
argument on the bulk-boundary correspondence should work
for the BBH model with θ �= 0.

B. Relation to the filling anomaly

Let us discuss the gap closing at λ � 0 in more detail
based on filling and symmetry of the wave functions [40]. In
our setup, we focus on the particle number fixed sector with
Ne electrons for a system with Na atomic sites. For a fixed
system size L, the electron number is Ne = ρNa = L for the
half-filled SSH model and Ne = ρNa = 2L2 for the half-filled
BBH model. In the following, we focus on the noninteracting
(V = 0) SSH model just for simplicity and similar arguments
apply to the BBH model as well. The concluding statement
holds also for interacting systems, because our analytical
proof in the previous section is applicable to such systems.
Under the open boundary condition (t ′ = 0), the ground-state
wave function is a superposition of the state |�L〉 with an
excess electron charge on the left edge and the state |�R〉 with
an excess electron charge on the right edge. In the limit w = 0,
they are explicitly given by

|�L〉 = c†
l,b

∏
j �=r

1√
2

(c†
ja + c†

j+1,b)|0〉,

|�R〉 = c†
r,a

∏
j �=r

1√
2

(c†
ja + c†

j+1,b)|0〉 (28)

for t < 0, where l = (L + 1)/2 and r = (L − 1)/2 are the
sites corresponding to the left edge and right edge,
respectively. These states are mirror symmetry broken

FIG. 7. The energy gap 
E as a function of λ for the (a) SSH
model with t = −1, w = 0.6t and (b) BBH model with t = −1,

w = 0.3t, θt = θw = 2π×(5/16, 8/25, 12/36, 16/49) for L =
(4, 5, 6, 7), respectively. These fluxes correspond to θ = 2π/3 in
the thermodynamic limit.

states, and the charge localized at the left edge site is
〈�L|nl |�L〉 = +1/2 compared to the average charge density
ρ = 1 and also 〈�L|nr |�L〉 = −1/2. Similarly, 〈�R|nl |�R〉 =
−〈�R|nr |�R〉 = −1/2. (The total charge is neutral by defini-
tion.) On the other hand, the two ground states

|�+〉 = 1√
2

(|�L〉 + |�R〉),

|�−〉 = 1√
2

(|�L〉 − |�R〉) (29)

are mirror symmetric with different mirror eigenvalues, and
there is no charge accumulation at the edges, 〈�±|nl |�±〉 =
〈�±|nr |�±〉 = 0. (The same notation |�±〉 as those in
Sec. IV C is used here for simplicity, but they are different
states.) These ground states are exactly degenerate at w = 0.
Away from the w = 0 limit, each of |�L,R〉 acquires correction
terms, and they will hybridize to obtain an energy separation
which is exponentially small in the system size L, which also
gives an energy gap for |�±〉. This corresponds to the energy
gap at λ = 0 in the numerical calculations in Fig. 7. The finite
size gap will vanish in the thermodynamic limit L → ∞, be-
cause distance between the opposite edges becomes infinitely
large.

The gap closing is robust to perturbations which keep the
point group symmetry. Indeed, one can add a perturbation to
the SSH model which breaks the on-site chiral symmetry but
keeps the mirror symmetry, as generally discussed for point
group symmetry protected topological phases [45–47]. For
example, we consider the potential term

Hpert =
∑

jμ

uμ
j c†

jμc jμ, (30)

where ua
j = ub

L− j by the mirror symmetry. The two states
|�±〉 are still degenerate, although the single-particle edge
modes acquire a nonzero energy due to the lack of the chiral
symmetry. This means that the gaplessness (or degenerate
ground states) at the charge neutral filling is protected only
by the mirror symmetry, which can be regarded as a variant
of the filling anomaly [40]. In this context, our bulk-boundary
correspondence is a filling anomaly type statement and can be
rephrased as follows.

Claim. Consider a system with a charge neutrality fill-
ing, point group symmetry, and a nontrivial index 
r in the

235150-8



MANY-BODY MULTIPOLE INDEX AND BULK-BOUNDARY … PHYSICAL REVIEW B 108, 235150 (2023)

uniquely gapped ground state under the periodic boundary
condition. Then, it is impossible to realize a uniquely gapped
ground state under the open boundary condition with keeping
the same filling and symmetry.

The resulting ground state(s) under the open boundary
condition must be either gapless or break the symmetry in the
thermodynamic limit. We stress that the above statement is
valid for interacting systems as well, because our analytical
proof in the previous section is applicable also to such sys-
tems. This becomes important for understanding systems with
strong interactions as will be discussed in the next section.

C. Numerical confirmation of bulk-boundary correspondence

We numerically confirm the bulk-boundary correspon-
dence. To this end, we first show numerical calculations of
single-particle spectra for the noninteracting SSH and BBH
models, where the boundary conditions are tuned by the hop-
ping parameter t ′ = λt on the specific bonds (Fig. 5). t ′ = t
corresponds to the periodic boundary condition and t ′ = 0
describes the open boundary condition. In case of a dipole
insulator, we can also consider t ′ = −t corresponding to the
antiperiodic boundary condition which is equivalent to the
periodic boundary condition with a π flux.

We consider the SSH model for both even and odd system
sizes L. Although our proof is not applicable for an even L,
we naturally expect that gap closing takes place in this case
as well similarly to the case of an odd L. As exemplified
in Fig. 7(a), the energy gap 
E at half filling [gap between
the Lth and (L + 1)th single-particle energy levels) is 
E ∼ t
when t ′ = t and it decreases as t ′ is varied. There is a small
energy gap due to hybridization of the edge modes localized
at opposite ends for a finite L when t ′ = 0. One can see
that 
E = 0 at a critical strength of the hopping parameter
λc(L) depending on the system size. This is fully consistent
with our proof of the bulk-boundary correspondence, where
it is shown that there exists gap closing when t ′ is tuned to
zero if 
p �= 0. The gap closing takes place for any L and
the critical value λc(L → ∞) numerically approaches zero in
the thermodynamic limit as physically expected, although we
cannot rigorously prove λc(L → ∞) = 0.

The BBH model exhibits similar behaviors. The energy gap

E at half filling [gap between the 2L2th and (2L2 + 1)th
single-particle energy levels] is shown in Fig. 7(b). The energy
gap vanishes at a critical λc(L) and it approaches zero in
the thermodynamic limit similarly to the SSH model. Note
that the energy gap 
E does not close for L = 4, 6 to which
our proof for an odd L is not applicable, but 
E at λ = 0
approaches zero as L increases and 
E for an odd L and an
even L will converge to the same value in the thermodynamic
limit.

The bulk-boundary correspondence holds also for strongly
interacting systems as well, where energy gaps are driven
by the interactions. Here, we consider the interacting SSH
model with the intersite interaction V1 at half filling ρ = 1
(see also Sec. IV C), where hopping t and V1 are scaled as
t ′ = λt,V ′

1 = |λ|V1 at a bond by the parameter −1 � λ � 1.
The system size is taken to be L = 4 since an odd L is in-
compatible with the charge-density-wave order, although our
proof of the bulk-boundary correspondence is not applicable

FIG. 8. The energy gap 
E between the ground state and the first
excited state as a function of λ in the interacting SSH model with
the system size L = 4. The parameters are (a) t = −1, w = 0.5t and
(b) t = −1, w = 2t .

to a system with an even L. As in the previous section, each
of the nth energy levels En is clearly visible for L = 4 and
we have confirmed that qualitative behaviors do not change
for larger L. We naturally expect that the energy spectra for
an even L and an odd L will converge to the same spectrum
in the thermodynamic limit. As shown in Fig. 8, the energy
gap closes around λ = 0 for |w/t | < 1 for any V1, because the
dipole index is 
p = 1/2 as was discussed in Sec. IV C. On
the other hand, the gap closing takes place only for V1 > Vc(L)
when |w/t | > 1, because the index is 
p = 0 for V1 < Vc

and 
p = 1/2 for V1 > Vc. The gap closing in the charge-
density-wave ordered states is not related to single-particle
edge modes and is understood based on the filling anomaly
discussed in the previous section (Sec. V B).

VI. SUMMARY AND DISCUSSION

We have proposed the indices 
p and 
q for interacting
dipole and quadrupole insulators under the periodic boundary
condition. In presence of point group symmetries, these in-
dices are quantized and they can well characterize multipole
insulators. There are several advantages of our multipole in-
dices.

(i) They are well defined for general dimensions for ther-
modynamically large systems in contrast to the previously
proposed ones.

(ii) They do not change in a uniquely gapped phase in pres-
ence of the particle number U(1) and point group symmetries.

(iii) They are compatible with the periodicity of the system
thanks to gauge transformations.

(iv) They can be extended to systems with open bound-
aries, which leads to the bulk-boundary correspondence.

Our indices are applicable to bosonic particle systems and
spin systems as well, and hence can be widely used for charac-
terization of topological phases with point group symmetries.
Our approach may be extended to general Cn-rotation sym-
metric quadrupole insulators and also octupole insulators in
three dimensions. These are left for a future study.
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APPENDIX A: DEFINITION OF SSH AND BBH MODELS

The SSH model in the present paper is a two-orbital spin-
less fermion model. The intersite hopping tμν

jk and intrasite
hybridization w

μν
j are

tμν
j+x̂, j =

(
0 0
t 0

)
, w

μν
j =

(
0 w

w 0

)
. (A1)

The mirror operation about the origin x = 0 in absence of
a vector potential is MxcjaM−1

x = cL− j,b and MxcjbM−1
x =

cL− j,a. This operator commutes with the Hamiltonian at zero
vector potential, [Mx, H (0)] = 0. It is noted that the ground-
state eigenvalues of Mx and M̃x depend on signs of t and w

in each phase because energies of bonding or antibonding
states depend on the signs. On the other hand, the index 
p is
independent of the signs.

The BBH model is a four-orbital spinless fermion model
on the square lattice. The hopping and hybridization are

tμν
j+x̂, j =

⎛
⎜⎜⎝

0 0 0 0
t 0 0 0
0 0 0 t
0 0 0 0

⎞
⎟⎟⎠,

tμν
j+ŷ, j =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 t 0 0
t 0 0 0

⎞
⎟⎟⎠, (A2)

w
μν
j =

⎛
⎜⎜⎝

0 w 0 w

w 0 w 0
0 w 0 w

w 0 w 0

⎞
⎟⎟⎠.

The C4 rotation about the origin (0,0) in absence of an exter-
nal vector potential is C4c jμC−1

4 = Rμνc j′ν, j′ = C4 j = (L −
y j, x j ):

Rμν =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠. (A3)

Although this model is well defined, it does not have a band
gap at half filling. One needs to introduce a flux θt �= 0 for
each intersite plaquette as a model parameter (which should be
distinguished from the external vector potential Ajk) to create
a stable band gap. We add such a flux in the gauge shown
in Fig. 1(c) and also introduce a flux θw for each intrasite
plaquette in a C4 symmetric way, w → weiθw/4. For simplicity,
we consider θt = θw = θ . The quadrupole phase is extended
for 0 < θ � π [11,12,20]. The conventional C4-rotation oper-
ator in absence of the external vector potential corresponding
to the flux 2π/L2 = O(L−2) in each plaquette is replaced as
C4 → C4 exp(iθt

∑
j x jy jn j ). This operator is the C4-rotation

symmetry operator of the reference Hamiltonian H (0) in ab-
sence of the external vector potential Ajk and we denote it
simply as C4.

APPENDIX B: PROPERTIES OF COMBINED MIRROR
AND C4-ROTATION OPERATORS

The square of M̃x for a one-dimensional system is

(M̃x )2 = exp

⎛
⎝i

2π

L

L−1∑
x j=1

LnL− j

⎞
⎠

× exp

⎛
⎝−i

2π

L

L−1∑
x j=1

(L − x j )nL− j

⎞
⎠Ux

= 1, (B1)

where 2π
∑L−1

j=1 n j = 0 (mod 2π ) has been used for an integer

filling ρ. (Note that n j = ∑
μ c†

jμc jμ − ρ.) Clearly, this holds
true for any L and also in higher dimensions.

For an odd L, there is a center site x0 = 0 for the
mirror operation under the open boundary condition
and it is convenient to introduce the coordinate Xj =
−(L − 1)/2, . . . ,−1, 0, 1, . . . , (L − 1)/2, where Xj = x j

for 0 � x j � (L − 1)/2 and Xj = x j − L for (L + 1)/2 �
x j � L − 1. In this coordinate, Xj = −XL− j under the
mirror operation Mx. Therefore, for M̃ ′

x(s) = MxU ′
x (s) =

Mx exp(is2π/L
∑L−1

j=0 Xjn j ) = Mx exp(is2π/L
∑L−1

j=1 Xjn j )
with 0 � s � 1:

(M̃ ′
x(s))2 = exp

⎛
⎝−is

2π

L

L−1∑
j=1

XL− jnL− j

⎞
⎠U ′

x (s)

= 1. (B2)

It is obvious that M̃ ′
x(0) = Mx and M̃ ′

x(1) = M̃x, which is the
key in the proof of the bulk-boundary correspondence in the
main text.

Similarly, the square of C̃4 is

(C̃4)2 = (C4)2C−1
4 UxyC4Uxy

= C2 exp

⎛
⎝i

2π

L

L−1∑
x j ,y j=1

x jnx j ,y j

⎞
⎠

≡ C2U2 ≡ C̃2. (B3)

The square of C̃2 is evaluated similarly to that of M̃x:

(C̃2)2 = exp

⎛
⎝i

2π

L

L−1∑
x j ,y j=1

LnL−x j ,L−y j

⎞
⎠

× exp

⎛
⎝−i

2π

L

L−1∑
x j ,y j=1

(L − x j )nL−x j ,L−y j

⎞
⎠U2

= 1, (B4)

where 2π
∑L−1

x,y=1 n j = 0 (mod 2π ) has been used for an inte-
ger filling ρ. This gives (C̃4)4 = 1 for any L.

When the linear system size L is odd, there is a cen-
ter site for the rotation operation under the open boundary
condition and it is convenient to introduce the coordinate
Xj,Yj = −(L − 1)/2, . . . , 0, . . . , (L − 1)/2 as before. They
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FIG. 9. The gauge for L = 5. The arrows with numbers (in units
of 2π/L2) represent Ajk . The bonds with broken red lines have the
hopping t ′. Note that, under the open boundary condition t ′ = 0, this
gauge admits a uniform flux 2πs/L2 when the parameter 0 � s � 1
is introduced as Ajk → sAjk .

behave under the rotation as C4 : (Xj,Yj ) → (XC4 j,YC4 j ) =
(−Yj, Xj ). Correspondingly, we make a gauge transforma-
tion by U = exp(i

∑
j f jn j ) with f j = 0 for Yj � 0 and f j =

(2π/L)Xj for Yj < 0 as mentioned in the main text. Then,
the combined symmetry operator becomes C̃4 = C4Uxy with
Uxy = exp(i2π/L2 ∑

j XjYjn j ), where we have suppressed

“ f ” in C̃ f
4 and U f

xy for simplicity. Note that a uniform magnetic
flux 2πs/L2 is realized under the open boundary condition
t ′ = 0, when the parameter 0 � s � 1 is introduced as Ajk →
sA jk (Fig. 9). A straightforward calculation gives, for C̃′

4(s) =
C4U ′

xy(s) = C4 exp(is2π/L2 ∑
j XjYjn j ) with 0 � s � 1,

[C̃′
4(s)]4 = 1, (B5)

because of the rotation response of (Xj,Yj ) mentioned above.
It is clear that C̃′

4(0) = C4 and C̃′
4(1) = C̃4 in the gauge, and

they have the common eigenvalues for each of s = 0 and 1.

APPENDIX C: CALCULATION OF �q
FOR THE BBH MODEL

The ground-state wave function for the topologically non-
trivial case at t < 0,w = 0 is given by Eq. (13) in the main

text, where the operator γ jn depends on the plaquette posi-
tion j. Thus we consider four disjoint regions of the system:
(i) 0 � x j, y j � L − 2; (ii) x j = L − 1, 0 � y j � L − 2; (iii)
0 � x j � L − 2, y j = L − 1; and (iv) x j = y j = L − 1. When
we write γ j0 as γ

†
j0 = 1/2(u jac†

ja + u jbc†
j+x̂,b + u jcc†

j+x̂+ŷ,c +
u jd c†

j+ŷ,d ), we have for the regions i–iv

u(i),(ii)
jμ = (ω1/4, ω−y j , ω−y j−1/4, ω1/2),

u(iii),(iv)
jμ = (ω−Lx j+1/4, ω−Lx j−y j , ω3/4, ω1/2), (C1)

where ω = exp(i2π/L2 + iθ ). These are obtained by suit-
able gauge transformations of u(0,0),μ. Similarly, for γ

†
j1 =

1/2(v jac†
ja + v jbc†

j+x̂,b + v jcc†
j+x̂+ŷ,c + v jd c†

j+ŷ,d ), we have

v
(i),(ii)
jμ = (ω1/4, iω−y j ,−ω−y j−1/4,−iω1/2),

v
(iii),(iv)
jμ = (ω−Lx j+1/4, iω−Lx j−y j ,−ω3/4,−iω1/2). (C2)

Then, a straightforward calculation gives

(i) C̃4γ
†
jnC̃

−1
4 = ωx j y j ωx j ω1/4e−iπn/2γ

†
j′n,

(ii) C̃4γ
†
jnC̃

−1
4 = ωx j y j ωx j ωL(L−y j−1)ω1/4e−iπn/2γ

†
j′n,

(iii) C̃4γ
†
jnC̃

−1
4 = ωx j y j ω−x j y j ω1/4e−iπn/2γ

†
j′n,

(iv) C̃4γ
†
jnC̃

−1
4 = ωx j y j ω−x j y j ω1/4e−iπn/2γ

†
j′n,

(C3)

where j′ = (L − y j − 1, x j ). Therefore, the index 
q is eval-
uated as

2π
q = (2 − ρ)
2π

L2

L−1∑
x,y=0

xy + 2
2π

L2

L−1∑
x=0

L−2∑
y=0

x

+ 2
2π

L2

L−2∑
y=0

L(L − y − 1) − 2
2π

L2

L−1∑
x=0

x(L − 1)

+ 2
2π

L2

L−1∑
x,y=0

1

4

= 2π × 1

2
(mod 2π ). (C4)
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