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Bose metal in an exactly solvable model with infinite-range Hatsugai-Kohmoto interaction

Wei-Wei Yang ,1 Hong-Gang Luo,1,2,3 and Yin Zhong 1,3,*

1Key Laboratory of Quantum Theory and Applications of MoE & School of Physical Science and Technology, Lanzhou University,
Lanzhou 730000, People’s Republic of China

2Beijing Computational Science Research Center, Beijing 100084, People’s Republic of China
3Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University,

Lanzhou 730000, People’s Republic of China

(Received 18 July 2023; revised 8 November 2023; accepted 29 November 2023; published 14 December 2023)

In a conventional boson system, the ground state can either be an insulator or a superfluid (SF) due to the
duality between particle number and phase. This paper reveals that the long-sought Bose metal (BM) state can be
realized in an exactly solvable interacting bosonic model, i.e., the Bose-Hatsugai-Kohmoto (BHK) model, which
acts as the nontrivial extension of Bose-Hubbard (BH) model. By tuning the parameters such as bandwidth W ,
chemical potential μ, and interaction strength U , a BM state without any symmetry breaking can be accessed
for a generic W/U ratio, while a Mott insulator (MI) with integer boson density is observed at small W/U .
The quantum phase transition between the MI and BM states belongs to the universality class of the Lifshitz
transition, which is further confirmed by analyzing the momentum-distribution function, the Drude weight, and
the SF weight. Additionally, our investigation at finite temperature reveals similarities between the BM state and
the Fermi liquid, such as a linear-T dependent heat capacity (Cv ∼ γ T ) and a saturated charge susceptibility
(χc ∼ constant) as T approaches zero. Comparing the BM state with the SF state in the standard BH model, we
find that the key feature of the BM state is a compressible total wavefunction accompanied by an incompressible
zero-momentum component. Given that the BM state prevails over the SF state at any finite U in the BHK model,
our paper suggests the possibility of realizing the BM state with on-site repulsion interactions in momentum
space.
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I. INTRODUCTION

In traditional interacting boson systems, bosons manifest
as eigenstates of either the phase operator or the particle
number operator, which correspond to superfluid (SF) [1]
and insulating states [2], respectively. Within the well-known
Bose-Hubbard (BH) model incorporating on-site interaction,
bosons with weak interaction typically yield a SF state,
while stronger interactions coupled with integer boson fill-
ing result in a bosonic Mott insulator (MI) that reinstates
U (1) symmetry [3]. Not only the Bose-Hubbard model
with on-site interactions in real space exhibits such be-
havior, but also similar SF-MI phase transitions have been
observed in the Bose-Hatsugai-Kohmoto (BHK) model [4],
where on-site interactions are present in momentum space.
Introducing disorder can trigger the appearance of a Bose
glass exhibiting replica symmetry breaking [5]. However,
in both circumstances, a metallic state does not readily
emerge during the SF-MI transition. Furthermore, the no-go
theorem—specifically the “Gang of four” scaling theory of
localization—states the absence of metallic states in a two-
dimensional system that involves disorder [6]. Consequently,
identifying the presence of a metallic state in low-dimensional
boson systems appears elusive and challenging.

*zhongy@lzu.edu.cn

Remarkably, an anomalous metallic state exhibiting resid-
ual resistance significantly lower than the quantum resistance
(h/e2) at low temperatures has been observed experimentally
[7–21]. This metallic state is speculated to occur between
superconducting and insulating states under specific condi-
tions: the tuning of thinness, magnetic field, or gate voltage
in superconducting films, Josephson-junction arrays, and su-
perconducting islands [17,22–37]. Further experiments have
observed the charge-2e quantum oscillation [20] and vanished
Hall resistivity [16], which suggest that bosonic particles,
i.e. the Cooper pair formed by two electrons, should play a
decisive role in the anomalous metallic state between super-
conducting and insulating states. Therefore, the metallic states
with bosonic nature has been identified as the Bose metal
(BM) [17,27], which could potentially provide an explanation
for these unusual metallic states themselves.

BM, as a common trend in the field of condensed matter
physics, has stimulated numerous interesting theories, such
as the phase glass, fractionalization, dissipation effect, vor-
tex liquid, quantum Boltzmann theory, and the composite
fermions [9,17,22–35,38–40]. An intriguing proposal sug-
gests BM may exhibit behaviors akin to a Fermi liquid, with a
Bose surface (comparable to the Fermi surface for fermions)
where the excitation energy diminishes and gapless excita-
tions naturally occur [38,39]. Contrary to the Fermi surface,
the Bose surface does not demarcate the boundary between
occupied and unoccupied states. However, despite many years
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of research, due to the complex interplay of correlation, dis-
order and magnetic field, the existing theories on this subject
are often based on approximations that are difficult to control,
such as mean-field decoupling, Gaussian effective action and
slave-particle splitting with only large-N limit. (Note, how-
ever, some numerical evidences on BM with Bose surface
supplemented with frustrated interaction [41,42].) Therefore,
the underlying mechanisms behind the anomalous metal phe-
nomenon are still not fully understood, which makes it an
ongoing topic of investigation in condensed matter physics
[17].

Given the challenges posed by BM states, we propose
a simpler question: Is it feasible to identify an exactly
solvable model that demonstrates BM as its ground state?
Obviously, such thinking is motivated by recent progress
on many solvable models, ranging from Kitaev’s toric code,
honeycomb lattice model to Sachdev-Ye-Kitaev model, and
Hatsugai-Kohmoto (HK) model [43–54]. These models have
yielded intriguing quantum spin liquids and non-Fermi liq-
uids, enhancing our understanding of spin liquids with
Majorana fermion excitation and non-Fermi liquids with-
out quasiparticle in the presence of dominant disordered
interaction.

In the present study, we uncover a BM state by reinvestigat-
ing an exactly solvable model with infinite-range interaction,
namely, the BHK model [4]. It is crucial to note that the BHK
model serves as the bosonic counterpart to the extensively
researched HK model [55–69]. (Note, however, that the main
results of the single-band HK model were established earlier
by an intriguing theory known as the superexclusion statistics
theory [70–72].) Thanks to its infinite-range interaction, the
BHK model can be diagonalized in momentum space, reveal-
ing the emergence of the BM state for any finite interaction
strength, in contrast to the SF state. The identification of the
BM state is corroborated by several distinctive characteristics,
including a unique momentum distribution function, a finite
Drude weight, and a vanishing SF weight. The BM state in
the BHK model exhibits several properties reminiscent of a
conventional Fermi liquid, such as the Bose surface, a linear
temperature-dependent heat capacity, and the saturation of
charge susceptibility at low temperatures. The transition from
the MI to the BM phase, driven by band filling, belongs to
the universality class of the Lifshitz transition, commonly
observed in noninteracting fermionic systems. It warrants em-
phasis that the SF state only occurs in the noninteracting limit,
indicating that the on-site interaction in momentum space (or
infinite-range interaction in real space) is sufficient and crucial
for the formation of the BM state. Importantly, our identified
BM state does not rely on the presence of disorder, external
magnetic field, or fine tuning of carrier density. Therefore, the
BM state could be considered as a new fixed point of inter-
acting Bose systems. For now, the realization of long-range
interactions in specific materials remains elusive. However,
there is a potential avenue for achieving such interactions
through the creation of a synthetic lattice composed of mo-
mentum states [73–83].

The subsequent sections of this paper are structured as
follows. Section II serves as an introduction to the BHK
model, highlighting the key observables employed in the
investigation of this model, including the single-particle

spectral function A(k, ω), the Drude weight, the SF weight,
and the charge susceptibility. Section III presents the results
obtained in this study, encompassing the properties of the
phase diagram, the MI state, the BM state, and the MI-BM
Lifshitz transition at zero temperature. Section IV delves
into the finite-temperature properties, focusing on the heat
capacity and charge susceptibility. Section V further explores
the band structure and compressibility, drawing comparisons
with the SF state observed in the BH model. Additionally, the
resemblance between the BM state and the Fermi liquid is
elucidated in the limit of U → ∞. Finally, Sec. VI provides
a summary of the findings of this paper.

II. THE MODEL

We consider the following BHK model, which is defined
for interacting bosons on a lattice,

Ĥ = −
∑
i, j

ti j ĉ
†
i ĉ j − μ

∑
j

ĉ†
j ĉ j

+ U

2Ns

∑
j1, j2, j3, j4

δ j1+ j3= j2+ j4 ĉ†
j1

ĉ†
j3

ĉ j2 ĉ j4 . (1)

Here, ĉ†
j is the creation operator of boson at site j and it

satisfies commutative relation [ĉi, ĉ†
j ] = δi j . ti j denotes the

hopping integral between i, j sites and has translation invari-
ance, i.e., ti j = ti− j . We consider a grand-canonical ensemble
and the number of bosons can be tuned by varying chemical
potential μ. Ns is the number of lattice sites. The last term
in Hamiltonian is the HK interaction, which is infinite ranged
between any four bosons but preserves the center of motion
(embodied by the constraint of the δ function). It should be
emphasized that all nontrivial physics come from this interac-
tion since it stabilize a new fixed point [61].

Since the HK interaction is local in momentum space, a
Fourier transformation on the original Hamiltonian (1) leads
to

Ĥ =
∑

k

Ĥk =
∑

k

[
εkn̂k + U

2
n̂k (n̂k − 1) − μn̂k

]
, (2)

where n̂k = ĉ†
k ĉk is the number of bosons in a state labeled by

momentum k. It is interesting to note that since [Ĥk, Ĥk′ ] = 0
for any k, k′, the BHK model is a frustration-free model but
can have nontrivial physics if each sector Ĥk is not trivial
[84]. For simplicity, we consider our system is on hypercubic
lattice with only nearest-neighbor hopping t , so the dispersion
of bosons is εk = −2t

∑d
i=1 cos ki.

To solve Eq. (2), we observe that in each Ĥk , n̂k is a good
quantum number, thus if we choose n̂k’s eigenstate |nk〉 (nk =
0, 1, 2, ...) as basis, Ĥk is automatically diagonalized with its
eigenenergy

Enk = (εk − μ)nk + U

2
nk (nk − 1). (3)

Particularly, the ground state of Ĥk is determined by min-
imizing Enk , i.e.,

∂Enk
∂nk

= 0, which gives nk = int[ 1
2 + μ−εk

U ]
(int[x] gives the integer nearest to x). For the whole
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Hamiltonian Ĥ , its eigenstate is just the product-state of
each |nk〉,∣∣nk1 , nk2 , ..., nkNs

〉 ≡ (
ĉ†

k1

)nk1
(
ĉ†

k2

)nk2 ...
(
ĉ†

kNs

)nkNs |0, 0, 0...〉. (4)

Thus, without much effort, we have obtained all eigenstates of
BHK model, which is a key feature of HK-like models.

Most importantly, the ground state of BHK model can be
succinctly expressed as

|	g〉 =
∏

k∈
0

|0〉k

∏
k∈
1

|1〉k ...
∏

k∈
n

|n〉k, (5)

where 
n represents the momentum space regions with an
occupancy of 〈n̂k〉 = n (n = 0, 1, 2, 3...). In the subsequent
sections of this study, we will be guided by this sim-
ple ground-state wavefunction and employ various physical
observables, such as the particle distribution function, single-
particle spectrum function, Drude weight, SF weight, and
charge susceptibility, to construct the phase diagram of the
BHK model.

A. Single-particle Green’s function and spectral function

Firstly, let us define the single-particle (boson) retarded
Green’s function

GR(t, k) = −iθ (t )〈[ĉk (t ), ĉ†
k ]〉 = −iθ (t )

Tr(e−βĤ [ĉk (t ), ĉ†
k ])

Z .

Here, θ (t ) is the unit step function with θ (t ) = 1 for
t > 0 and vanishes for t < 0. Z = Tre−βĤ = ∏

k Zk =∏
k

∑∞
nk=0 e−βEnk is the partition function. We note that in

contrast to the case in standard HK model for fermion,
here, the summation over nk cannot be performed ana-
lytically and numerical calculation with cutoff (define a
maximum for nk) has to be used. Then, armed with eigenstate
Eq. (4), eigen-energy Eq. (3), we have derived the retarded
Green’s function GR(ω, k) in terms of the Lehmann spectral
representation,

GR(ω, k) =
∫ ∞

−∞
dtei(ω+i0+ )t GR(t, k)

=
∑
nk ,mk

e−βEnk

Zk

[
|〈nk|ĉk|mk〉|2

ω + i0+ + Enk − Emk

− |〈nk|ĉ†
k |mk〉|2

ω + i0+ + Emk − Enk

]

=
∑

nk

e−βEnk

Zk

[
nk + 1

ω + i0+ + Enk − Enk+1

− nk

ω + i0+ + Enk−1 − Enk

]
.

Obviously, when T = 0 only the excitation above the ground
state contributes to the GR. Thus, the summation over all nk

can be neglected and only the term with the ground-state par-
ticle occupation nk = n0

k is preserved. So, we find the retarded

Green’s function reduces to an analytical form

GR(ω, k) = n0
k + 1

ω − (
εk + Un0

k − μ
)

− n0
k

ω − (
εk + U

(
n0

k − 1
) − μ

) , (6)

which is similar to the counterpart in the fermionic HK model

GR(ω, k) = 1−n0
k

ω−(εk−μ) + n0
k

ω−(εk+U−μ) [66]. The first (second)
term in Eq. (6) describes particle (hole) excitation with excita-
tion energy ωp = εk + Un0

k − μ (ωh = μ − εk − U (n0
k − 1)).

Then, we can obtain the spectral function A(k, ω) using
the relation A(k, ω) = − 1

π
ImGR(k, ω + i0+). This relation

allows us to extract valuable information about the system’s
single-particle excitations and their energy distribution. It is
important to note that A(k, ω) is positive for ω > 0 and nega-
tive for ω < 0. In Fig. 5 (see below), we present examples of
A(k, ω), which will be further analyzed later.

B. Drude weight and superfluid weight

Next, following the general strategy of many-body physics
to distinguish metallic and insulating states, we try to cal-
culate the Drude weight and SF weight, which are the most
relevant transport quantities [85,86]. The Drude weight D
and SF weight Ds can be deduced by studying two different
limiting behaviors of the current-current correlation function
χ jx jx (q, ω), which represents the paramagnetic component of
the linear-current-response induced by the vector potential
Ax(q, ω),

〈 jx(q, ω)〉 = −[e2(〈−Kx〉 − χ jx jx (q, ω))Ax(q, ω)], (7)

χ jx jx (q, ω) ≡ i

Ns

∫ ∞

−∞
dtθ (t )

〈[
j p
x (q, t ), j p

x (−q, 0)
]〉

eiωt . (8)

The first term of Eq. (7) is the diamagnetic term, which
contributes from the kinetic energy per site divided by
the number of dimensions, i.e., Kx = − t

Ns

∑
j (c

†
j+xc j +

c†
j c j+x ). The paramagnetic current is defined by j p

x (q) =
−it

∑
j e−iq·R j (c†

j c j+x − c†
j+xc j ).

The Drude weight is given by the δ-function part
of the uniform conductivity σxx(ω) ≡ −e2 〈−Kx〉−χ jx jx (q=0,ω)

iω
as ω → 0,

D

πe2
= 〈−Kx〉 − χ jx jx (q = 0, ω → 0). (9)

If the order in which q and ω approach zeros is exchanged,
one obtains the SF weight

Ds

π
= 〈−Kx〉 − χ jx jx (q → 0, ω = 0). (10)

Here we assume qx = 0 for the q → 0 limit, since the
London gauge requires that q · A = 0. The current-current
correlation function in the qx = 0 situation can be written in a

235149-3



WEI-WEI YANG, HONG-GANG LUO, AND YIN ZHONG PHYSICAL REVIEW B 108, 235149 (2023)

compact way

χ jx jx (q, ω)

= i

Ns

∫ ∞

−∞
dteiωtθ (t )〈[ jx(q, t ), jx (−q, 0)]〉

= −i
t2

Ns

∑
k1,k2

(e−i2kx + ei2kx − 2)

×
∫ ∞

−∞
dteiωtθ (t )〈[c†

k1
(t )ck1+q(t ), c†

k2
(0)ck2−q(0)]〉

= t2

Ns

∑
k1,k2

(e−i2kx + ei2kx − 2) 
 c†
k1

ck1+q | c†
k2

ck2−q �ω,

(11)

where 
 c†
k1

ck1+q | c†
k2

ck2−q �ω is the retarded Green’s func-
tion in real-frequency domain. Here, considering qx = 0, we
omit the index of kx and simply set kx = k1x = k2x.

We first focus on the Drude weight [Eq. (9)]. The current-
current correlation function now is simplified as

χ jx jx (q = 0, ω → 0)

= t2

Ns

∑
k1,k2

(e−i2kx + ei2kx − 2) 
 c†
k1

ck1 | c†
k2

ck2 �ω .

(12)

Since the scattering process (or the interaction between
bosons) in the BHK model preserves the momentum, n̂k is a
good quantum number, leading to 
 c†

k1
ck1 | c†

k2
ck2 �ω= 0.

Therefore, for any μ/U and W/U , the current-current corre-
lation function is invariant as zero. The Drude weight satisfies

D
πe2 = 〈−Kx〉. Therefore, the bosons transport without dissi-
pation, and the conductivity is completely determined by the
average kinetic energy.

Next we consider the SF weight in the opposite limita-
tion. In the BHK model, the effect of interaction has been
accounted in the nontrivial distribution function 〈n̂k〉, while
eigenstates retain a Fock-like form. Thus, the current-current
correlation function can be expressed as

χ jx jx (q → 0, ω = 0)

= t2

Ns

∑
k1,k2

(e−i2kx + ei2kx − 2) 
 c†
k1

ck1+q | c†
k2

ck2−q �ω=0

= − t2

Ns

∑
k1,k2

(e−i2kx + ei2kx − 2)δk2,k1+q
nk1+q − nk1

−εk1+q + εk1

.

(13)

For metallic states, the Drude weight D must be nonzero
while insulators have D = 0. Furthermore, to identify SF
states from generic metallic states, one expects that SF states
with SF weight Ds �= 0 and D �= 0. (See also Table I.) Based
on this prescription, in this paper, we will find that BHK
model have BM and MI states but no SF (Fig. 4, see below).

C. Charge susceptibility

In addition to directly calculating the partial derivative of
the particle number with respect to the chemical potential,

TABLE I. The Drude weight and SF weight for different states.

�����������Variable
State

BM MI SF

Ds 0 0 �=0
D �=0 0 �=0

the charge susceptibility χc can also be obtained through the
density-density correlation function. This correlation func-
tion, denoted as χc(Ri, Rj, t ), is defined as the time-ordered
commutator between the particle density operator n̂i at site
Ri and the particle density operator n̂ j at site Rj. It can be
expressed as follows:

χc(Ri, Rj, t ) = − iθ (t )〈[n̂i(t ), n̂ j]〉

= −i

N2
s

∑
k1,k2,k3,k4

e−i(k1−k2 )Ri e−i(k3−k4 )Rj

× θ (t )〈[ĉ†
k1

(t )ĉk2 (t ), ĉ†
k3

ĉk4 ]〉. (14)

This expression can be further transformed into momentum
and frequency space using Fourier transformation,

χc(q, ω) = 1

Ns

∑
Ri,Rj

e−iq(Ri−Rj )
∫ ∞

0
dteiωtχc(Ri, Rj, t )

= 1

Ns

∑
k1,k3


 c†
k1

ck1+q | c†
k3

ck3−q �ω . (15)

The (static and uniform) charge susceptibility, which serves as
an indicator of the phase boundary, is defined as the retarded
Green’s function at the zero-momentum and zero-frequency
limit, i.e., χc = χc(q → 0, ω = 0) = 1

Ns

∂N
∂μ

.

III. RESULTS

A. The ground-state phase diagram

Before delving into the intricacies of our calculations, we
present our key finding encapsulated in the zero-temperature
phase diagram (plotted on the μ − W plane), applicable to
any spatial dimension (see Fig. 1). Here, W = 4td represents
the bandwidth of a hypercubic lattice with nearest-neighbor
hopping. Our analysis reveals that the BHK system is pre-
dominantly governed by two distinct states: the MI state
characterized by an integer density, and the BM state exhibit-
ing varying densities. We emphasize that the MI state exhibits
the greatest stability at each μ/U = 2n−1

2 (where n is an inte-
ger denoting the number density), wherein the boson density
remains invariant with changing bandwidth. In this situation,
the fixed-density MI-BM transition (or interaction-driven MI-
BM transition) occurs at Uc = W . In the subsequent sections,
we focus primarily on discussing specific parameter values,
including one MI state (W/U = 0.5, μ/U = 0.5) and three
BM states (W/U = 2, μ/U = 0.5, W/U = 1, μ/U = 2, and
W/U = 2, μ/U = 2.5). For visual guidance, these specific
points are marked with hexagonal symbols in Fig. 1.

We would like to emphasize a significant departure from
the original study of the BHK model [4], wherein our find-
ings reveal a remarkable substitution of the SF state with an
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FIG. 1. The zero-temperature phase diagram of the Bose
Hastugai-Khonmoto (BHK) model for any dimension. The phase
diagram consists of the Mott insulator (MI) region (shown in red) at
small W/U and the Bose metal (BM) region (shown in blue) at large
W/U . Three red triangle regimes correspond to the MI states with
different boson densities n, where n = 1, 2, 3 from bottom to top.
The black line represents the Lifshitz transition between the MI and
BM phases, while the white line denotes the Lifshitz transition be-
tween different BM states. The black dashed lines represent the state
with an invariant integer boson density. The specific MI/BM state we
focus in the latter of this paper is denoted by red/blue hexagon. The
scaling behavior of the BM-MI phase transition along the red dashed
line is demonstrated in Fig. 6, while the thermodynamic properties
of the BM state along the blue dashed line are shown in Fig. 7.

unexpected BM state for any finite interaction strength U .
Consequently, in the case of integer boson filling, our results
demonstrate an MI-BM transition instead of the anticipated
MI-SF transition as the interaction strength is increased. The
precise reasons for the erroneous identification of the SF state
by the authors in Ref. [4] remain elusive to us. However, it
is worth noting that their study lacks any discernible calcula-
tions pertaining to charge susceptibility, SF weight, and Drude
weight.

B. Mott insulator

The MI state here occurs when the number of bosons N
is commensurate with the number of lattice sites Ns, i.e.,
n = N/Ns = 1, 2, 3.... Guided by Eq. (5), it is clear that the
wavefunction of the MI state is given by

|	Mott〉 =
∏

k∈BZ

|n〉k, (16)

where all momentum states are occupied by the same number
of bosons, denoted as n. This argument is supported by the dis-
tribution function of bosons 〈n̂k〉, shown in Figs. 2(a) and 3(a),
for the 1D chain and the 2D square lattice, respectively. The
particle and hole excitation above |	Mott〉 can be constructed
as ĉ†

q|	Mott〉, ĉq|	Mott〉, whose excitation energy are denoted
as ωp = εq + Un − μ, ωh = −εq − U (n − 1) + μ.

FIG. 2. Boson’s distribution function 〈n̂k〉 in the one-dimensional
BHK model for (a) the MI W/U = 0.5, μ/U = 0.5; (b) the
BMW/U = 2, μ/U = 0.5; (c) the BMW/U = 1, μ/U = 2; and
(d) the BMW/U = 2, μ/U = 2.5. The occupation number n in
different momentum regimes is denoted by 
n. The Bose surface
(gapless point) is denoted by the red circle, located at the step of the
distribution function.

The stability of MI requires ωp, ωh > 0 for any momentum
q, thus we can establish the MI regime in the ground state,
which has been plotted in Fig. 1. To be specific, for given n,
we have ωp = εk + Un − μ,ωh = μ − εk − U (n − 1). Then,

FIG. 3. Boson’s distribution function 〈n̂k〉 in the two-
dimensional BHK model for (a) the MI W/U = 0.5, μ/U = 0.5;
(b) the BMW/U = 2, μ/U = 0.5; (c) the BMW/U = 1, μ/U = 2;
(d) the BMW/U = 2, μ/U = 2.5. The Bose surface is denoted by
write circle. Zero-energy excitation is located at the intersection of
different 
n region.
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FIG. 4. The superfluid weight Ds (blue hexagon) and the Drude weight D (red star) in the two-dimensional BHK model for different
chemical potential μ/U with varying W/U . The black line denotes minus kinetic energy per site divided by lattice dimension. The superfluid
weight is invariant zero for both MI and BM states. The Drude weight is equal to 〈−kx〉, indicating that no resistivity is caused by the HK
interaction.

ωp → 0+ gives

μ

U
= (εk )min

U
+ n,

while ωh → 0+ gives

μ

U
= (εk )max

U
+ n − 1.

Here, (εk )min and (εk )max refer to the energy of the band bot-
tom and top of the free bosons, respectively. Since (εk )min =

FIG. 5. The spectral function of the BHK model for (a) the
MI W/U = 0.5, μ/U = 0.5; (b) the BMW/U = 2, μ/U = 0.5;
(c) the BMW/U = 1, μ/U = 2; and (d) the BMW/U = 2, μ/U =
2.5.

−W/2 and (εk )max = W/2. The above two equations plus
W/U = 0 axis give us the regime of MI as shown in Fig. 1.

Because, ωp, ωh > 0 in MI, the charge susceptibility has to
be vanished, i.e., χc = 1

Ns

∂N
∂μ

= 0, which is the key signature
of the insulating nature of MI. With the same reason, both
Drude weight D and SF weight Ds are zero in MI (Fig. 4).

Furthermore, as evident from the spectral function A(ω, k)
at zero temperature, Fig. 5(a) with momenta chosen along the
path from (−π,−π... − π ) to (0,0,..0) and to (π, π...π ), the
MI state is characterized by a full-filled band [the dominated
negative weight of A(ω, k)]. For any given k, a finite energy is
required for a boson to be excited or removed, which is consis-
tent with the analysis of the wavefunction and the requirement
of ωp, ωh > 0.

C. Bose metal

We have seen that the stability of MI leads to ωp, ωh >

0, otherwise, the gap for the particle and/or hole excitation
can be vanished and MI must break down in this case. Our
objective is to investigate the potential states that emerge when
the breakdown of the MI occurs.

For those familiar with the BH model and Bogoliubov’s
SF theory, the SF state emerges as a highly plausible can-
didate in this context. It is well established that in the SF
state, bosons tend to condense into a single momentum point,
i.e., the condensation momentum k0. For the dispersion εk =
−2t

∑d
i=1 cos ki, we find that k0 = (0, 0, ...0), i.e., the bottom

of εk . The condensation in | k0〉 yields a SF wavefunction like
(ĉ+

k0
)N |0, 0, 0...〉 = |N〉k0 . However, in contrast to SF, bosons

in the BHK model do not condense into k0 owing to the
energy penalty from HK interactions. This significant differ-
ence between the SF state and our calculations is depicted in
Figs. 2(b)–2(d) and 3(b)–3(d). Analogous to the Fermi sur-
faces in Fermi liquid/gas, distinct surfaces separate regimes
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with different particle numbers (
n). We refer to these gapless
surfaces as the “Bose surfaces”, and to the states with Bose
surfaces as the BM state.

The Bose surfaces live at discrete momentum points [indi-
cated by red solid circles in Figs. 2(b)–2(d)] in one dimension,
and it is more appropriate to term these points as Bose points,
similar to their counterpart, i.e., the Fermi point in a one-
dimensional Fermi liquid. In the case of a two-dimensional
square lattice, the Bose surfaces form closed loops [repre-
sented as white lines in Figs. 3(b)–3(d)], akin to typical Fermi
surfaces on a square lattice.

Let us consider a simple example. For Fig. 2(b), there
are two pairs of Bose points and are denoted as ±k01,±k12,
which separates regimes with 〈n̂k〉 = 0, 1 and 〈n̂k〉 = 1, 2,
respectively. Now, if we consider correlation function or
single-particle density matrix 〈c†

i c j〉, it is found that

〈c†
i c j〉 = 1

Ns

∑
k

e−ik(Ri−Rj )〈n̂k〉

=
(∫ −k12

−k01

+
∫ k01

k12

)
dk

2π
e−ik(Ri−Rj )

+
∫ k12

−k12

dk

2π
2e−ik(Ri−Rj )

= 2

2π

sin k01(Ri − Rj ) + sin k12(Ri − Rj )

Ri − Rj
,

which just like the case of a free fermion system with Fermi
wavevector k01, k12. In other words, if we add a nonmagnetic
impurity into BHK model, we will expect that there exists a
Friedel oscillation with characteristic wavevector k01 and k12

[69]. This may provide a practical approach to detect the Bose
point or the generic Bose surface if they indeed exist. More-
over, when |Ri − Rj | → ∞, we see 〈c†

i c j〉 → 0 so SF-like
long-ranged order for boson does not exist in the BM state.
Such fact is valid for all spatial dimension and for all U > 0.
In addition, we note that when Ri = Rj , the boson’s density
is (2k01 + 2k12)/(2π ), which acts as a Luttinger theorem for
BM states [87].

To gain further insight into the behavior of the BM, MI, or
SF in the BHK model, we examine the Drude weight D and
SF weight Ds, as depicted in Fig. 4 [85,88]. In the presence
of a nonzero SF and Drude weight (Ds �= 0, D �= 0), an SF
state is expected. Conversely, a metal is characterized by a
zero SF weight and a nonzero Drude weight (Ds = 0, D �= 0).
When both the SF and Drude weight vanish (Ds = 0, D = 0),
it indicates the presence of an MI state. Figure 4 presents the
variations of D (represented by red stars) and Ds (represented
by blue hexagons) for different μ/U values with varying
bandwidth W/U . As a reference, the diamagnetic response
term, i.e., the minus total kinetic energy per dimension 〈−Kx〉,
is plotted as a black line. For small values of W/U , the MI
state is confirmed, as evidenced by the vanishing values of
both D and Ds. As W/U increases, the SF weight Ds remains
zero, while the Drude weight D grows at some critical Wc,
which is consistent with the evolution of the structure of the
momentum distribution during the MI-BM transition. The
persistent absence of SF weight across different parameter
regimes further confirms the absence of the SF state within

the finite-U regime. Associated with the unique distribution
function, we conclude that the BM states prevail over the SF
state in the metallic regimes of the BHK model.

Furthermore, we present the spectral function of the BM
states in Figs. 5(b)–5(d). In this context, the yellow (blue)
line represents the first (second) term in Eq. (6), which sig-
nifies the single-particle (single-hole) excitation. Within the
single-particle spectrum, the Bose surface corresponds to the
points where the spectral function undergoes continuous sign
changes within a single band. Similar to the Fermi liquid,
the MI and BM can also be distinguished by the absence
or presence of a Bose surface. In the MI state, where the
chemical potential resides within the energy gap [as depicted
in Fig. 5(a)], no Bose surface is observed. Conversely, the
BM states can exhibit multiple Bose surfaces, as illustrated
in Figs. 5(b)–5(d).

D. The Lifshitz transition

To elucidate the putative phase transition in the BHK
model, we begin by plotting the global charge susceptibility in
the W -μ plane for a one-dimensional system [see Fig. 6(a)].
The divergent χc delineates the phase boundary between dis-
tinct states, which can be expressed as

μc1 = (n − 1)U + W

2
,

or

μc2 = nU − W

2
,

(17)

where n = 1, 2, .... Notably, μc1 and μc2 corresponds pre-
cisely to the the top and bottom of the nth band, respectively.
Based on the location of divergence and the evolution of 〈n̂k〉
discussed earlier, we anticipate that these zero-temperature
quantum transitions are connected to Lifshitz transitions [86].
For a d-dimensional system near the Lifshitz transition point,
the dynamical critical exponents z, the correlation length ex-
ponent ν, and the critical exponent α should satisfy z = 2, ν =
1/2, α = 1 − d/2, respectively. In conventional, g = μ − μc

is the natural variable for Lifshitz transitions, signifying the
distance of the chemical potential μ from the band top or
bottom. To verify this conjecture for our BHK model, we
study the scaling behavior of the free energy density f , the
particle density n, and the charge susceptibility χc around the
phase transition, which should follow

� f = f − f0 ∼ (μ − μc)d/2+1,

�n = n − n0 ∼ (μ − μc)d/2,

�χ = χ − χ0 ∼ (μ − μc)d/2−1. (18)

Here, f0, n0, and χ0 represent certain background values that
need to be subtracted. For free energy density ( f = E − μn),
the chemical potential energy is subtracted to avoid the in-
fluence of the linear term n(μ − μc). We now focus on the
specific case W/U = 0.5 around μc2/U = 0.25, where the
critical chemical potential of the BM-MI transition locates on
the top of the lowest band. As illustrated in Figs. 6(b)–6(d), we
examine the scaling behavior of the quantum phase transition
for different dimensions (d = 1, 2, 3). It is evident that in the
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FIG. 6. (a) The charge susceptibility χc evaluated on the W -μ
plane for a d = 1 BHK system. The calculations are performed
on a lattice with Ns = 40 000 sites, and the obtained results are
qualitatively consistent with those expected in higher-dimensional
scenarios. (b) Free energy density, (c) particle density, and (d) charge
susceptibility around critical point μc = 0.25 vs fitted scaling for-
mula (18) with W/U = 0.5.

metallic regime, f , n, and χc all exhibit behavior consistent
with the critical exponents of the Lifshitz transition. It is
worth noting that varying the bandwidth at a fixed chemical
potential also induces transitions by changing the variable
μ − μc. Consequently, we conclude that both the chemical
potential-driven and bandwidth-driven BM-MI transitions are
manifestations of the Lifshitz transition. Such feature seems
to be general for HK-like models [4,68].

IV. FINITE-TEMPERATURE PROPERTIES

In this section, we investigate the heat capacity and the
charge susceptibility at finite temperature. Using the basis
given in Eq. (4) and the energy spectrum, we can easily calcu-
late the averages of observables using the partition function.
For instance, the energy can be expressed as

E = 〈Ĥ〉 =
∑

n

1

Z e−βEn〈n|Ĥ |n〉. (19)

As shown in Fig. 7(a), the heat capacity in the BM state
exhibits a clear linear dependence on temperature, which is
consistent with the behavior of a Fermi liquid (Cv ∼ γ T ).
A similar situation is observed for the charge susceptibility
χc. In the BM states, χc saturates around zero temperature
[χc(T → 0) = c]. The constant c shows a linear dependence
on the particle density around the Bose surface [c ∼ N (0)],
as shown in Fig. 7(b). In a Fermi liquid, N (0) represents
the particle density around the Fermi surface. Note that at
μ/U = 0, 1, Cv deviates from the linear temperature depen-

FIG. 7. (a) The heat capacity Cv and (b) the charge susceptibility
χc vs temperature with various chemical potential μ at W/U = 2 in
the BM state. Except for the situation μ/U = 0, 1, ..., Cv demon-
strates a linear dependence when approaching zeros temperature,
while χc is a constant number proportional to N (0).

dence, and there is no saturation signal for χc at T → 0
limit. This deviation in the thermodynamic properties from
the behavior of a Fermi liquid corresponds to the critical point
of the Lifshitz transition between different BM states that we
discussed earlier.

V. DISCUSSION

A. Comparison with the Bose-Hubbard model

In the BH model, a similar phase diagram is reported,
where the MI state manifests in lobes with an integer boson
density [3,89,90]. Here, we compare the properties of the MI
and BM states in the BHK model with the MI and SF states in
the BH model.

In both the BH and the BHK model, the MI state in the
lobes is characterized by a finite energy gap to all excita-
tions with no broken translation symmetry. The total boson
number N is invariant under changes of chemical potential
∂〈N̂〉
∂μ

= 0, demonstrating the incompressibility of the MI state.
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FIG. 8. The schematic picture of the three lowest bands for
(a) W/U = 0.5; (b) the critical point Wc/U = 1 (for the disappearing
of MI state); (c) W/U = 2. The chemical potential μ/U = 0.5 is
denoted by red dashed line.

Figure 8 depicts the schematic band structure of the BHK
model. The MI state exists only for W/U < 1, where the
chemical potential lies within the energy gap (see Fig. 8). The
BHK system become compressible with the MI-BM transi-
tion. However, the robust direct gap existing in both MI and
BM states yields the incompressibility of each independent
|k〉 state, i.e., ∂〈n̂k〉

∂μ
�= 0. This precludes the SF, which relies on

gapless excitations of the | k0〉 state in the BH model. Thus,
we conclude that the BM is a metallic state with compressible
wavefunction and incompressible | k0〉 state, distinguishing it
from the SF state.

B. Why BM state like Fermi liquid

We have observed that the metallic states in BHK model,
namely the BM state looks like the usual Fermi liquid because
the former exhibits the linear-T specific heat and nonzero χc.
To gain a more intuitive understanding of this phenomenon,
let us consider the limit U → ∞ limit. (Note that this limit has
been addressed in the framework of superexclusion statistics
theory [70], and our analysis is in line with this theory. In the
case of infinite U , the system is characterized by the presence
of only empty and singly occupied states, which corresponds
to the situation that the spinless fermions have the same
statistics as the hardcore bosons.) In this scenario, the sum-
mation over nk in partition function Z = ∏

k

∑∞
nk=0 e−βEnk

is truncated to nk = 1. Consequently, we find Z = ∏
k (1 +

e−β(εk−μ) ) and its free energy is given by F = −T
∑

k ln(1 +
e−β(εk−μ) ). This corresponds to a free fermion gas with disper-
sion εk . So, Cv ∼ T, χc ∼ constant has been explained.

Furthermore, in the U → ∞ limit, the value of nk is either
zero or one. For regimes where nk = 0, the Green’s function
only includes particle excitations, given by

GR(ω, k) = 1

ω − (εk − μ)
, (20)

while for regimes where nk = 1, only hole excitations exist,
described by

GR(ω, k) = − 1

ω − (εk − μ)
. (21)

It is interesting to note that the above Green’s functions
correspond to free fermion’s counterpart, although the hole

excitation in the BM state carries an additional minus sign.
This sign is necessary to ensure causality in the retarded
Green’s function of any boson.

Finally, since the ground states of the BHK model are
all product states characterized by the occupation of each
momentum k, and in the U → ∞ limit, the state with nk = 0
(nk = 1) has energy 0 (εk − μ), there exist boundaries (εk −
μ = 0) that separate unoccupied and occupied states. These
boundaries serve as the Fermi surface and are the expected
Bose surface in our model.

VI. CONCLUSIONS

In conclusion, our study has uncovered a MI-BM transition
in the exactly solvable BHK model, which falls under the
universality class of the Lifshitz transition. The existence of
the BM state is supported by the distinct momentum distri-
bution function, the presence of a finite Drude weight, and
the absence of SF weight. At low temperatures, the BM state
exhibits a linear-T -dependent heat capacity and a saturate
charge susceptibility, demonstrating behavior akin to a Fermi
liquid. Comparing the BM state with the SF state observed in
the BH model, we conclude that the BM state is characterized
by a compressible total wavefunction and an incompressible
zero-momentum component.

Importantly, our paper presents a promising approach to
realize this exotic BM state. It is indicated that any finite
infinite-range interaction can disrupt the SF state, which
aligns with the conventional notion that nontrivial long-range
interaction is crucial for accessing the BM state. The contrast-
ing nature between long-ranged and short-ranged interactions
is clearly demonstrated in the different phase diagram in the
BHK model with infinite-range interaction and the BH model
with on-site interaction, leading to distinct stable phases with
weak interaction, namely the BM state and the SF state, re-
spectively. In some sense, the infinite-range HK interaction
just frustrates bosons in momentum space, thus bosons are not
likely to condensate into any particular momentum and no SF
forms.

However, we note that the BHK model studied here cannot
give finite resistivity at finite temperature, which has been
observed in experiments on boson metals, since no disorder
or impurity effect is included. But, it is also noted that the
existence of our BM states do nor require external magnetic
field, disorder or fine tuning of carrier density, thus BM states
could be a robust state of matter, which is stabilized by non-
trivial HK interaction. Therefore, we believe that the study
of HK-like models is indeed an important direction in the
many-body physics and many more interesting physics will
be discovered when complicated details are included.
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