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Tailoring higher-order van Hove singularities in non-Hermitian
interface systems via Floquet engineering
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We propose a non-Hermitian (NH) interface system formed between two NH nodal line semimetals driven by
optical fields as a platform for generation and tailoring of higher-order van Hove singularities (VHS). Through
an analytical analysis of the density of states (DOS), we find VHS with logarithmic divergences in the Hermitian
limit. Upon introducing NH terms, four exceptional rings on two sides of the Fermi line are formed. By tuning
the NH parameters and the light amplitude, we find a situation when one exceptional ring crosses the Fermi line,
where a saddle point appears and results in a paired VHS around the origin. In contrast, when an exceptional
contour resides at the Fermi energy, the saddle points critically get destroyed and we obtain a single peak in the
DOS, with power-law divergences. These higher-order divergences that appear in an NH system have a different
origin than that of the higher-order VHS in Hermitian systems, where no saddle point merging is noted. Our
results suggest NH interfaces to be promising avenues for exploring higher-order VHS.
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I. INTRODUCTION

The advent of topological phases has become an intriguing
aspect of condensed matter physics [1–3]. Starting with the
unique features of two- and three-dimensional topological in-
sulators [4–6], the new focus now are the semimetallic phases
that appear in different systems. What makes these semimetal
phases alluring are the isolated band-crossing points or lines,
which may result from band inversion [7,8]. These unique
band crossings are related to the monopoles of Berry phases.
So far, three different kinds of semimetals are among the most
explored, namely Dirac semimetals [9–12], Weyl semimetals
[8,13], and nodal line semimetals [14–16]. In the case of
Dirac semimetals fourfold degenerate Dirac points appear in
the system, which are protected by crystalline symmetries. In
Weyl semimetals, the band crossing points, coined as Weyl
points, are doubly degenerate and have definite chiralities
[17,18]. Furthermore, the topological nodal line semimetals
form degeneracy lines in lieu of discrete points in the momen-
tum space [9,15].

On the other hand, topological NH systems are at the
forefront of research for condensed matter, optics, and pho-
tonics communities [19–32]. The distinctive feature of NH
systems is the existence of certain degenerate points where
both the eigenenergies, as well as eigenfunctions, of the
system coalesce. These degenerate points are known as excep-
tional points (EP) [33]. These EPs endow unique features in
NH topological systems [34–36]. Moreover, in NH systems,
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enhanced tunability can be achieved by illuminating the
system following the well-established principles of Floquet
engineering [37,38]. Hermitian topological systems show tun-
able Fermi surface topology in the presence of time-periodic
fields [39–46]. In NH topological systems, however, the un-
derstanding of the topology caused due to the combined action
of non-Hermiticity and driving is a topic of recent thrust
[37]. For instance, circular driving generates new exceptional
contours and can cause topological charge division [47].

It is well known that a saddle point in the band structure
could cause divergences in the DOS, which is coined as
the VHS [48]. This logarithmic divergence in DOS, which,
when lying at the Fermi energy, leads to intriguing physics.
The VHS spawns effects such as superconductivity, charge,
and spin density waves. Interestingly, VHS has intriguing
effects on topological systems [49]. Recently, it has been
found that deviations from the usual logarithmic singularity
may be engineered, resulting in higher-order singularities with
a power-law divergence [50,51]. These divergences are the
crucial ingredients in understanding the ordering instabilities
in systems such as stacked bilayer graphene, twisted bilayer
transition-metal dichalcogenides, or even high Tc supercon-
ductors and heavy fermions materials [52–56]. In a recent
work, it was shown that high-frequency light can induce a
logarithmic-type VHS in an interface Hermitian system [57],
in the presence of asymmetric light intensities. This raises the
question of the nature of the DOS and VHS in non-Hermitian
interface systems. The goal of this paper is twofold. First,
we would like to highlight the fact that the enhanced VHS
(higher order) is a crucial aspect of having various interesting
physics in NH interface systems. Recently, there have been
several examples which highlight the role of higher order VHS
in giving rise to interesting physics [58]. This has motivated
us to study higher-order VHS in systems with non-Hermitian
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FIG. 1. Conceptual illustration of the NH interface system.
The schematic representation illustrates the arrangement of the
non-Hermiticity-induced nodal line semimetals divided into two
regions—lower (z < 0) and upper (z > 0) half-spaces. These regions
are subjected to high-frequency monochromatic circularly polarized
light (CPL) irradiation with distinct intensities, polarizations, and
non-Hermiticity coefficients denoted as (AL, φL, γL ) for the lower
half-space and (AU , φU , γU ) for the upper half-space. In the presence
of non-Hermiticity, the nodal ring splits into two exceptional rings.
Driving allows the tuning of exceptional physics.

loss or gain. Another important goal of our study is to pro-
pose mechanisms to tune these VHS points with controllable
parameters, such as light amplitude and loss/gain terms. This
tuning provides a tool to controllably switch between normal
VHS and higher-order VHS under different conditions.

The system we propose contains two nodal line semimet-
als, with different gain/loss terms, and the two halves are
differently illuminated with two opposite circular polarized
monochromatic light beams. Figure 1 shows a schematic of
our proposal. In this scenario, the energy spectra and the DOS
show unique features that are absent in the Hermitian limit.
The band structure of the system is rich enough, resulting
in regions where the Fermi line falls within or on one of
the exceptional contours, which shows unique Fermi surface
topology. When non-Hermiticity is introduced on both sides
(γL, γU > 0), the two nodal rings of the Hermitian limit are
broken into four exceptional rings [located on the two sides of
the Fermi line Re(E ) = 0]. Consequently, one obtains eight
EPs along the kx axis. When one of such exceptional rings
crosses the Fermi line, a saddle point at a high symmetry point
(kx = 0, ky = 0) appears, resulting in a paired VHS around
the origin. If an exceptional contour resides on the Fermi
energy, the saddle points critically get destroyed along the kx

axis, and a single peak in the DOS is obtained, which at a
higher resolution splits into two peaks with the emergence of
higher order (E1/3 and E1/2) power law divergences. In NH
systems, these higher-order singularities appear not because
of the saddle points but rather due to saddle point coalescing
[59].

II. THE MODEL HAMILTONIAN

The Hamiltonian of the nodal ring semimetal with the NH
term is written as [60]

H (k) = [
m − B

(
k2

x + k2
y + k2

z

)]
σx + iγ σy + vzkzσz, (1)

where σi (i = x, y, z) are Pauli matrices that represent the
two orbitals and vz is the Fermi velocity in the direction of
kz. Additionally, m and B are parameters characterized by
energy units and inverse energy units, respectively. In the
Hermitian limit, when mB > 0, the conduction and valence
bands intersect, forming a nodal ring in the kz = 0 plane at
k2

x + k2
y = m/B [45,46]. Conversely, for mB < 0, the system

exists within the trivial insulator phase, featuring an energy
gap. To simplify matters, and without loss of generality, it
is assumed from here on that m, B, and vz are all positive
unless explicitly stated otherwise. This Hermitian nodal ring
remains protected by the joint symmetries of inversion (P)
and time reversal (T ), represented as PT [45]. In the pres-
ence of an NH term iγ that accounts for the dissipative
coupling manifesting “imaginary Zeeman fields” [29,61], the
original nodal ring breaks into two exceptional rings along
kz = 0. The NH term inherently breaks the PT symmetry
but respects the chiral symmetry. As γ increases, the inner
exceptional ring progressively contracts and eventually dis-
appears beyond a critical point at γ = m, condensing into a
point.

For kz = 0 we have (k2
x + k2

y ) = m±γ

B , which gives the
nodal ring in the kx-ky plane. Next, we drive the system
with light polarized along the y-z plane and the vector poten-

tial associated with it is A(t ) = A(0, cos (ωt ), sin (ωt + φ)).
Here A and ω are the amplitude and frequency of the in-
cident light. Also, φ = 0 (φ = π ) corresponds to the right
(left) circular polarization. Application of periodically time-
driven light allows us to use the Floquet formalism, which in
the high-frequency limit provides the effective Hamiltonian
[37,39,40,62–71],

HF (k) = [
m̃ − B

(
k2

x + k2
y

)]
σx + vzkzσz + (

λky + iγ
)
σy, (2)

where m̃ = m − Be2A2 and λ = − 2e2BvA2 cos φ

ω
. The corre-

sponding energy eigenvalues are

E±(k) = ±
√[

m̃ − B
(
k2

x + k2
y

)]2 + v2
z k2

z + (λky + iγ )2. (3)

The exceptional degeneracies delineating a pair of EPs for
λ �= 0 and ky = kz = 0 are found at

kx = ±
√

m̃ ± γ

B
. (4)

The exceptional degeneracies, which appear for Re(E ) = 0
and Im(E ) = 0, are accompanied by a Fermi arc along the
kx axis protected by nontrivial Z topology for a real line
gap [72]. We note that the chirality of the exceptional rings
depends simply on the handedness, cos φ, of the incident laser
beam. Moreover, the shape and position of the exceptional
rings are tunable by changing the direction and amplitude of
the incident laser beams. The topological characterization, as
well as Hall signatures in this light-driven system, have been
recently studied in the literature [73,74]. Here we examine the
NH interface system and explore the exceptional VHS arising
from Lifshitz transitions with striking changes in the Fermi
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surface topology, considering the interplay of laser driving
and non-Hermiticity.

III. INTERFACE BETWEEN TWO NH NODAL LINE
SEMIMETALS AND DENSITY OF STATES

We consider an interface of two nodal ring semimetals with
different light intensities and NH parameters on the two sides
(see Fig. 1). The effective Floquet Hamiltonian for each side
is written as

Hj (k) = [m̃ j − Bk2]σx + (λ jky + iγ j )σy + vzkzσz, (5)

where m̃ = m − Be2A2
j , λ j = − 2e2BvA2

j cos φ j

ω
with j ∈ U, L,

and k2 = k2
x + k2

y + k2
z . The interface is considered along the

z direction and is located at z = 0. This system is subjected
to the influence of two light beams with opposite circular
polarizations. When we consider the high-frequency scenario,
we employ an effective Floquet Hamiltonian for each of these
regions [64]. Specifically, we label the right (z > 0) and left
(z < 0) half-spaces as HU and HL, respectively. In Fig. 1, we
have presented a schematic of our setup. Here, the subscripts
L and U signify the left and right half-spaces, respectively.
However, the sign of the product λU λL is negative due to
the contrasting circular polarizations of the two light beams.
Notably, the assumption we make about the interface between
these regions having an abrupt sharpness does not diminish
the validity of our results, as the emergent topological inter-
face modes are resilient against perturbations at the interface.

The stationary Schrödinger equation, linked to each half-
space, is given by

H j (k⊥, kz → −i∂z )ψ j (r) = E (k⊥)ψ j (r), (6)

where k⊥ = (kx, ky) and E (k⊥) is the eigenenergy. We con-
sider the following ansatz wave function:

ψ j (r) = eikxxeikyy
(
ψ

j
1 ψ

j
2

)
eμ j z. (7)

The real part of μ j z [Re(μ jz) < 0] dictates the spatial lo-
calization in proximity to the plane z = 0. Substituting Eq. (7)
into Eq. (6) yields the secular equation governing the eigen-
states

det[H (k⊥, ∂z → μ j ) − EI] = 0, (8)

where μ j = 1
vz

√
[m̃ j − Bk2]2 + (λky + iγ )2 − E2. The inter-

face energy for each half-space is written as [57]

E (k⊥) = (−iαLγU + iαU γL + kyαU λL − kyαLλU )√
(αL − αU )2 − (γU − γL + iky(λL − λU )2)

, (9)

where α j = m̃ j − Bk2.

For each perpendicular momentum component k⊥ =
(kx, ky), the quantity E (k⊥) is the eigenenergy associated
with an interface state. This interface energy is defined when
both Re[μL] and Re[μR] are nonzero. Conversely, if either
Re[μL] or Re[μR] is zero, the obtained solution character-
izes a delocalized mode across the left or right half-space
corresponding to a bulk state. Consequently, the condition
Re[μLμR] = 0 serves as a defining criterion for establishing
the boundaries within the two-dimensional momentum space
of interface states. The topological attributes of the inter-
face states are contingent upon the spatial arrangement in
the two-dimensional momentum space (kxky) of the surface
projections of EPs from the upper and lower exceptional nodal
ring semimetals (ENRS). In the present case, this arrangement
is dictated by the varying light intensities experienced by the
two half-spaces of the ENRS. Precisely, for each half-space,
the manipulation of light intensity λ j , as facilitated by Eq. (3),
results in the ability to either bring the EPs closer to or move
them further away from the origin of momenta. The bulk
Fermi line of this interface is defined as Re[E (k⊥)] = 0 (the
red dotted line in Fig. 2). Figure 2 shows the density plots
depicting the energy dispersion characteristics of interface
states as a function of k⊥. In the Hermitian limit (γ j = 0),
in the presence of laser driving (AU = 1.25; AL = 1.95), the
interface states are demarcated by the nodal lines, which
are the solutions of μL = μR = 0. Notably, along the nodal
lines, the interface band coalesces with the bulk conduction
and valence bands. Next, switching on the non-Hermiticity
enables the splitting of nodal rings to exceptional rings en-
dowing Lifshitz transitions. Consequently, the interface states
become bounded by these exceptional rings. Intriguingly, by
manipulating the interplay between light intensity and non-
Hermiticity, the exceptional rings undergo movement in the
momentum space and traverse the Fermi line (indicated by
the red dotted line). The analytical conditions for the three
qualitatively different non-Hermitian phases corresponding to
Fig. 2 are as follows:

(i) √
m̃L ± γ L

B
<

√
A2

U

( − A2
LB + m

)
cos(φL ) + A2

L

(
A2

U B − m
)

cos(φU )√
B
(
A2

U cos(φL
) − A2

L cos(φU ))
<

√
m̃U ± γU

B
, (10)

(ii) √
m̃U − γU

B
<

√
m̃L ± γL

B
=

√
A2

U

( − A2
LB + m

)
cos(φL ) + A2

L

(
A2

U B − m
)

cos(φU )√
B
(
A2

U cos(φL ) − A2
L cos(φU )

) <

√
m̃U + γU

B
, (11)

(iii)

√
m̃U − γU

B
<

√
A2

U

( − A2
LB + m

)
cos(φL ) + A2

L

(
A2

U B − m
)

cos(φU )√
B
(
A2

U cos(φL ) − A2
L cos(φU )

) <

√
m̃U + γU

B
<

√
m̃L ± γL

B
. (12)
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(a) (b) (c) (d)

FIG. 2. Illustration of the nodal exceptional rings delineating the Fermi surface spectral topology and energy dispersion of the interface
states. The upper panel shows the (a) nodal ring semimetals in the Hermitian limit (γU , γL = 0), (b)–(d) exceptional rings (shown in gray and
green) for the interface system as a function of light intensity. The two nodal rings arising from the interface system under NH perturbation split
into four exceptional rings. Consequently, the four Weyl points with opposite chiralities (red and blue dots) along the kx split into eight EPs.
These four exceptional rings consisting of eight EPs move along the kx axis and can annihilate each other as a function of non-Hermiticity and
driving amplitude. The lower panel depicts the density plots of the interface states. The dotted red lines represent the Fermi line ReE (k⊥) = 0,
and we set vz = 1, ω = 10, B = 0.5, m = 2, φU = π, and φL = π . (a) The interface states are bounded by nodal rings residing on the two
sides of the Fermi line. The nodal lines define the coalescing of the interface band into a conduction (valence) bulk band for AU = 1.25 and
AL = 1.95. (b) The nodal lines split into four exceptional rings (on the two sides of the Fermi line), which delimit the interface states for
(AU , γU ) = (1.25, 0.23) and (AL, γL ) = (1.95, 0.35). (c) The critical case with six EPs where the green exceptional ring merges on the Fermi
line and the gray ring crosses the Fermi line for (AU , γU ) = (0.2, 0.9) and (AL, γL ) = (0.0, 0.0). (d) The green ring traverses the Fermi line,
and two gray rings are located on the two sides of the Fermi line for (AU , γU ) = (0.72, 1.38) and (AL, γL ) = (1.18, 1.94).

These three conditions correspond to Figs. 2(b), 2(c), and
2(d), respectively. These, in turn, lead to noteworthy impli-
cations in the DOS, which we delve into next. Using the
interface energy, the spectral function can be obtained as

A(ω) = − 1

π
Im[ω + iη − E (k⊥)]−1. (13)

The DOS can then be obtained as ρ(ω) = 1
2π
A(ω). We

note that, in NH systems, employing a biorthogonal basis
composed of both right and left eigenvectors [75], one can
construct the NH adaptation of Lehmann’s representation of
the Green’s function [76].

In Ref. [57], the authors have discussed the DOS for two
situations. For a symmetric interface with equal light ampli-
tude, the DOS shows a  function behavior. However, for
unequal light amplitudes applied in the two regions of the
nodal line semimetals, a VHS is found to appear in the DOS
at the Fermi energy. The VHS in the DOS manifests from
the existence of saddle points in the energy dispersion of
systems. In two-dimensional Hermitian systems characterized
by an energy dispersion E (kx, ky ), a VHS featuring a loga-
rithmically diverging DOS arises at a saddle point ks, which
is governed by ∇kE = 0 and detD < 0, where Di j = 1

2∂i∂ jE
is the Hessian matrix of E at ks. For instance, consider a
Taylor expanded energy dispersion around a saddle point ks,
as E − Eξ = −ak2

x + bk2
y , where Eξ is the VHS energy. The

saddle point criteria are satisfied with the condition ab < 0,
where the two coefficients −a and b are the eigenvalues of the
Hessian matrix D.

We next analyze the saddle point physics and VHS in
our NH interface system, considering the interplay of excep-
tional topology and Fermi surface crossing. We inspect the

qualitatively different regimes upon tuning of light intensity
and non-Hermiticity coefficient, which enable a topological
transition of saddle points. First, we consider the Hermitian
case (γU = γL = 0). We obtain two Weyl rings, consisting of
four Weyl points along kx (red and blue points designate the
positive and negative chirality; see Fig. 2). Since the intricate
structure of the VHS around this transition point is solely
characterized by local energy dispersion near ks, we expand
E (k) near ks to higher orders, E − Eξ = aky + bk3

y + (dky +
ek3

y )k2
x . The behavior of the VHS depends crucially on the sign

of the coefficients a, b, c, d, and e. For a/d < 0, two saddle
points appear along the ky = 0 line at momenta (± i

√
a√
d
, 0)

with the condition 4ad < 0 resulting in VHS at Eξ = 0 [see
Fig. 3(a)].

Next, we move on to different NH cases presented in
Fig. 2. Importantly, we focus on the real part of the expanded
dispersion near the saddle points, considering the fact that
the imaginary parts add broadening to the spectrum. We ex-
pand E near ks to higher orders, E − Eξ = 1√


(αi + βky +

δik2
y + �k3

y + (ζi + ηky + εik2
y )k2

x ). The subscript “i′′ denotes
the purely imaginary coefficients. We switch on the non-
Hermiticity (γL, γU > 0) to obtain four exceptional rings
(located on the two sides of the Fermi line Re[E ] = 0). Con-
sequently, four Weyl points are split into eight EPs along the
kx axis. Interestingly, in this case, the saddle points positions
are renormalized on the ky = 0 line with (±√−β/η, 0). They
satisfy the criterion 4βη < 0, manifesting a VHS at Eξ = 0
with a broadening [see Fig. 3(b)].

We next discuss the critical case of three exceptional rings
when two gray rings reside on both sides of the Fermi line, and
the green ring coalesces on the Fermi line. In this situation,
the saddle points critically get destroyed along the kx axis.
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(a) (b)

(c) (d)

FIG. 3. Density of interface states and VHS physics. (a) The
divergence in the DOS manifests in a VHS for the Hermitian case.
(b) Switching on the non-Hermiticity leads to broadening in the
DOS as long as the green and gray rings lie on the two sides of
the Fermi line. (c) The critical case corresponds to a single peak in
the DOS, which gives rise to nth root singularities with n = 2 and 3
describing higher order VHS. (d) DOS for paired VHS is symmetric
about the origin. The dotted blue lines in (c) and (d) designate the
power law fitting with E 1/2 ( E 1/3) and log(1/|E |) logarithm scaling,
respectively.

Consequently, we obtain a single peak in the DOS, which at
a higher resolution [50,77] eventually splits into two peaks
with the emergence of higher order (E1/3 and E1/2) power
law divergences [see Fig. 3(c)]. Finally, we consider the case
where an exceptional ring consisting of two EPs of opposite
chirality annihilates with the tuning of non-Hermiticity and
light intensity. In this case, one gray ring crosses the Fermi
line. Consequently, we obtain a saddle point at the high sym-
metry point (0,0) with the condition 4δiζi < 0, resulting in
a pair of VHS symmetric around the origin [see Fig. 3(d)].
It is interesting to add here that by tuning the amplitude
of the light and NH parameter, one can have control over
the nature of the DOS. It can, in some cases, show normal
VHS, whereas, at some points of the spectra, higher-order
VHS appears. This higher-order VHS has unique effects on
the transport properties of different systems. In a recent
work, the authors have shown the role of the higher-order
VHS in the arena of thermoelectric transport [58]. It was
shown that a type-II nodal-line semimetal, which possesses
two VHS near the energy of the nodal line, leads to an
increased Seebeck coefficient (S) that eventually provides a
large power factor (S2σ ). It is important to point out here
that the electrical conductivity (σ ) in this system is also high
because of the linear band at the nodal line. As a result,
the increased power factor provides a higher value of the
figure of merit of these systems. These (and other) types of
proposals are also valid in our time-driven interface systems.
Apart from thermoelectricity, the enhanced DOS at VHS in
time-modulated systems holds promise for exotic applications
in the realm of light-matter interaction in quantum optics and
condensed matter physics [78,79]. The tailored modulation
of VHS in polariton systems opens avenues for advanced
quantum information processing and computation, leveraging
the enhanced DOS to achieve controlled entanglement and

quantum state manipulation [80]. Furthermore, the enhanced
DOS at VHS offers a platform for the exploration of exotic
quantum phases, potentially leading to the realization of un-
conventional topological states of matter [81–83]. In the arena
of NH topological physics, the enhanced value of DOS at the
VHS can provide a controlled manipulation of exceptional
surfaces that can be harnessed to create ultrasensitive sensors,
enabling high-precision detection in various applications, in-
cluding quantum sensing and imaging [84]. The enhanced
LDOS at VHS emerges as a key principle in these applica-
tions, with potential devices at the intersection of quantum
optics and condensed matter physics [85]. We hope that our
work will initiate some understanding of such links between
enhanced DOS and time-driven systems in the NH domain.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have proposed an interface system of two
NH nodal line semimetals, driven by light which enables con-
trol over higher-order VHS physics. In the Hermitian limit, the
DOS shows VHS with logarithmic divergence. However, once
non-Hermiticity is switched on, the two nodal rings produce
four exceptional rings on two sides of the Fermi line. By tun-
ing the light amplitude and non-Hermiticity, the occurrence of
VHS is tuned with the motion and merging of the exceptional
rings. We note here that both the tunable parameters, i.e., the
light amplitude and the NH parameter, are important for the
unique behavior of the VHS in our analysis. The paired VHS,
as well as higher-order VHS with E1/3 and E1/2 power-law
divergences, appear in the interface system depending on the
values of the driving and NH parameters. Overall, our results
suggest NH interfaces to be promising avenues for exploring
higher-order VHS and their accompanying physics.

We succinctly outline potential experimental techniques to
materialize these exceptional nodal structures [86]. Reference
[87] provides a procedural guide for attaining exceptional
rings in photonic crystals. A promising avenue for experimen-
tally realizing our proposal involves illuminating a junction
between a topological insulator and a ferromagnet, which has
been recently identified as a potential platform for realizing
NH gapless phases by Bergholtz and Budich [88]. Conse-
quently, illuminating such material junctions emerges as a
readily adjustable platform for the observation and manipula-
tion of light-induced NH topological phases [88]. On the other
hand, topoelectrical circuits offer a straightforward and effec-
tive means to fine-tune these exceptional structures [89–91].
In the realm of topoelectrical circuits, the experimental vali-
dation of nodal band structures becomes feasible at a specific
resonance frequency, facilitated by a sine wave generator. This
involves tracing complex admittance spectra, where distinct
changes, reflecting the presence of exceptional rings and alter-
ations in the Fermi surface, can be observed. The flexibility to
repeatedly switch circuit parameters on/off at will allows for
the realization of periodic driving. An alternative avenue to re-
alize our proposal lies in optically shaken cold atom systems,
introducing loss through selective depopulation of cold atoms
[92,93]. Achieving the required potential for the exceptional
nodal structure involves tuning time-dependent oscillations
via controlled interfering laser beams. Finally, the distinctive
DOS delineating VHS in these “exceptional heterostructures”
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can be directly observed through momentum-resolved spec-
troscopy and angle-resolved photoemission spectral functions
[94]. Given the recent strides in experimental capabilities,
we are hopeful that our predictions may be accessible in
state-of-the-art platforms, particularly in the realm of optical
computing and convolution processing [95].
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