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Superconductors (SCs) with nontrivial topological band structures in the normal state have been discovered
recently in bulk materials. When such SCs are made into thin films, quantum tunneling and Cooper pairing take
place between the topological surface states (TSSs) on the opposing surfaces. Here, we find that chiral topolog-
ical superconductivity with spontaneous time-reversal symmetry breaking emerges on the surface of such thin
film SCs. There is a mirror symmetry that protects a novel nonunitary orbital and spin triplet pairing of the TSS.
In the mirror diagonal space, the chiral topological SC manifests as two independent chiral p-wave spin-triplet
pairing states, in which each is a two-dimensional superconducting analog of the Anderson-Brinkman-Morel
state in superfluid 3He with in-plane exchange fields. A rich topological phase diagram governed by the nontrivial
Z ⊕ Z topological invariant is obtained with gapless chiral Majorana edge modes and anyonic Majorana vortices.
We further construct a three-dimensional lattice model with a topological band structure and SC pairings, which
is motivated by Fe-based SCs such as Fe(Te,Se). We demonstrate the realization of the proposed intrinsic chiral
topological superconductor in the quasi-two-dimensional thin-film limit. Our findings enable thin-film SCs with
nontrivial Z2 band structures as a single-material platform for intrinsic chiral topological superconductivity with
both vortex and boundary Majorana excitations for topological quantum device making.
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I. INTRODUCTION

Over the past few decades, there has been an intensive
search for two-dimensional (2D) chiral triplet superfluids
and superconductors (SCs). These are novel quantum states
of matter with topological off-diagonal long-range order
that support localized non-Abelian Majorana excitations. The
latter are the building blocks for topological quantum com-
putation [1,2]. Candidates for such time-reversal symmetry
(TRS) breaking topological SCs and superfluids are very rare
in nature. A widely studied candidate for a chiral p-wave
superfluid is the Moore-Read state in the ν = 5

2 fractional
quantum Hall effect [3–5], although experimental evidence
is not yet conclusive [6,7]. In bulk crystals with quasi-2D
electronic structures, Sr2RuO4 has been proposed to be a
chiral p-wave SC [8] and has attracted broad attention to
the structure of the spin-triplet pairing order parameter [9].
However, the experimental evidence for spin-triplet pairing
[10] turned out to be problematic [11]. Recently, the proposal
[12,13] for realizing 2D chiral p-wave SCs using a quantum
anomalous Hall insulator (QAHI) from magnetic topologi-
cal insulator thin films and SC hybrid structures has been
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attempted experimentally. The results are highly controversial
[14,15] and underscore the difficulty in achieving robust chiral
topological superconductivity by the proximity effect [16].

Electronic structures of crystalline materials can carry a
nontrivial topological Z2 invariant, such as in 3D strong
topological insulators, and support topological surface states
(TSSs) [17,18]. Recently, bulk SCs with Z2 nontrivial band
structures and TSSs in the normal state have been discov-
ered in several Fe-based SCs [19–25]. Candidate Majorana
zero modes (MZMs) were observed in magnetic-field-induced
vortices [21–24] and quantum anomalous vortices [26] nu-
cleated at the excess and adatom Fe sites in the absence of
applied magnetic fields [27–29] due to the superconducting
TSSs [30]. However, these Fe-based SCs are not ordinary
topological superconductors due to the absence of nontrivial
topological invariants in the off-diagonal long-range order and
boundary Majorana excitations.

Here, we report the discovery of intrinsic chiral topologi-
cal superconductivity with spontaneous TRS breaking in thin
films of bulk SCs with Z2 nontrivial band structures where
the normal state is time-reversal symmetric. When the top
and bottom surfaces of the thin film are brought close and
coupled by quantum tunneling and Cooper pairing, the op-
posite helicities of the Dirac fermion TSS introduce a mirror
symmetry with respect to the xy-mirror plane, as illustrated
in Fig. 1. Referring to the two surfaces as two “orbitals,” we
find that the pairing interactions of the TSS that preserve the
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FIG. 1. Schematics of a χTSC thin film with coupled supercon-
ducting TSS. The mirror plane is outlined by the brown dashed line
with respect to the TSS on the top and bottom surfaces labeled by
1 and 2. The red (blue) balls represent the Dirac fermions localized
in the top (bottom) surface, and the arrows represent spin. The pairing
terms preserving the mirror symmetryM are the spin-singlet pairing
on the same surface � (purple dashed line) and the spin-triplet
pairing across the surfaces �t (green dashed line). The quantum
tunneling t of the electrons between the surfaces also preserves the
mirror symmetry and participates in realizing the χTSC thin film.

mirror symmetry are the spin-singlet intraorbital triplet and
the spin-triplet interorbital singlet described by two indepen-
dent triplet-pairing d vectors. This nonunitary triplet-pairing
state spontaneously breaks the TRS and produces a novel
chiral topological superconductor (χTSC) characterized by
a nontrivial Z ⊕ Z topological invariant [31,32]. The new
χTSC thin films provide topologically protected gapless
chiral Majorana edge modes (χMEMs), detectable by the
half-quantized conductance at the boundary of an antidot pat-
terned on top of the thin film, in addition to anyonic Majorana
vortices. We demonstrate that thin films of unconventional
SCs with nontrivial Z2 invariant band structures and TSSs of-
fer a high-temperature, single-material platform for studying
gapless chiral Majorana edge excitations and exploring their
applications for topological quantum computing, which may
be relevant to Fe-based SCs.

The rest of the paper is organized as follows. We begin with
the effective low-energy theory of the superconducting TSS
on the thin-film surfaces in Sec. II. The mirror-symmetry pro-
tected spin-orbital triplet pairings are discussed and shown to
produce the nonunitary χTSC with spontaneous TRS break-
ing characterized by the topological Z ⊕ Z invariant. The
model Hamiltonian simultaneously diagonalized in the mir-
ror eigenspace is shown to be equivalent to two independent
chiral spin-triplet p-wave pairing states, each of which is
a 2D analog of the Anderson-Brinkman-Morel state in su-
perfluid 3He under in-plane exchange fields. In Sec. III, we
study the phase structure of the Z ⊕ Z χTSC and present
the topological phase diagrams of the effective Hamiltonian.
The topological phase diagram is extended in Sec. IV to
include the effects of Zeeman coupling due to an external
magnetic field or an incipient magnetic order. The difference
and the robustness of the χTSC thin films as a platform
for χMEMs are discussed in comparison to the QAHI-SC
hybrid structures. The stability of the thin-film χ -TSC against
the substrate potential and pairing interactions that break the
mirror symmetry is studied in Sec. V. In Sec. VI, we construct
a 3D lattice model for the Z2 nontrivial electronic structure,
which is motivated by Fe-based superconductor Fe(Te,Se),
and demonstrate the emergence of the intrinsic χ -TSC in the
quasi-two-dimensional thin-film limit. We also compare and
contrast our findings to the recent proposal of time-reversal

invariant topological superconductivity with helical MEMs
in thin films of Fe-based SCs. [33]. In Sec. VII, we study
the gapless χMEMs in the χTSC phase with nontrivial bulk
Chern numbers and propose their experimental detection by
half-integer quantized conductance along the boundaries of
an antidot patterned on top of the thin film. Summary and
discussions are given in Sec. VIII.

II. MODEL AND SYMMETRY ANALYSIS

We begin with the low-energy effective theory describ-
ing the superconducting TSS on the surface of the thin-film
SC illustrated in Fig. 1. The electron annihilation and cre-
ation operators are �q = (ψ1↑q, ψ1↓q, ψ2↑q, ψ2↓q) and �†

q =
(ψ†

1↑q, ψ
†
1↓q, ψ

†
2↑q, ψ

†
2↓q), where 1 and 2 are the orbital indices

labeling the top and bottom surfaces and ↑ and ↓ the spin
states, and q = (qx, qy) is the 2D momentum. In the Nambu
basis �N = (�q, �

†
−q)T , we have H = 1

2

∑
q �

†
N H (q)�N

with the 8 × 8 Bogoliubov–de Gennes (BdG) Hamiltonian,

H (q) =
(

h(q) �†(q)

�(q) −h∗(−q)

)
. (1)

The diagonal elements are the normal state Hamiltonian of
coupled TSS on the top and bottom surfaces,

h(q) = vF q · σχz − μσ0χ0 + tσ0χx, (2)

where vF ≡ 1 is the Fermi velocity, μ the chemical poten-
tial, and t the intersurface tunneling (Fig. 1). (σ, σ0) and
(χ, χ0) denote the Pauli and unit matrices acting in the spin
and orbital/surface sectors, respectively. The off-diagonal el-
ements �† and � in Eq. (1) are 4 × 4 pairing matrices to be
specified below.

It is crucial to note that due to the opposite helicities of
the Dirac fermion TSSs, the normal state Hamiltonian h(q) in
Eq. (2) has a mirror symmetryM with respect to the xy plane
in the middle of the thin film (Fig. 1), namely,Mh(q)M−1 =
h(q) with

M = −iσzχx, M2 = −1. (3)

This mirror symmetry can be used to study the pairing inter-
actions. For isotropic pairing in momentum space, the Cooper
pairs must be either a spin singlet and orbital triplet, or a spin
triplet and orbital singlet. The superconducting pairing order
parameter � for the TSS therefore has the general form

� = �(iσy)(d′ · χ)(iχy) + �t (d · σ)(iσy)(iχy), (4)

where d and d′ are two unit triplet d vectors in the spin and
orbital sectors. Under the mirror symmetry, M�M−1 = �,
the only possible d vectors are given by d = ẑ and d′ = x̂,
leading to

� = i�σyχz − i�tσxχy, (5)

which corresponds to spin-singlet, intraorbital triplet pairing
� on the same surface and spin-triplet, interorbital singlet
pairing across the two surfaces �t , as illustrated in Fig. 1
[34–36]. This novel isotropic spin-orbital triplet pairing state
satisfies

��† = |�|2 + |�t |2 − i(�t�
∗ + H.c.)M, (6)
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where M is precisely the mirror operator in Eq. (3). As a
result, Tr[��†(σ × χ)] �= 0, indicating that the pairing state
is nonunitary and carries an intrinsic spin-orbit polarization in
the mirror eigenspace.

The thin-film SC in Eq. (1) is thus described by

H (q) = qxσxχzτ0 + qyσyχzτz − μσ0χ0τz

+ tσ0χxτz − �σyχzτy − �tσxχyτy, (7)

where (τ, τ0) denote the Pauli and unit matrix acting in the
particle-hole sector. H (q) has the usual particle-hole symme-
try CH (q)C−1 = −H (−q), where C = σ0χ0τxK andK is the
complex conjugation. However, the TRS of the normal state,
i.e., T h(q)T−1 = h(−q) with T = iσyχ0τ0K and T 2 = −1,
is broken in the superconducting state in Eq. (7) and cannot be
restored by crystalline operations unless one of t , �, and �t

is zero. Furthermore, the spin-triplet pairing �t can possibly
be induced from the interlayer electron-electron interactions
[37]. The thin-film SC is therefore in a nonunitary pairing
state with spontaneous TRS breaking, i.e., a chiral supercon-
ductor. More discussions on the TRS breaking are given in
Appendix A.

The mirror symmetry implies that the BdG Hamiltonian (7)
has a generalized mirror symmetry,

M̃ =Mτz = −iσzχxτz, [H (q), M̃] = 0. (8)

Thus, H (q) can be block diagonalized in the basis that
diagonalizes M̃ where the topological classification and
the nature of the boundary excitations become transpar-
ent. Specifically, the unitary transformation UM̃U −1 =
diag(−i,−i,−i,−i, i, i, i, i) leads to

UH (q)U−1 =
(

H+
D (q) 0

0 H−
D (q)

)
, (9)

where

H±
D (q) = −tσ0τz ± μσzτz + (�t ± �)σxτz

+ qxσxτx ∓ qyσxτy (10)

are the Hamiltonians in the subspace with mirror eigenvalues
∓i. Here, σμ continues to act on the spin, whereas τμ acts
in the space which is a mixing of particle-hole and orbital
sectors under U . Since {M̃,C} = 0, each block describes a
SC with particle-hole symmetry [31,32], whereas the TRS is
broken. As a result, each of H±

D belongs to class D and is
classified by a topological invariant Z in 2D, corresponding to
the Chern number of the occupied hole bands. The topological
classification of the thin-film SC is therefore Z ⊕ Z.

A closer examination of the mirror diagonal H±
D in Eq. (10)

shows that they describe two independent odd-parity, spin-
triplet pairing states with the d vectors d± = ẑ(qx ∓ iqy),
corresponding to the chiral p ± ip-wave pairing states with
orbital angular momenta along the z axis (Jz = ∓1). They are
the 2D superconducting analog of the Anderson-Brinkman-
Morel state in the A-phase of superfluid 3He [38,39], which
was also proposed for the quasi-2D unconventional SC
Sr2RuO4 [40]. The important difference is the presence of
the spontaneous polarizing exchange fields (�t ± �) in the
x direction in the mirror eigenspace in Eq. (10). The property
of such a topological mirror SC is rich and diverse since it

a

qx qx

c

qx

d

qx

e

qx

f

qx

b

FIG. 2. Energy spectrum of the thin-film SC described by the
BdG Hamiltonian given by Eq. (7), plotted in the qy = 0 direc-
tion for � = 1 and μ = 2. The spin-triplet, orbital-singlet pairing
(a) �t = 0 and (b)–(e) �t = 1.5. The interorbital tunneling evolves
as (a) t = 0.5, (b) t = 2.06, (c) t = 2.5, (d) t = 3.2, and (e) t = 4. In
(b)–(e), the blue (red) curves correspond to the spectra of H+

D (H−
D ).

(f) Energy spectrum of the lattice model with the same parameters as
in (c) under the open boundary condition in the y direction. The red
and blue curves are the gapless states of a single χMEM localized at
the two edges.

is characterized by both a total Chern number N = N+ + N−
and a mirror Chern number C = 1

2 (N+ − N−) [41], where N±
are the Chern numbers associated with H±

D , respectively. The
χTSC thin film with spontaneous TRS breaking is achieved
when N �= 0, whereas the case where N = 0 but C �= 0 de-
scribes a class of topological mirror SCs with or without TRS,
as discussed below.

III. TOPOLOGICAL PHASE DIAGRAMS

The quasiparticle spectrum of the BdG Hamiltonian in
Eq. (7) can be obtained analytically from those of the di-
agonal blocks H±

D . Denoting ε+
± = [q2 + (�t + � ± t )2]1/2

and ε−
± = [q2 + (�t − � ± t )2]1/2 with q2 = q2

x + q2
y , they

are given by E+
± = ±ε+

± and E−
± = ±ε−

± at μ = 0. We plot in
Fig. 2 the evolution of the eight eigenbands. The values of μ

and � are chosen to be in the range of the experimental values
for Fe1+ySexTe1−x, with �/μ = 0.5 and � = 2 meV [21,42].
Hereafter, � is set to unity as the energy unit. We begin with
the case �t = 0 shown in Fig. 2(a). The nonzero chemical
potential offsets the two Dirac cones of the top and bottom
surfaces. The two Dirac points separated by 2μ are gapped
by the interorbital tunneling t . The intraorbital spin-singlet
pairing � opens an energy gap at the Fermi level. Each band
in Fig. 2(a) is doubly degenerate and the SC is topologically
trivial.
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FIG. 3. Topological phase diagrams of the thin-film SC in the
�-μ plane for (a) t = 0.5, �t = 1, (b) t = 2.5, �t = 1.5, and (c) t =
1.5, �t = 0. The χTSC phases are labeled by the total Chern num-
ber N �= 0 originating from H+

D (H−
D ) in regions bounded by the

blue (red) curves. For comparison, the energy spectrum shown in
Fig. 2(c) corresponds to the (� = 1, μ = 2) point in (b). The red
overlapping region in (b) is a topological nontrivial phase with N = 0
and mirror Chern number C = 1, while the green phase region in
(c) is characterized by Z2 due to the restored TRS. (d) The energy
spectrum of the lattice model with open boundaries in the y direction,
showing the gapless helical edge modes. The results are obtained at
the � = 1, μ = 0 point in (c).

Turning on �t �= 0, the band degeneracy is lifted due to
TRS breaking. Increasing t or �t reduces the superconducting
gap and leads to a gap closing at the 
 point in Fig. 2(b).
The gap reopens with a band inversion in Fig. 2(c), following
a topological phase transition to an emergent χTSC with a
total Chern number N = −1 [see Fig. 3(b)]. This is directly
confirmed by a lattice model calculation (see Appendix B)
showing a single Majorana edge mode localized at the open
boundaries in Fig. 2(f). Further increasing the tunneling t can
cause the gap to close again as in Fig. 2(d) and the system to
return to a topologically trivial SC in Fig. 2(e).

To determine the topological phase structure, we numeri-
cally calculate the Berry phase of each band. The total Chern
number is given by the sum of the Berry phases [43] of the
lower four quasihole bands. In Figs. 3(a)–3(c), the obtained
phase diagrams are shown in the � − μ plane for different
values of the interorbital spin-triplet pairing �t . Since the
system is a topological crystalline SC protected by the mirror
symmetry M̃, the topological region with nontrivial Chern
number N is a superposition of that of the diagonal blocks H±

D
in each mirror eigenspace. The phase boundaries in Figs. 3(a)–
3(c) are thus determined by the condition

μ2 + (� ± �t )
2 = t2, (11)

for the band inversion at the 
 point in H±
D in Eq. (10),

respectively. They correspond to the two circles centered
at (∓�t , 0) in the � − μ plane with the same radius t in
Figs. 3(a)–3(c). As a result, in the absence of tunnel cou-
pling between the top and bottom surfaces, i.e., when t = 0,
the superconducting state is topologically trivial. For a small
t �= 0, each circle encloses a χTSC as shown in Fig. 3(a), with

the total Chern number N = N+ + N− = ±1, arising from
(N+, N−) = (1, 0) and (0,−1), respectively. There is a single
χMEM [see Fig. 2(f)] at the boundary of the thin-film SC.

Increasing t or reducing the magnitude of the spin-triplet
pairing �t between the top and bottom surfaces causes the
two circles to move toward each other and overlap, as shown
in Fig. 3(b). The phase in the overlapping (red) regime has
a total Chern number N = 0, but a mirror Chern number
C = 1

2 (N+ − N−) = 1, and is therefore a topological mirror
SC. There are two counterpropagating edge modes along a
single edge, but backscattering between them is prohibited
by the mirror symmetry M̃. This topological mirror SC with
an odd mirror Chern number C remains stable in the limit
�t = 0, where the two χTSCs in the mirror eigenspace with
opposite chirality become degenerate, as shown in Fig. 3(c).
The absence of pairing between the two surfaces restores the
TRS (see Appendix A) and enables a Z2 ⊕ Z topological
classification, where Z labels the mirror Chern number, pro-
ducing the helical Majorana fermion edge states at the open
boundaries shown in Fig. 3(d) in lattice model calculations.

Before ending this section, we would like to comment on
the coexistence of � and �t . In general, for a 3D super-
conductor with inversion symmetry and periodic boundary
condition, the bulk superconductivity is either purely spin-
singlet pairing or purely triplet pairing, distinguished by their
parities. The existence of surface breaks inversion symmetry,
and the mixture of these two kinds of pairings is allowed
[44,45]. A similar situation appears for the 2D effective the-
ory, where the inversion symmetry is partially broken with a
remaining mirror-symmetry operation interchanging the top
and bottom surfaces. The square lattice model that we study
has a D4h symmetry and, in the thin-film limit, � and �t are
all parity odd; therefore, it is possible for them to mix and
coexist.

In Appendix C, we present a Ginzburg-Landau free-energy
analysis. Minimizing the Ginzburg-Landau free energy, we
find that there are two distinct stable states where � and
�t coexist with different relative phases between the two
odd-parity pairing order parameters. The state with the phase
structure (�,�t ) ∝ (±1,±i) has a π/2 relative phase be-
tween � and �t , leading to a time-reversal invariant unitary
state by Eq. (6). In contrast, the other stable state has the phase
structure (�,�t ) ∝ (±1,±1), which precisely describes the
nonunitary pairing state by Eq. (6) that we proposed and
studied here. It breaks the time-reversal symmetry and is an
intrinsic chiral topological superconductor [45–47]. Which
of these states has lower energy in the Ginzburg-Landau
theory depends on the values of the parameters determined
by the microscopic details of the model for specific materi-
als, including both the band structure and electron-electron
interactions. Our purpose here is to propose a different mech-
anism and a proof of principle that it is possible to realize
intrinsic chiral topological superconductivity in thin films
of superconductors with a topological band structure. The
microscopic models based on realistic materials band struc-
tures and electron-electron interactions are clearly beyond
the scope of the current paper and will be pursued in the
future. In the following sections, we continue to study the
properties of the intrinsic chiral topological superconducting
phase.

235147-4



INTRINSIC CHIRAL TOPOLOGICAL SUPERCONDUCTOR … PHYSICAL REVIEW B 108, 235147 (2023)

N

N

N

N

N

N

N

N

N

t

N

N

N

N

N

N

N

N

t

a b

FIG. 4. Topological phase diagrams in the �t − λ plane for � =
1, μ = 0, and (a) t = 0.5 and (b) t = 1.5. The χTSC phases are la-
beled by the total Chern number N �= 0 originating from H+

D (H−
D ) in

the regions bounded by the blue (red) curves. The rectangle enclosing
the origin in (b) is a mirror TSC with N = 0 and C = 1.

IV. EFFECTS OF ZEEMAN FIELD

Thus far, our χTSC thin film spontaneously breaks the
TRS by nonunitary pairing. We now generalize the topolog-
ical phase diagram to include the effects of Zeeman coupling
λ due to either an applied magnetic field normal to the
surfaces or an incipient ferromagnetic order. The Zeeman
coupling enters the BdG Hamiltonian in Eq. (7) according

to H + λσzχ0τz, which preserves the mirror symmetry M̃.
The block-diagonal Hamiltonian in the mirror eigenspace in
Eq. (9) becomes H±

D (t → t ± λ), with corrections to the quan-
tum tunneling t by λ in opposite directions. The resulting
topological phase diagrams are shown in Fig. 4 in the �t − λ

plane for two different values of t . Along the λ = 0 line, the
TRS is spontaneously broken by t and the nonunitary pair-
ing, and produces the N = ±1 intrinsic χTSC with a single
χMEM. The half-quantized conductance e2

2h of the χMEM
can be directly detected at the edge of an antidot, which will
be discussed below.

Extending the phase diagrams into the regions where the
TRS is also explicitly broken by λ �= 0, we find that most
of the phases are χTSCs, including additional higher Chern
number (N = ±2) phases. Note that since λ preserves the
mirror symmetry, a mirror index C emerges in the rectan-
gular region surrounding the origin in Fig. 4. A nontrivial
C = 1 mirror TSC in Fig. 4(b) arises due to the larger tunnel
coupling between the top and bottom surfaces. The χTSC
phases along the �t = 0 line in Fig. 4 are formally analogous
to the proposed QAHI-SC proximity effect hybrid structures
[12,14,48], where doped magnetic-ion-induced ferromag-
netism (thus λ) in a topological insulator thin film is crucial
for breaking the TRS. However, the hybrid structure may end
up in a metallic phase instead of the desired χTSC [16]. There
may be magnetic-ion-induced vortices trapping MZMs [26]
that dramatically change the results of non-Abelian braid-
ing [49,50] in the proposed QAHI-(QAHI+SC)-QAHI device
[13]. These obstacles are absent in the intrinsic χTSC thin

N N N N N

a

t

s

N N N N

N

b

t

s

N N N N N

c

t

N N N N

N

d

t

FIG. 5. Topological phase diagrams in the presence of
(a),(b) mirror-symmetry breaking pairing interaction �s and
(c),(d) substrate potential V . The parameters are (a),(c) � = 1,
μ = 0, t = 0.5 and (b),(d) t = 1.5. The χTSC phases bounded
by the blue (red) curves are adiabatically connected to those of
H+

D (H−
D ) at V = 0 and �s = 0. The pink lines in (b) at V = 0 and

(d) at �s = 0 correspond to the mirror topological SC with N = 0
and C = 1 shown in Fig. 3(b).

films proposed here. Without the complications of the Zeeman
or exchange field and the superconducting proximity effect,
the resulting χMEMs can provide a more robust and advanta-
geous platform for constructing the topological logic gates for
quantum computing [51].

V. MIRROR-SYMMETRY BREAKING EFFECTS

In realistic materials realizations of the thin film, substrates
and the bulk superconductivity can induce substrate potentials
and pairing interactions between the top and bottom TSSs that
break the mirror symmetry. In this section, we study these
effects and demonstrate the stability of the thin-film χTSC
against mirror-symmetry breaking due to the protection of the
topological gap. The mirror-symmetry protection of χTSC
is similar to that of topological insulator (TI), namely, TI
is protected by TRS, and is stable against small magnetic
perturbations as long as the topological gap remains open.

A. Mirror-symmetry breaking pairing

To study the effects of mirror-symmetry breaking pairing,
we can rotate the spin-singlet, orbital-triplet pairing d′ vector
in Eq. (4) away from the x̂ axis into the xz plane. Physi-
cally, this corresponds to adding to Eq. (4) the spin-singlet
pairing between the top and bottom surfaces described by
�s(iσy)(d′′ · χ)(iχy) with d′′ = ẑ. The resulting pairing func-
tion in Eq. (5) becomes

� = i�σyχz − i�tσxχy − i�sσyχx. (12)

Since the mirror symmetry M̃ in Eq. (8) is broken, the mod-
ified BdG Hamiltonian in Eq. (7) with �s �= 0 can no longer
be block diagonalized. However, it continues to describe a
nonunitary pairing state due to the broken TRS. We thus
directly obtain the topological phase diagrams in the �t − �s

plane by numerical diagonalization. Figures 5(a) and 5(b)

235147-5



LUO, CHEN, WANG, AND YU PHYSICAL REVIEW B 108, 235147 (2023)

show that the chiral topological superconducting phases with
nontrivial Chern numbers N = 1 and N = −1 remain stable.
They are protected by the robust topological gap and separated
from the topological trivial phases marked by N = 0 by gap-
closing transitions. Due to the broken mirror symmetry, the
thin-film χTSC now belongs to class D and is classified by
the topological invariant Z.

B. Substrate potential

Substrates are usually present in thin-film experiments.
The substrate potential effectively makes the chemical po-
tential different on the top and bottom surfaces and breaks
the inversion symmetry I = σ0χx. The structural inversion
asymmetry (SIA) can thus be incorporated in the normal state
Hamiltonian (2) by adding the SIA potential,

HV = V σ0χz. (13)

As a result, the substrate potential also breaks the mirror
symmetryM in Eq. (3) of the TSSs in the normal state, and M̃
in Eq. (8) of the BdG equation in the superconducting state.
The modified BdG Hamiltonian in Eq. (7) with V �= 0 can
no longer be block diagonalized, but continues to describe
a nonunitary pairing state with broken TRS. To reveal the
effects of the substrate potential, we obtain the topological
phase diagrams shown in Figs. 5(c) and 5(d) in the �t − V
plane. The phase structure is similar to the ones obtained for
the mirror-symmetry breaking �s shown in Figs. 5(a) and
5(b). In particular, the topological gap is robust and protects
the chiral superconducting phase with nontrivial Chern num-
bers N = 1 and N = −1, which are adiabatically connected
to the χTSC at V = 0 without a gap closing. Thus, despite
mirror-symmetry breaking, the thin-film χTSC remains stable
and belongs to class D described by the nontrivial topological
invariant Z.

VI. 3D LATTICE MODEL AND QUASI-2D
χTSC THIN FILMS

We now move beyond the effective theory of coupled
superconducting TSS for the thin-film χTSC to discuss its
materials realization in SCs with Z2 nontrivial topological
band structures. To this end, we construct a 3D cubic lat-
tice model capable of describing the superconducting TSS,
which is motivated by Fe-based superconductor Fe(Te,Se).
We demonstrate that as the number of layers along the c axis is
reduced to approach the quasi-2D thin-film limit, the nonuni-
tary χTSC with spontaneous TRS breaking can be induced
by the coupling of the TSS in the top and bottom surfaces. We
note that a similar procedure has been used in the recently
proposed time-reversal invariant TSC in thin-film Fe-based
superconductors [33]. We will discuss the differences in the
physical approaches leading to the two kinds of intrinsic TSCs
with or without TRS.

The minimal two-orbital and four-band 3D lattice model
for a topological insulator is given by the Hamiltonian [52],

H0 =
∑

α=x,y,z

vγα sin qα + M(q)γ5,

M(q) = [m0 − m1(cos qx + cos qy) − m2 cos qz]γ5, (14)

a

qx

b

c

qx

d

FIG. 6. The band structure of the lattice model for the 3D TI with
open boundaries along the z direction plotted along the qx direction at
qy = 0. The parameters are (v, m0,1,2) = (1.0, −8.5, −3.0, 3.0), and
V = 0.5 at the top and bottom surfaces. (a) The band dispersion in
the bulk limit obtained with nz = 50 layers, showing the TSS split
by the SIA potential V into two Rashba Dirac cones (red and blue
lines). (b) The spatial distribution of the in-gap states at the 2D 


point along the z direction, which are independently localized on
the top and bottom surfaces. (c) The thin-film limit band dispersion
obtained with nz = 4 layers. An energy gap opens due to the coupling
between the top and bottom weakly split Rashba Dirac cones with
the corresponding spatial distribution of the states at the 2D 
 point
shown in (d).

where γα = σαρx and γ5 = σ0ρz, with the Pauli matrices σα

acting on the spin and ρα on the two bulk atomic orbitals,
v is the Fermi velocity, and m0,1,2 are the band parameters.
This model is known to be capable of producing a band inver-
sion at the Z = (0, 0, π ) point in the bulk Brillouin zone for
m0,1 < 0, m2 > 0, and 2m1 − m2 < m0 < min(−m2,−2m1 +
m2), leading to a single helical Dirac cone around the 
 point
on the (001) surface [53]. This captures the basic features
of the topological electronic structure of Fe(Te,Se) [55] and
other Fe-based SCs observed by angle-resolved photoemis-
sion spectroscopy (ARPES) [19,20].

To account for the substrate effect, we include the
SIA potential HV = V σ0ρz in the top and bottom layers
of the lattice model and apply open boundary conditions
along the z direction. Using the parameters (v, m0,1,2) =
(1.0,−8.5,−3.0, 3.0) and a moderate V = 0.5, we obtain
the band structure for a thick film shown in Fig. 6(a) with
nz = 50 number of layers. The in-gap TSSs of the strong TI
around the 2D 
 point are well resolved and can be labeled by
|ν〉 as |1〉 ≡ |+↑〉, |2〉 ≡ |+↓〉, |3〉 ≡ |−↑〉, and |4〉 ≡ |−↓〉,
where ± correspond to the weakly V -split Dirac cones. The
spatial distribution plotted in Fig. 6(b) shows that the TSSs
are well localized at the top and bottom surfaces. To simulate
the thin-film limit, we reduce the layer thickness to nz = 4.
The band dispersion of the thin film is plotted in Fig. 6(c)
and the spatial distribution of the low-energy surface states in
Fig. 6(d). There is significant mixing of the top and bottom
surface states, leading to the massive Dirac fermion bands,
which are weakly split by the substrate potential V .

Next, we consider the pairing interaction in the bulk.
The pairing gap functions in Fe-based SCs have been

235147-6



INTRINSIC CHIRAL TOPOLOGICAL SUPERCONDUCTOR … PHYSICAL REVIEW B 108, 235147 (2023)

a

qx

b

qx

c

qx

d

FIG. 7. Energy spectra of BdG quasiparticles in the SC state of
the 3D lattice model with the same band parameters as in Fig. (6).
Open boundary conditions are applied in the z and y directions for nz

number of layers of width Ly. The x direction is periodic with contin-
uous momentum qx . The pairing parameters are �l = 1.3, �l

s = 1.5,
and �l

t = 1.5. (a) The spectrum for nz = 20 and Ly = 20 is fully
gapped, consistent with a topologically trivial bulk superconductor.
(b) The spectrum for nz = 4 layers and Ly = 40 shows a SC gap with
in-gap states, realizing a thin-film χTSC with χMEMs. (c) Zoom-in
of (b). The blue and red curves represent the χMEMs. (d) The spatial
distribution of the layer-averaged wave functions of the χMEMs at
an excitation energy E = 0.05 in (c), showing localization at the two
edges in the y direction.

observed to be ubiquitously three dimensional [54] and ap-
proximately follow �(q) = �2D cos qx cos qy + �⊥(cos qx +
cos qy) cos qz. In the proposal for the time-reversal invariant
TSC in Fe-based SC thin films, �(q) was taken to be two
dimensional given by the first term, and the s± gap function
changing sign in going from the zone center to the zone corner
was crucial for producing a nodal ring in between the Fermi
surfaces of the surface Rashba bands significantly split by
a large SIA potential V [33]. This should be contrasted to
our proposal for the χTSC, where the physics takes place
at small momenta around the bulk Z and surface 
 points.
Thus motivated by Fe(Te,Se), the bulk SC gap function in
the lattice model can be approximated by the spin-singlet
intraorbital pairing �l iσyρz in the long-wavelength limit. This
term is even under inversion I = γ5. Since inversion sym-
metry is broken by the SIA potential V , the inversion odd
interorbital spin-singlet �l

siσyρx and spin-triplet interorbital
pairing �l

t iσxρy will be generated near the top and bottom
layers. Thus, the pairing part of the Hamiltonian is given by

H� = �l iσyρz + �l
siσyρx + �l

t iσxρy, (15)

where nonzero values of �l
s and �l

t are limited to the top
and bottom two layers. Note that H� closely resembles the
pairing Hamiltonian given in Eq. (12) for the effective theory.
The important difference is that the pairing is among the two
atomic orbitals described by the Pauli matrices ρα in the 3D
lattice model, whereas in the effective theory in Eq. (12),
pairing is among the electrons in the top and bottom surfaces
described by the Pauli matrices χα .

c

FIG. 8. (a) Schematics of the device for detecting the half-
quantized conductance of a single χMEM at the boundaries of the
χTSC. The red, blue, brown, and orange layers are the antidot,
χTSC, dielectric substrate, and back-gate antidot, respectively. The
arrows indicate the chiral χMEM. (b) The top view of the device in
(a). An external magnetic field B is applied. V1 and V2 are the voltages
applied to leads 1 and 2. (c) The spatial distributions of |u| and |v|
for the zero-energy bound state. The red curves are for |u| and |v|
when B = 0; both are localized at the edges. For B/μ̃ = 0.5 and in
the Landau gauge, |u| (blue) is localized and |v| (green) merges into
the bulk at one edge, while |v| is localized and |u| merges into the
bulk at the opposite edge.

Diagonalizing the full 3D lattice Hamiltonian H0 + HV +
H�, we obtain the spectra of the BdG quasiparticles shown in
Fig. 7 for the bulk and the thin-film superconductors, using the
same band parameters as in Fig. 6 and �l = 1.3, �l

s = 1.5,
and �l

t = 1.5. Open boundary conditions are applied in both
the z and y directions, such that in-gap states will appear when
topological boundary modes are present. Figure 7(a) shows
that the bulk superconductor (nz = 20) has a fully gapped
spectrum and is not topological, absent of boundary states.
Remarkably, an intrinsic χTSC emerges in the thin-film su-
perconductor (n = 4) where the coupling between the top and
bottom surfaces enables TRS breaking as predicted by the
effective theory. Figures 7(b) and 7(c) reveal that the thin-film
superconductor has a spectrum with continuous in-gap states
due to topological boundary excitations. The latter correspond
to the χMEM localized on the physical edge of the thin-film
superconductor in the y direction, as shown in the spatial
distribution in Fig. 7(d), consistent with the effective theory.

VII. DETECTING HALF-INTEGER QUANTIZED
CONDUCTANCE ON AN ANTIDOT DEVICE

The half-quantized conductance e2

2h is a unique transport
signature of a single χMEM and provides a crucial test for
the χTSC [14,48]. We propose here a device made of the
thin-film SC patterned with an antidot, as shown in Fig. 8.
The chemical potential inside the antidot can be adjusted by
adding a gate to this area [Fig. 8(a)]. We next show that
there is a χMEM propagating along the edges of the antidot,
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which can be observed by directly measuring the two-terminal
conductance in a weak external magnetic field [Fig. 8(b)].
Without loss of generality, we consider N+ = 1 and N− = 0,
where the low-energy physics of H+

D is sufficiently described
by the two bands closest to the Fermi energy in the effective
BdG equation (see Appendix D),( −M1 Dx − iDy

Dx + iDy M1

)(
u

v

)
= 0, (16)

where Dα = −i(∂a + iAα ) is the covariant derivative, Aα the
vector potential, M1 = t −

√
(� + �t )2 + μ2, and u and v the

wave functions of the Bogoliubov quasiparticle. ∇ × A = B
gives the weak magnetic field applied perpendicular to the
thin-film SC. The Andreev reflection is assumed to be sup-
pressed, so the only conducting channel is along the edge.
Near the edge of the antidot, M1 ≡ μ̃(x, y) is negative on the
antidot side, with amplitudes much smaller than the positive
bulk values of M1 on the χTSC side. This ensures that the
strength of the magnetic field B does not exceed the lower crit-
ical field of the thin-film SC. For simplicity, we take μ̃ to be a
constant and assume the magnetic field B to be uniform on the
order of the penetration length. In the numerical calculations,
we use B = 0.5|μ̃| and |μ̃| ∼ 10−3�.

Diagonalizing Eq. (16) in real space, the spectrum of the
gapless chiral edge states can be obtained, which includes the
zero-energy bound state carrying a vanishing momentum in
the direction parallel to the edges. In Fig. 8(c), the spatial
distributions of |u| and |v| are plotted for the zero-energy
bound state. For B = 0, |u| = |v|, and they are localized at
both edges (red curves), as expected for a charge-neutral chiral
Majorana edge state which cannot be detected directly by
charge transport. Applying the weak magnetic field B �= 0,
we find that while |u| (blue curve) is localized on one edge,
|v| (blue curve) is localized on the opposite edge, as shown in
Fig. 8(c). Therefore, the chiral Majorana edge states have been
transformed into Jackiw-Rebbi-type solitons [56]. As a result,
the chiral charge current can now be carried by a quasielectron
current with probability |u|2 on one edge and a quasihole
current with probability |v|2 on the opposite edge. For the
device shown in Fig. 8(b), the Landauer-Büttiker formula for
the ballistic currents I1 and I2 are given by [57]

I1 = −I2 = e2

h
(|u|2V1 − |v|2V2). (17)

Choosing V1 = −V2 = V/2, the current-voltage relation be-
comes I1 = −I2 = e2

h (|u|2 + |v|2)V
2 = e2

2hV , giving rise to the

half-quantized conductance e2

2h .

VIII. DISCUSSIONS

The mirror symmetry of the coupled TSSs is a key ingre-
dient in our theory for the spontaneous TRS breaking and
chiral topological superconductivity in thin-film SCs with a
Z2 nontrivial topological band structure. Under the mirror
symmetry, the superconducting state is described by two non-
collinear and spatially isotropic d vectors for spin-triplet and
orbital-triplet pairing, i.e., a nonunitary 2D χTSC with spon-
taneous TRS breaking and a nonzero spin-orbit polarization.
As a result, the thin-film χTSC hosts a single χMEM at the

boundary and a MZM in the vortex core. This is in contrast
to the time-reversal invariant TSC with momentum-dependent
pairing and rotational symmetry breaking proposed for a Cu
intercalated bulk topological insulator CuxBi2Se3 [58,59] and
thin films [60], and the chiral p-wave TSC proposed for the
interface of noncentrosymmetric Pb3Bi/Ge(111) [61]. The
intrinsic χTSC remains stable in the presence of mirror-
symmetry breaking interactions, such as the substrates and
the spin-singlet pairing between the top and bottom surfaces
[62], and belongs to class D characterized by a topological
invariant Z.

The χTSC thin films can be potentially materialized using
the Fe-based SCs. The Fe-chalcogenides and pnictides are
p-d charge transfer metals in the normal state [63]. A p-d
band inversion can develop and produce a Z2 topological
metal with lightly doped TSSs [55,64,65]. The latter have
been observed by spin-polarized angle-resolved photoemis-
sion spectroscopy in bulk Fe(Te,Se) and LiFeAs [19,20].
Below the bulk Tc, the TSSs become superconducting with
an energy gap comparable to the bulk gap [19,65]. Candi-
date MZMs have been observed inside magnetic-field-induced
vortices in FeTe0.55Se0.45 [21,23], (Li0.84Fe0.16)OHFeSe [22],
CaKFe4As4 [24], and the quantum anomalous vortices
[26] nucleated at excess and adatom magnetic Fe sites in
FeTe0.55Se0.45 [27,29] and LiFeAs [28] without applying
external magnetic fields. Our effective theory and the 3D
lattice model calculations clearly show that in the absence of
coupling between the top and bottom surfaces, the supercon-
ducting TSSs do not constitute a topological superconductor
and there are no gapless boundary excitations. The chiral
topological superconductivity proposed here can be poten-
tially realized by fabricating thin-film SCs using this class
of Fe-based SCs to allow the coupling of TSSs on the top
and bottom surfaces. Growing Fe(Te,Se) thin-film SCs with
controlled thickness by the molecular beam epitaxy (MBE)
method or fabricating Fe(Te,Se) films by exfoliation are real-
istic under the current experiential techniques. Other materials
choices include the noncentrosymmetric PbTaSe2 where su-
perconducting TSSs have been observed [28,66,67] and the
recently discovered kagome lattice SCs, AV3Sb5 (A=K, Rb,
Cs), with a Z2 topological band structure [68–70].

In addition to realizing a different and profound topolog-
ical quantum state of matter, the chiral topological SC thin
films provide an unparalleled single-material platform for not
only non-Abelian vortex MZMs, but also robust χMEMs for
designing topological logic gates. The detection of the half-
quantized conductance and the non-Abelian braiding of the
χMEMs using the χTSC thin-film-based devices can be more
feasible than the previously proposed QAHI-SC proximity
effect hybrid structures. Supported by the scalability of the
χMEMs in arrays of patterned antidots as well as superlattice
stacking, the χTSC thin films hold promise for the exploration
of fault-tolerant quantum computing.
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APPENDIX A: TIME-REVERSAL SYMMETRY

Time-reversal invariance is restored when one of the three
parameters t , �, and �t vanishes. Specifically, consider
the case where �t = 0. Then, (iσyτ0K )H+

D (q)(iσyτ0K )−1 =
H−

D (−q). The time-reversal operator for H+
D ⊕ H−

D is there-
fore given byT�t =0 = iσyτ0�xK , where �i are Pauli matrices
acting on the mirror index. In the original Nambu basis �N ,
one finds U −1T�t =0U = iσyχ0τ0K , which is the usual time-
reversal operator T . Thus, when �t = 0, the Hamiltonian (7)
describes a time-reversal invariant TSC [18]. Next, consider
� = 0, so that (σxτzK )H+

D (q)(σxτzK )−1 = H−
D (−q). This al-

lows us to define the modified time-reversal operator T�=0 =
iσxτz�yK . In the original �N basis, it becomes U −1T�=0U =
−iσyχ0τzK = −τzT , i.e., the usual time reversal followed
by a discrete operation in the particle-hole sector. Finally, if
t = 0, we have (iσyτxK )H±

D (q)(iσyτxK )−1 = H±
D (−q). As a

result, each of H+
D and H−

D has TRS. The operators T ,T�t =0,
and T�=0 are all possible time-reversal operators that square
to −1. We summarize the results in Table I. When none of
the three parameters t , �, and �t is zero, the TRS is sponta-
neously broken in the BdG Hamiltonian (7).

APPENDIX B: LATTICE MODEL

To test the topological SC phases of the BdG
Hamiltonian (7), we study a tight-binding model on the
square lattice with periodic boundary condition along
the x direction and open boundary condition along the
y direction and obtain the chiral Majorana edge states
directly along the open boundary. Specifically, we replace
the hopping amplitude t → t0 + t1(q2

x + q2
y ) in Eq. (7)

and discretize the momenta qx,y → a−1 sin (qx,ya) and
q2

x + q2
y → 2 − 2a−2[cos(qxa) + cos(qya)], where a is the

lattice constant (set to unity). We numerically diagonalize the
lattice BdG Hamiltonian to obtain the eigenstate spectrum
and the spatial distributions of the gapless edge modes along
the open boundaries on lattices with 50 sites in the y direction.
The results are shown in Fig. 9, where the eigenstate spectra
in Figs. 9(a) and 9(c) have been shown in Fig. 2(f) and
Fig. 3(d) in the main text and reproduced for comparison. The
corresponding distributions of the Majorana edge modes are
shown in Figs. 9(b) and 9(d), respectively.

TABLE I. Summary of the time-reversal operators for
Hamiltonian (7) in the untransformed Nambu basis. ± represent
whether or not the corresponding term is time-reversal invariant.

T T 2 μ term � term t term �t term λ term

iσyχ0τ0K −1 + + + − −
iσyχ0τzK −1 + − + + −
iσyχzτ0K −1 + + − + −

a

qx

b

c

qx

d

FIG. 9. (a),(c) Energy spectrum of the lattice model under open
boundary conditions in the y direction for � = 1. (a) μ = 2, t0 = 2.5,
t1 = 1.0, �t = 1.5; (c) μ = 0, t0 = 1.5, t1 = −0.5; and �t = 0.
(b),(d) Spatial distributions of the gapless edge states in (a) and
(c) along the y direction (50 sites) at a fixed energy Ea = 0.37
and Ec = 0.48, respectively. The red and blue curves in (b) are the
gapless chiral edge states of a single χMEM. In (d), there are two
counterpropagating χMEMs, namely, a helical Majorana edge mode
at each boundary. They are represented by the solid and dotted lines.

APPENDIX C: GINZBURG-LANDAU THEORY

We consider the Ginzburg-Landau theory to analyze the
relative phase between the intraorbital-triplet spin-singlet
pairing � and the interorbital-singlet spin-triplet pairing �t .
First, we consider the symmetry properties of the pairing
terms of the superconducting TSSs of the thin-film SC. As
mentioned in the main text, there is a mirror symmetryM =
−iσzχx due to the opposite helicities of the Dirac fermion
TSSs and, in general, the superconducting pairing order pa-
rameter � takes the following form:

� = �α (iσy)(d′ · χ)(iχy) + �tβ (d · σ )(iσy)(iχy), (C1)

where σ (χ ) labels the spin (surface/orbital) index, (d′) and
(d) are two unit triplet d vectors in the orbital and spin
sectors, and α and β correspond to the (x, y, z) indices
of the (d′) and (d) components. Here we focus on the
momentum-independent pairings because they are favored
over the momentum-dependent pairings in the weak coupling
limit with purely short-range interactions [37]. In this case,
the six pairing terms can be grouped in two parts under mirror
symmetry M, namely, M�M−1 = � for �x and �tz (or
d′ = x̂ and d = ẑ), whileM�M−1 = −� for the other four
terms. Furthermore, we have chosen a square lattice geometry
for the lattice model with D4h symmetry; then, �x, (�y,�z ),
(�tx,�ty), and �tz belong to the irreducible representations
A2u, A1g, Eu, and A1u respectively [37]. We summarize the
above properties in Table II.

In the following, we will focus on the Ginzburg-Landau
theory of the mirror-even pairing terms �x and �tz. For the
thin-film geometry which lacks the full three-dimensional
inversion symmetry, the mixing between spin-singlet and
spin-triplet pairings is allowed [44,45]. Then the fourth-
order invariant of the Ginzburg-Landau free energy can be
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TABLE II. Summary of the symmetry properties of the pairing
term (C1). �i is the fermion annihilation operator, with i being the
surface/orbital index. The parity operation is defined by (x, y, i) →
(−x, −y, ī) with the exchange of surface/orbital index i → ī [37].
Here, + (−) means even (odd).

Pairing terms MirrorM Irrep. of D4h Parity in D4h

�x : (ψ1↑ψ1↓ − ψ2↑ψ2↓) + A2u −
�y : i(ψ1↑ψ1↓ + ψ2↑ψ2↓) − A1g +
�z : (ψ1↑ψ2↓ − ψ1↓ψ2↑) − A1g +
�tx : (ψ1↑ψ2↑ − ψ1↓ψ2↓) − Eu −
�ty : i(ψ1↑ψ2↑ + ψ1↓ψ2↓) − Eu −
�tz : (ψ1↑ψ2↓ + ψ1↓ψ2↑) + A1u −

approximated as [45–47]

f4 = γ1(|�x|2 + |�tz|2)2 + γ2

∣∣�2
x + �2

tz

∣∣2

+ γ3(|�x|4 + |�tz|4), (C2)

where γ1, γ2, γ3 are materials-dependent parameters. For sim-
plicity, we choose �x = |�| cos θ and �tz = eiω|�| sin θ , and
the above free energy can be rewritten as

f4 = |�|4{γ1 + γ2 + γ3 − sin2(2θ )[γ3 − 2γ2 sin2(2ω)]/2}.
(C3)

Minimizing f4 with respect to θ and ω reads

sin(4θ )(γ3 − 2γ2 sin2 ω) = 0, γ2 sin2(2θ ) sin(2ω) = 0,

(C4)

with three nontrivial sets of solutions, (�x,�tz ) ∝ (±1, 0),
(±1,±1), and (±1,±i). (±1,±1) breaks time-reversal sym-

metry as discussed in the main text, while the other two cases
preserves time-reversal symmetry.

APPENDIX D: TWO-BAND HAMILTONIAN

Here, we derived the effective two-band BdG Hamiltonian
in Eq. (16). Without loss of generality, we consider the topo-
logical nontrivial phase of the 4 × 4 BdG Hamiltonian H+

D in
Eq. (10),

H+
D =

⎛⎜⎜⎜⎜⎝
μ − t � + �t 0 qx + iqy

� + �t −t − μ qx + iqy 0

0 qx − iqy t − μ −� − �t

qx − iqy 0 −� − �t t + μ

⎞⎟⎟⎟⎟⎠.

The spectrum of the Hamiltonian can be obtained analytically
and is given by the following four energy bands:

E±,±(q) = ±
√

q2 + t2 + ω2 ± 2
√

μ2q2 + t2ω2

= ±
√(

1 − μ2

ωt

)
q2 + (t ± ω)2 + O(q4), (D1)

where q2 = q2
x + q2

y and ω2 = (� + �t )2 + μ2, and we have
expanded q2 to the lowest order near the 
 point in the second
line. In the long-wavelength limit, the spectrum is indeed
relativistic. The mass term for the two bands closest to the

Fermi energy is given by M1 = t −
√

(� + �t )2 + μ2. When
μ � |t (� + �t )|, the effective two-band BdG Hamiltonian
reads

He f f =
( −M1 qx − iqy

qx + iqy M1

)
, (D2)

which is equivalent to a chiral p + ip superconductor.
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