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Stochastic pole expansion method for analytic continuation of the Green’s function
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In this paper, we propose an analytic continuation method to extract real-frequency spectral functions from
imaginary-frequency Green’s functions of quantum many-body systems. This method is based on the pole
representation of Matsubara Green’s function and a stochastic sampling procedure is utilized to optimize the am-
plitudes and locations of poles. In order to capture narrow peaks and sharp band edges in the spectral functions,
a constrained sampling algorithm and a self-adaptive sampling algorithm are developed. To demonstrate the
usefulness and performance of this method, we at first apply it to study the spectral functions of representative
fermionic and bosonic correlators. Then we employ this method to tackle the analytic continuation problems
of matrix-valued Green’s functions. The synthetic Green’s functions, as well as realistic correlation functions
from finite-temperature quantum many-body calculations, are used as input. The benchmark results demonstrate
that this method is capable of reproducing most of the key characteristics in the spectral functions. The sharp,
smooth, and multipeak features in both low- and high-frequency regions of spectral functions could be accurately
resolved, which overcomes one of the main limitations of the traditional maximum entropy method. More
importantly, it exhibits excellent robustness with respect to noisy and incomplete input data. The causality of
spectral function is always satisfied even in the presence of sizable noises. As a by-product, this method could
derive a fitting formula for the Matsubara data, which provides a compact approximation to the many-body
Green’s functions. Hence, we expect that this method could become a pivotal workhorse for numerically analytic
continuation and be broadly useful in many applications.
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I. INTRODUCTION

Matsubara Green’s functions G(iωn), or equivalently
imaginary-time Green’s functions G(τ ), of quantum many-
body systems are of fundamental importance for finite-
temperature quantum field theories [1,2]. They are usually
generated in finite-temperature quantum simulations, such as
many-body perturbative calculations [3–6], quantum Monte
Carlo simulations of impurity, lattice, and condensed matter
systems [7–9], and lattice gauge theory calculations [10–12],
just to name a few. In principle, these correlators are not ex-
perimentally observable. We have to convert them to retarded
Green’s functions GR(ω), or equivalently spectral functions
A(ω), by using analytic continuation. And then the spec-
tra can be compared with the correspondingly spectroscopic
data. Clearly, analytic continuation provides a bridge between
quantum many-body theories and experimental observations.

In general the imaginary-frequency Green’s function
G(iωn) and the spectral function A(ω) are connected by the
following Fredholm integral equation of the first kind [1]:

G(iωn) =
∫ +∞

−∞
dω K (ωn, ω)A(ω), (1)

where i is the imaginary unit, ωn means the Matsubara
frequency, and K (ωn, ω) = 1/(iωn − ω) is the kernel func-
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tion. The mapping from A(ω) to G(iωn) is linear. So,
provided A(ω), it is easy to obtain G(iωn) via numerical
integration. However, given G(iωn), seeking a reasonable
A(ω) to satisfy Eq. (1) needs tremendous efforts. Mathe-
matically, the extraction of A(ω) is equivalent to carrying
out an inverse Laplace transformation, which is a well-
known ill-conditioned problem [13,14]. Because the kernel
approaches zero as ω increases, A(ω) is very sensitive to
the noises embedded in G(iωn). Small fluctuations or noises
in G(iωn), which are almost inevitably in quantum many-
body calculations [7–9], could lead to significant changes
in A(ω). Thus, a reliable comparison between theoretical
and experimentally observed spectra becomes impossible.
This is an intrinsic difficulty of the analytic continuation
problems [15], and has long been a key factor limiting the
usefulness of finite-temperature quantum simulations that per-
formed directly on imaginary-frequency (or imaginary-time)
axis.

To solve the analytic continuation problems, people have
developed many numerical methods in the past decades, in-
cluding the non-negative least-squares method (NNLS) [16],
non-negative Tikhonov method (NNT) [17,18], Padé approx-
imation (Padé) [19–24], maximum entropy method (MaxEnt)
and its extensions [25–36], stochastic analytic continua-
tion (SAC) and its variants [37–43], stochastic optimization
method (SOM) [44–48], sparse modeling method (SpM)
[49,50], Nevanlinna analytic continuation (NAC) [51,52], and
Carathéodory method (Carathéodory) [53], and so on. In addi-
tion, machine-learning-assisted analytic continuation methods
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[54–59] are also exploited in recent years, but they have not
yet been broadly used with realistic quantum Monte Carlo
data.

To our knowledge, perhaps MaxEnt is the most widely
used analytic continuation method [25,26]. It dominates this
field for quite a long time. In this method, the spectral function
is regarded as a probability function and then the Bayesian
statistical inference is employed to select the most probable
spectrum that maximizes a generalized Shannon-Jaynes en-
tropy [60]. This method is quite efficient, but sometimes it
tends to blur the sharp features in the spectrum. Another popu-
lar analytic continuation tool is the SAC method [37–39]. The
spectrum is at first parametrized by a large number of δ func-
tions in continuous frequency space. Then the amplitudes and
locations of the δ functions are sampled by the Monte Carlo
method. Note that various constraints, such as locations of
band boundaries or spectral weight of quasiparticle peak, can
be encoded in the stochastic sampling procedure. This leads
to the constrained SAC method [39]. It can resolve intricate
spectral functions with both sharp edge features and broad
peaks precisely at the cost of computational efficiency [42,61].
The SOM method is just a cousin of the SAC method [44,45].
The most significant difference is that the SOM method uti-
lizes superposition of many rectangle functions, instead of
δ functions, to parametrize the spectral function. Sometimes
both the SOM method and the SAC method are called the
average spectrum method (ASM) in the literatures [43,62–65].
Accordingly, it is not surprising that the two methods share the
same strengths and weaknesses.

We would like to emphasize that the spirits of the MaxEnt,
SAC, and SOM methods are to fit the spectral functions to
the imaginary-frequency Green’s functions. However, there
is an alternative route for solving the analytic continuation
problems. In the class are methods that aim to interpolate,
rather than fit, the imaginary-frequency Green’s function in
the complex plane by using some sort of rational functions.
If the analytic form of the Green’s function is established,
one may immediately substitute iωn by ω + i0+ to yield the
required spectral function. Typical methods in this class in-
clude the Padé [20,21], NAC [51], and Carathéodory [53]
methods. The Padé method requires high-precision input data.
Basically, it works well only if the input data on the imaginary
axis are not subject to stochastic uncertainty (or noise) and
the number of data points is small [20,21]. Furthermore, it
often generates unphysical oscillation in the high-frequency
region of the spectrum, thus violates the causality condition
[50]. The newly developed NAC method is a potential com-
petitor to the Padé method. It takes the Nevanlinna analytic
structure of the Green’s function into account [51]. The evalu-
ated spectral function is guaranteed to be intrinsically positive
and normalized. Later, the Nevanlinna interpolation scheme is
generalized to treat the matrix-valued Green’s functions. This
is the so-called Carathéodory method [53]. The two methods
can resolve complicated spectral functions over a wide range
of frequencies with unprecedented accuracy. However, they
are not numerical stable and are not directly applicable to
bosonic systems [52,66]. More seriously, the two methods
are not robust in the presence of noise. If the input data
are noisy, the Pick’s criterion is violated and the Nevanlinna
(Carathéodory) interpolations will not exist [51]. The obtained

spectral functions are not guaranteed to be causal at that time.
This deficiency greatly restricts the applications of the two
methods in the postprocessing procedure for quantum Monte
Carlo simulations.

Clearly, though significant progress has been made in
solving the inverse problem [see Eq. (1)], it is still far
away from being completely settled. This explains why
analytic continuation is a long-standing and important prob-
lem in computational quantum many-body physics [1,2].
Nevertheless, new analytic continuation methods that are
based on different principles and strategies are always use-
ful [18,36,66–70]. In this paper, we would like to introduce
an analytic continuation method, namely, the stochastic pole
expansion method (dubbed SPX). It adopts the pole expan-
sion to parametrize the imaginary-frequency Green’s function.
Then the weights and locations of the poles are optimized by
stochastic method, hence the name of the method. Finally, the
spectral function is evaluated by using the optimal poles. In
essence, the SPX method can be classified as the ASM method
[43]. But it inherits the advantages of both fitting and interpo-
lation approaches. At first, it can recover complicated spectral
functions. These spectra usually exhibit some distinctive fea-
tures, such as large gap, sharp band edge, narrow resonance
peak, and long tail, etc., over a wide energy range. Second, it
provides an approximated pole representation for Matsubara
Green’s function in the entire complex plane. In other words,
a fitting formula for the Green’s function is derived once the
analytic continuation is finished. Such a formula can serve
as a noise filter and a compact representation of many-body
Green’s function. Third, it is robust with respect to noisy
and incomplete data. The sum rule and causality of the spec-
tral functions are automatically guaranteed. Last but not the
least, this method is quite general. It is suitable for not only
fermionic but also bosonic correlators. It is straightforward to
generalize it to support analytic continuation of matrix-valued
Green’s functions. Actually, so long as the given correlators
can be described by using the Lehmann representation [1], the
SPX method always works.

The rest of this paper is organized as follows. In Sec. II,
we at first review the basic properties of the finite-temperature
Green’s function and the Lehmann representation. And then
we elaborate on the core idea of the SPX method. The pole
representation, and the stochastic approach that is used to op-
timize the amplitudes and locations of the poles, is explained.
In Sec. III, two auxiliary algorithms, namely, the constrained
sampling algorithm and the self-adaptive sampling algorithm,
are introduced. The remaining part of this section is devoted
to implementation details of the SPX method. In the following
sections (from Secs. IV to VII), the SPX method is bench-
marked thoroughly. The calculated results are compared with
those obtained by the traditional MaxEnt method and the exact
solutions if available. First, we introduce the computational
setups and summarize the test cases (see Sec. IV). And then
the SPX method is utilized to solve the analytic continuation
problems for fermionic correlators (see Sec. V), bosonic cor-
relators (see Sec. VI), and matrix-valued Green’s functions
(see Sec. VII). In Sec. VIII, we at first focus on the robustness
of the SPX method in the presence of sizable noise. The
performance of the SPX method is also examined when the
input data are incomplete. We analyze the advantages and
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drawbacks of the SPX method when it is compared to the
other analytic continuation methods. Finally, Sec. IX serves
as a short conclusion. We look forward to further applications
of the SPX method in other research fields.

II. FORMALISMS

A. Finite-temperature Green’s function

The single-particle imaginary-time Green’s function G(τ )
reads as

G(τ ) = 〈Tτ c(τ )c†(0)〉, (2)

where Tτ is the imaginary-time ordering operator, c† and c
are creation and annihilation operators in the Heisenberg rep-
resentation, respectively. For fermions, G(τ ) must fulfill the
antiperiodicity condition, i.e., G(τ ) = −G(τ + β ). While for
bosons, G(τ ) must be β periodic, i.e., G(τ ) = G(τ + β ). Here
β denotes the inverse temperature of the system (β = 1/T ).
The Matsubara Green’s function G(iωn) can be derived from
G(τ ) via Fourier transformation,

G(iωn) =
∫ β

0
dτ e−iωnτ G(τ ), (3)

and vice versa,

G(τ ) = 1

β

∑
n

eiωnτ G(iωn). (4)

Note that ωn = (2n + 1)π/β and 2nπ/β for fermions and
bosons, respectively, where n ∈ Z.

B. Spectral representation

Suppose that the spectral density of the single-particle
Green’s function is A(ω), then we have

G(τ ) =
∫ +∞

−∞
dω

e−τω

1 ± e−βω
A(ω), (5)

with the positive (negative) sign for fermionic (bosonic) oper-
ators. Similarly,

G(iωn) =
∫ +∞

−∞
dω

1

iωn − ω
A(ω). (6)

These equations denote the spectral representation of single-
particle Green’s function. We notice that the SPX method, as
well as the other analytic continuation methods that are classi-
fied as ASM, are closely related to the spectral representation.
Next, we would like to make further discussions about this
representation for the fermionic and bosonic correlators.

Fermionic correlators. The spectral density A(ω) is defined
on (−∞,∞). It is positive definite, i.e., A(ω) � 0. Equa-
tions (5) and (6) can be reformulated as

G(τ ) =
∫ +∞

−∞
dω K (τ, ω)A(ω) (7)

and

G(iωn) =
∫ +∞

−∞
dω K (ωn, ω)A(ω), (8)

respectively. The kernel functions K (τ, ω) and K (ωn, ω) are
defined as follows:

K (τ, ω) = e−τω

1 + e−βω
(9)

and

K (ωn, ω) = 1

iωn − ω
. (10)

Bosonic correlators. The spectral density A(ω) obeys the
following constraint: sign(ω)A(ω) � 0. Thus, it is more con-
venient to define a function Ã(ω) where Ã(ω) = A(ω)/ω.
Clearly, Ã(ω) is always positive definite. As a result, Eqs. (5)
and (6) can be rewritten as

G(τ ) =
∫ +∞

−∞
dω K (τ, ω)Ã(ω) (11)

and

G(iωn) =
∫ +∞

−∞
dω K (ωn, ω)Ã(ω), (12)

respectively. Now the bosonic kernel K (τ, ω) becomes

K (τ, ω) = ωe−τω

1 − e−βω
. (13)

Especially, K (τ, 0) = 1/β. As for K (ωn, ω), its expression is

K (ωn, ω) = ω

iωn − ω
. (14)

Especially, K (0, 0) = −1. Aside from the bosonic Green’s
function, typical correlator of this kind includes the transverse
spin susceptibility χ+−(τ ) = 〈S+(τ )S−(0)〉, where S+ = Sx +
iSy and S− = Sx − iSy.

Bosonic correlators of Hermitian operators. There is a spe-
cial case of the previous observable kind with c = c†. Here,
A(ω) becomes an odd function and, equivalently, Ã(ω) is an
even function [i.e., Ã(ω) = Ã(−ω)]. Therefore, the limits of
integrations in Eqs. (5) and (6) are reduced from (−∞,∞) to
(0,∞). So the two equations can be transformed into

G(τ ) =
∫ +∞

0
dω K (τ, ω)Ã(ω) (15)

and

G(iωn) =
∫ +∞

0
dω K (ωn, ω)Ã(ω), (16)

respectively. The corresponding K (τ, ω) reads as

K (τ, ω) = ω[e−τω + e−(β−τ )ω]

1 − e−βω
. (17)

Especially, K (τ, 0) = 2/β. And K (ωn, ω) becomes

K (ωn, ω) = −2ω2

ω2
n + ω2

. (18)

Especially, K (0, 0) = −2. Perhaps the longitudinal spin sus-
ceptibility χzz(τ ) = 〈Sz(τ )Sz(0)〉 and the charge susceptibility
χch(τ ) = 〈N (τ )N (0)〉 are the most widely used observables
of this kind. Here, Sz and N are the z component of the spin
operator and occupation operator, respectively.
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C. Pole representation

It is well known that the finite-temperature many-body
Green’s functions can be expressed within the Lehmann rep-
resentation [1]:

Gab(z) = 1

Z

∑
m,n

〈n|da|m〉〈m|d†
b |n〉

z + En − Em
(e−βEn ± e−βEm ), (19)

where a and b are the band indices, d (d†) denote the an-
nihilation (creation) operators, |n〉 and |m〉 are eigenstates
of the Hamiltonian Ĥ , and En and Em are the correspond-
ing eigenvalues, Z is the partition function (Z = ∑

n e−βEn ).
The positive sign corresponds to fermions, while the nega-
tive sign corresponds to bosons. The domain of this function
is on the complex plane, but the real axis is excluded (z ∈
{0} ⋃

C \R). If z = iωn ∈ iR, Gab(iωn) is the Matsubara
Green’s function. If z = ω + i0+, Gab(ω + i0+) = GR

ab(ω) is
called the retarded Green’s function.

At first, we focus on the diagonal cases (a = b). For
the sake of simplicity, the band indices are ignored in the
following discussions. Let Amn = 〈n|d|m〉〈m|d†|n〉(e−βEn ±
e−βEm )/Z and Pmn = Em − En, then G(z) = ∑

m,n Amn/(z −
Pmn) [66]. Clearly, only those nonzero elements of Amn con-
tribute to the Green’s function. If the indices m and n are
further compressed into γ (i.e, γ = {m, n}), then Eq. (19) is
simplified to

G(z) =
Np∑

γ=1

Aγ

z − Pγ

. (20)

Here, Aγ and Pγ mean the amplitude and location of the γ th
pole, respectively. Np means the number of poles, which is
equal to the total number of nonzero Amn. Such an analytic
expression of Green’s function is called the pole expansion. It
is valid for both fermionic and bosonic correlators.

Fermionic correlators. For fermionic systems, the pole
representation for Matsubara Green’s function can be recast
as

G(iωn) =
Np∑

γ=1

	(ωn, Pγ )Aγ . (21)

Here, 	 is called the kernel matrix. It is evaluated by

	(ωn, ω) = 1

iωn − ω
. (22)

Note that Aγ and Pγ should satisfy the following constraints:

∀ γ , 0 � Aγ � 1,
∑

γ

Aγ = 1, Pγ ∈ R. (23)

Bosonic correlators. For bosonic systems, the pole repre-
sentation for Matsubara Green’s function can be defined as
follows:

G(iωn) =
Np∑

γ=1

	(ωn, Pγ )Ãγ . (24)

Here, 	 is evaluated by

	(ωn, ω) = G0ω

iωn − ω
, (25)

where G0 = −G(iωn = 0), which should be a positive real
number. Be careful, 	(0, ω) = −G0. Ãγ is the renormalized
amplitude of the γ th pole:

Ãγ = Aγ

G0Pγ

. (26)

Note that Ãγ and Pγ should satisfy the following constraints:

∀ γ , 0 � Ãγ � 1,
∑

γ

Ãγ = 1, Pγ ∈ R. (27)

Bosonic correlators of Hermitian operators. Its pole rep-
resentation can be defined as follows (∀ γ , Aγ > 0, and
Pγ > 0):

G(iωn) =
Np∑

γ=1

(
Aγ

iωn − Pγ

− Aγ

iωn + Pγ

)

=
Np∑

γ=1

	(ωn, Pγ )Ãγ . (28)

Thus, the kernel matrix 	 reads as

	(ωn, ω) = −G0ω
2

ω2
n + ω2

. (29)

Especially, 	(0, 0) = −G0. The renormalized weight Ãγ

reads as

Ãγ = 2Aγ

G0Pγ

. (30)

The constraints for Ãγ and Pγ are the same with Eq. (27).
As for the off-diagonal cases (a �= b), it is lightly to prove

that
∑

γ Aγ = 0. It implies that there exist poles with negative
weights. Hence, we can split the poles into two groups accord-
ing to the signs of their amplitudes. The Matsubara Green’s
function can be expressed as follows:

G(iωn) =
N+

p∑
γ=1

A+
γ

iωn − P+
γ

−
N−

p∑
γ=1

A−
γ

iωn − P−
γ

=
N+

p∑
γ=1

	(ωn, P+
γ )A+

γ −
N−

p∑
γ=1

	(ωn, P−
γ )A−

γ . (31)

Here, 	(ωn, ω) is already defined in Eq. (22). The A±
γ and P±

γ

are restricted by Eq. (23). In addition,

Np = N+
p + N−

p (32)

and

N+
p∑

γ=1

A+
γ −

N−
p∑

γ=1

A−
γ = 0. (33)

D. Stochastic optimization

Suppose that the input Matsubara Green’s function is
G(iωn), where n = 1, 2, . . . , Nω, the objective of analytic
continuation is to fit the (possibly noisy and incomplete)
Matsubara data into Eq. (20) under some constraints. In math-
ematical language, we should solve the following multivariate
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FIG. 1. Schematic picture for the pole representation of the Mat-
subara Green’s function. The poles are visualized by vertical colorful
bars. “Move 1,” “Move 2,” and “Move 4” denote three possible
Monte Carlo updates: (i) shift a randomly selected pole, (ii) shift two
randomly selected poles, and (iii) swap two randomly selected poles.
See the main text for more details.

optimization problem:

arg min
{Aγ ,Pγ }Np

γ=1

χ2
[
{Aγ , Pγ }Np

γ=1

]
. (34)

Here, χ2[{Aγ , Pγ }Np

γ=1] is the so-called goodness-of-fit func-
tion or loss function. Its definition is as follows:

χ2
[
{Aγ , Pγ }Np

γ=1

]
= 1

Nω

Nω∑
n=1

∣∣∣∣∣∣
∣∣∣∣∣∣G(iωn) −

Np∑
γ=1

Aγ

iωn − Pγ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

,

(35)

where || · ||F denotes the Frobenius norm. The minimization
of Eq. (34) is highly nonconvex. Traditional gradient-based
optimization methods, such as the non-negative least-squares
method, conjugate-gradient method, Newton and quasi-
Newton methods, are frequently trapped in local minima [71].
Their optimized results strongly depend on the initial guess.
The semidefinite relaxation (SDR) fitting method [66,72],
adaptive Antoulas-Anderson (AAA) algorithm [73,74], and
conformal mapping plus Prony’s method [68,69], which have
been employed to search the locations of poles in previous
works [66], are also tested. But, these methods usually fail
when Np is huge [Np ∼ O(103)] or the Matsubara data are
noisy.

In order to overcome the above obstacles, we employ the
simulated annealing method [75] to locate the global mini-
mum of χ2. The core idea is as follows: First of all, a set
of {Aγ , Pγ } parameters are generated randomly. These param-
eters form a configuration space C = {Aγ , Pγ }. Second, this
configuration space is sampled by using the Metropolis Monte
Carlo algorithm. In the present SPX method, four Monte
Carlo updates are supported (see Fig. 1). They include the
following: (i) Select one pole randomly and shift its location.
(ii) Select two poles randomly and shift their locations. (iii)

Select two poles randomly and change their amplitudes. The
sum rules, such as Eqs. (23) and (27), should be respected
in this update. (iv) Select two poles randomly and exchange
their amplitudes. Assuming that the current Monte Carlo con-
figuration is C = {Aγ , Pγ }, the new one is C′ = {A′

γ , P′
γ }, and


χ2 = χ2(C′) − χ2(C), then the transition probability reads
as

p(C→ C′) =
{

exp
(
−
χ2

2�

)
, if 
χ2 > 0

1.0, if 
χ2 � 0
(36)

where � is an artificial system temperature and χ2 is inter-
preted as energy of the system. Third, the above two steps
should be restarted periodically to avoid being trapped by
local minima. Fourth, once all the Monte Carlo sampling tasks
are finished, we should pick up the “best” solution which
exhibits the smallest χ2, or select some “good” solutions with
small χ2 and evaluate their arithmetic average. Finally, with
the optimized Np, Aγ , and Pγ parameters [76], the retarded
Green’s function GR(ω) can be easily evaluated by replacing
iωn with ω + iη in Eqs. (21), (24), (28), and (31), where η is
a positive infinitesimal number. And the spectral density A(ω)
is calculated by

A(ω) = − 1

π
ImGR(ω). (37)

III. BASIC ALGORITHMS

A. Constrained sampling algorithm

In the SPX method, the amplitudes and locations of the
poles should be optimized by the Monte Carlo algorithm
under some constraints [see Eqs. (23), (27), and (33)]. We
note that these constraints are from the canonical relations
for the fermionic and bosonic operators [1,2]. They must be
satisfied, or else the causality of the spectrum can not be
guaranteed. But beyond that, more constraints are allowable.
Further restrictions on the amplitudes and locations of the
poles can greatly reduce the configuration space that needs
to be sampled and enhance the possibility to reach the global
minimum of the optimization problem. The possible strategies
include the following: (1) restrict {Aγ } only; (2) restrict {Pγ }
only; and (3) restrict both {Aγ } and {Pγ } at the same time.
These extra constraints can be deduced from a priori knowl-
edge about the Matsubara Green’s function G(iωn) and the
spectral density A(ω). For example, for a molecule system, the
amplitudes of the poles are likely close. On the other hand, if
we know nothing about the input data and the spectra, we can
always try some constraints. The universal trend is that the
more reasonable the constraints, the smaller the χ2 function.
This is the so-called constrained sampling algorithm. By com-
bining it with the SPX method (dubbed C-SPX), the ability to
resolve fine features in the spectra will be greatly enhanced.
To the best of our knowledge, the constrained sampling al-
gorithm was first proposed by Sandvik [39]. And then it is
broadly used in analytic continuations for spin susceptibilities
of quantum many-body systems [42,77]. Quite recently, Shao
and Sandvik summarized various approaches to mount the
constraints and benchmark their performances in a compre-
hensive review concerning the SAC method [61]. Due to the
similarities of the SPX and SAC methods, it is believed that
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all the constraint tactics as suggested in Ref. [61] should be
applicable for the SPX method.

B. Self-adaptive sampling algorithm

In analogy to the SAC method, the poles in the SPX
method are distributed randomly in a real-frequency grid
[37,38]. This grid must be extremely dense and is usually
linear. But in principle a nonuniform grid is possible. For
example, Shao and Sandvik [61] have suggested a nonlinear
grid with monotonically increasing spacing for the δ functions
which are used to parametrize a spectrum that exhibits a
sharp band edge. Since a spectral density can be viewed as a
probability distribution [25] and we notice that the distribution
of the poles looks quite similar to the spectrum. So, it is
natural to adjust the frequency grid dynamically to make sure
that the grid density has an approximate distribution with the
spectral density as obtained in the previous run. We adopt
the following algorithm to manipulate the desirable frequency
grid: (1) Calculate the integrated spectral function φ(ε):

φ(ε) =
∫ ε

ωmin

A(ω)dω, ε ∈ [ωmin, ωmax]. (38)

(2) The new frequency grid fi is evaluated by

fi = φ−1(λi), i = 1, . . . , Nf (39)

where λi is a linear mesh in [φ(ωmin), φ(ωmax)], and Nf de-
notes the number of grid points. Next, we should perform
the analytic continuation simulation again to yield a new
spectrum, then repeat steps (1) and (2). We find that the χ2

drops quickly in the first few iterations, and then approaches
a constant value slowly. The spectrum is refined simultane-
ously. During the iterations, the frequency grid for the poles
is adaptively refreshed via Eqs. (38) and (39), thus we call it
the self-adaptive sampling algorithm. It is actually a different
variation of the constrained sampling algorithm [39]. More
importantly, it is quite effective. According to our experiences,
3 ∼ 5 iterations are enough to obtain a convergent solution. In
practice, we often adopt the spectrum generated by the Max-
Ent method to initialize the frequency grid, and then employ
the SPX method (dubbed SA-SPX) to refine this spectrum
further.

C. Reference implementation

The SPX method, together with the MaxEnt method
[25,26], have been implemented in an open source software
package, namely, ACFLOW [78,79], which is a full-fledged
analytic continuation toolkit. This package supports analytic
continuation for both fermionic and bosonic correlators.

The flowchart of the SPX method is illustrated in Fig. 2.
Next, we would like to explain some essential steps. (1)
Initialize the kernel matrix 	. It is defined in Eqs. (22),
(25), and (29). We should evaluate and save them during the
initialization stage to improve the computational efficiency.
(2) Initialize or reset {Aγ , Pγ }. For each Monte Carlo run,
{Aγ , Pγ } must be reinitialized to avoid getting trapped in local
minima. (3) Calculate χ2 and G(iωn). Here, G(iωn) means
the reproduced Matsubara data. It can be derived by using
the present {Aγ , Pγ } via Eqs. (21), (24), (28), and (31). The
loss function χ2 measures the distance between the input

Matsubara data G(iωn) and the reproduced Matsubara data
G(iωn). It is evaluated by Eq. (34). (4) Try to update Aγ or
Pγ randomly. Four Monte Carlo updates (Move 1 ∼ Move 4)
are introduced to change the randomly chosen Aγ or Pγ . (5)
Accept new Aγ or Pγ . When 
χ2 < 0, the Monte Carlo pro-
posal is always accepted. (6) Accept new Aγ or Pγ probably.
When 
χ2 > 0, it is still possible to accept the Monte Carlo
proposal. The transition probability is determined by Eq. (36).
In a standard simulated annealing algorithm, � should decline
gradually from high temperature to low temperature [80].
However, in the present implementation, we just set � to a
large value (about 106 ∼ 109). We find that such a large �

is essential to enable the Monte Carlo walker to escape the
local minima and visit as many configurations as possible.
(7) Backup χ2 and {Aγ , Pγ }. For each Monte Carlo run, we
always record the best solution, i.e., the smallest χ2 and the
corresponding {Aγ , Pγ }. (8) Enough runs? The Monte Carlo
procedure is repeated many times in order to find out the
“true” global minimum of χ2. (9) Choose the best {Aγ , Pγ }.
Once the outer iteration is finished, we obtain a collection
of χ2 and {Aγ , Pγ }. For the molecule cases, we should pick
up the smallest χ2 and the corresponding {Aγ , Pγ }. However,
for the condensed matter cases, it would be better to select
some “good” solutions and evaluate their averaged value. (10)
Output G(iωn) and GR(ω). Finally, the Matsubara Green’s
function G(iωn) and retarded Green’s function GR(ω) are
calculated via Eq. (20) using the optimized {Aγ , Pγ }.

In the present implementation, several numerical issues
need to be emphasized.

(i) The kernel matrix 	(ωn, ω) should be computed at
advance and kept in memory. This allows us to calculate
the transition probability p and the Green’s function G(iωn)
efficiently. The Matsubara frequencies ωn are taken from the
input data directly. And we have to create a frequency grid on
the real axis for ω (ω ∈ [ωmin, ωmax]). In principle, the poles
are distributed in a continuous frequency space. So in order
to improve the computational accuracy, the number of grid
points (Nf ) should be as large as possible.

(ii) According to Eq. (36), even when χ2(C′) > χ2(C),
the transition from C′ to C is not always rejected. Although
the transition probability p could be quite small, we still have
the chance to accept a less optimal solution than what we
currently have and escape the local minima. This transition
probability is largely controlled by the � parameter, which
behaves as the system’s annealing temperature [75,80]. In ac-
cordance with the spirit of the simulated annealing algorithm,
� should be decreased gradually. However, in the present
implementation, � is fixed and considered as a user-supplied
parameter. According to our experiences, the preferred value
of � is between 106 and 109.

(iii) In the SPX method, the Monte Carlo sampling pro-
cedure should be repeated from scratch many times. In each
run, the χ2 and the corresponding Monte Carlo configuration
C will be tracked. We find that when the final spectral density
exhibits multiple δ-like peaks, it is wise to pick up the “best”
solution whose χ2 is the smallest. However, when the spec-
tral density is expected to be broad and smooth, it is better
to calculate an arithmetic average of some selected “good”
solutions. We just adopted the following strategy to filter the
solutions [46,47]. At first, we try to calculate the median or
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FIG. 2. Workflow of the SPX method as implemented in the ACFLOW code [78,79]. The G(iωn), G(iωn), and GR(ω) mean the input
Matsubara Green’s function, reconstructed Green’s function, and retarded Green’s function, respectively. For bosonic functions, Aγ is replaced
by Ãγ .

mean value of the collected χ2 data, i.e., 〈χ2〉. Then, only the
solutions, whose χ2 are smaller than 〈χ2〉/αgood, are retained.
Here, αgood is an adjustable parameter. Its optimal value is
around 1.0 ∼ 1.2.

(iv) The SPX method has been parallelized to improve
computational efficiency. It is straightforward to launch mul-
tiple Monte Carlo processes simultaneously to accelerate the
calculation.

IV. COMPUTATIONAL SETUP

To benchmark the SPX method, 13 test examples (namely
M01 ∼ M13), including the fermionic correlators, bosonic

correlators, and matrix-valued Green’s functions, are es-
tablished. The spectral functions are representative, as one
would encounter in practice. An overview of these examples
is presented in Table I, and their details will be explic-
itly described in the following sections. All the analytic
continuation calculations were done by using the ACFLOW

toolkit [78,79].
We mainly concentrate on test functions that are known

in the entire complex plane. At first, the test functions are
evaluated at the Matsubara frequency axis. Since the realistic
Matsubara data from finite-temperature quantum Monte Carlo
simulations are usually noisy [7–9], multiplicative Gaussian
noise will be manually added to the clean Matsubara data to
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TABLE I. Overview of the test cases. The matrix-valued correlators are fermionic. Note that only the M04, M05, and M09 cases are taken
from realistic quantum many-body simulations. The other cases are designed to represent typical spectra one would encounter in practice.

System Model Features Sections

M01: Gaussian model Multiple broad peaks + sharp quasiparticle peak V A and VIII A
M02: Pole model Multiple off-centered δ peaks V B and VIII A

Fermionic M03: Resonance model Sharp band edges + big gap + wide platform V C
correlators M04: Matsubara Green’s function Sharp quasiparticle peak + lower and upper Hubbard bands V D

M05: Matsubara self-energy function V E

M06: Gaussian model Two broad peaks VI A
M07: Pole model Two off-centered δ peaks VI B

Bosonic M08: Resonance model Sharp band edge + wide platform VI C
correlators M09: Spin-spin correlation function Sharp band edges + quasilinear behavior VI D

M10: Current-current correlation function Narrow Drude peak + broad interband transition peak VI E and VIII B
M11: Lindhard function VI F

Matrix-valued M12: Gaussian model Multiple broad peaks VII A
correlators M13: Pole model Multiple off-centered δ peaks VII B

mimic this situation. We adopted the following formula [66]:

Gnoisy = Gexact[1 + δNC (0, 1)], (40)

where NC (0, 1) is the complex-valued normal Gaussian noise,
and δ denotes the noise level of the data. Except stated ex-
plicitly, δ = 10−4, the size of input data is Nω = 10, and the
standard deviations of these data are fixed to 10−4.

Then the Matsubara data are analytically continued to the
real axis and compared with the exact solutions. The size of
the real-frequency grid for computing 	 is fixed to Nf = 105.
If the spectral density manifests broad and smooth peaks, the
number of poles is 2000, � = 108, η = 10−3, the number of
individual Monte Carlo runs is 2000 and each run contains
2×105 Monte Carlo sampling steps. If the spectral density
exhibits multiple δ-like peaks, the number of poles is consid-
ered as a priori knowledge, � = 106, η = 10−2, the number
of individual Monte Carlo runs is 1000 and each one contains
4×104×number of poles Monte Carlo sampling steps.

The traditional MaxEnt method is also employed [25,26]
so as to crosscheck the analytic continuation results. The
“χ2kink” algorithm [29] is used to search the optimal regula-
tion parameter α. The maximum value of α is 109 ∼ 1015, and
the number of α parameters are 12 ∼ 20. The default model
is flat. The kernel functions are evaluated by Eqs. (10), (14),
and (18).

V. APPLICATIONS: FERMIONIC CORRELATORS

In this section, the SPX method is employed to extract
spectral functions from various fermionic correlators.

A. Gaussian model

We at first benchmark the SPX method on the condensed
matter cases, in which the spectral functions are usually broad
and smooth. The spectral functions are assumed to be the
superposition of a few Gaussian peaks:

A(ω) =
Ng∑

i=1

wi exp

[−(ω − εi )2

2�2
i

]
, (41)

where Ng is the number of Gaussian peaks, and wi, εi, and
�i denote the weight, position, and broadening of the ith
Gaussian peak, respectively. The spectral functions are then
back continued to the Matsubara frequency axis by using
Eq. (8) with β = 10.0. The Matsubara data, supplemented
with random noises, are used as inputs for the SPX method.

Figure 3 shows the analytic continuation results by the
SPX method for three typical scenarios: (i) two broad
Gaussian peaks separated by a sizable gap (
gap ≈ 2.0, Ng =
2, w1 = w2 = 0.5, ε1 = −ε2 = 2.5, �1 = �2 = 0.5), (ii) two
Gaussian peaks with a “pseudogap” (Ng = 2, w1 = 1.0, w2 =
0.3, ε1 = 0.5, ε2 = −2.5, �1 = 0.2, �2 = 0.8), and (iii) two
Gaussian peaks plus a sharp quasiparticle resonance peak
(Ng = 3, w1 = 1.0, w2 = 0.3, w3 = 0.4, ε1 = 0.0, ε2 = −2.5,
ε3 = 1.5, �1 = 0.02, �2 = 0.8, �3 = 0.5). As is evident in
Figs. 3(a)–3(c), the major features of the synthetic spectral
functions, including the energy gap, positions, and weights of
the peaks, are well recovered by the SPX method. The only
exception is that the full width at half-maximum and height
of the quasiparticle resonance peak for scenario (iii) [see
Fig. 3(c)] are somewhat overestimated. The MaxEnt method
[25,26] leads to slightly better results for scenarios (i) and (ii).
But it is also unable to recover the sharp quasiparticle reso-
nance peak for scenario (iii). Figures 3(d)–3(f) illustrate the
distributions of poles for the three scenarios. Not surprisingly,
they manifest approximate characteristics to the correspond-
ingly spectral functions. Overall, for the condensed matter
cases, the performance of the SPX method is comparable with
the other fitting-based analytic continuation methods.

B. Pole model

Now let us turn to the molecule cases, in which the spec-
tral functions usually exhibit multiple discrete δ-like peaks
[53,69]. To construct the Matsubara data, Eq. (21) is utilized
(β = 20.0). Random noises are added to the synthetic Mat-
subara data as described above.

Three typical scenarios are prepared to examine the SPX
method: (i) an off-center δ-like peak (Np = 1, A1 = 1.0, P1 =
1.0), (ii) four low-frequency δ-like peaks with equal ampli-
tudes (Np = 4, A1 = A2 = A3 = A4 = 0.25, P1 = −P2 = 4.0,
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FIG. 3. Analytic continuations of fermionic correlators (M01: Gaussian model). (a)–(c) Exact and calculated spectral functions. The vertical
dashed lines denote the Fermi level. (d)–(f) Typical distributions of poles that correspond to the “best” solutions. The amplitudes of poles
presented in the lower panels have been rescaled for a better view.

P3 = −P4 = 1.0), and (iii) eight δ-like peaks distributed over
a wide frequency range (Np = 8, A1 = A2 = A3 = A4 = A5 =
A6 = A7 = A8 = 0.125, P1 = 8.0, P2 = 4.0, P3 = −P5 = 0.5,
P4 = 0.0, P6 = −1.0, P7 = −5.0, P8 = −9.0). In the calcula-
tions, the number of poles is considered as a priori knowledge.
Aside from Eq. (23), there are no additional limitations for the
amplitudes and locations of the poles. Especially, to obtain
reasonable solutions for scenarios (ii) and (iii), the num-
bers of individual Monte Carlo runs are increased to 2×105.
Figure 4 shows the analytic continuation results. Clearly, both
the amplitudes and locations of the peaks (poles) are resolved
accurately by the SPX method. Not only the low-frequency
multiplets but also the high-frequency sharp peaks are well

reproduced. For the three scenarios, the traditional analytic
continuation methods, such as MaxEnt [25,26], fail to dis-
tinguish the multiple peaks. They can only give rise to an
envelope curve for the δ-like peaks.

Although the three pole models are well solved by the SPX
method, quite a lot of computational resources are consumed,
especially for scenarios (ii) and (iii). Just as mentioned before,
extra constraints could be imposed within the parametrization
of the poles, which is a widely used trick for the SAC method
and its variants [37–44,61–63]. Such constraints, which rep-
resent some kind of innate knowledge [e.g., existence of
the sharp band edge, and properties of the poles (includ-
ing number, amplitudes, and approximate locations)], could

(a)

(f)(e)(d)

(c)(b)

FIG. 4. Analytic continuations of fermionic correlators (M02: pole model). (a)–(c) Exact and calculated spectral functions. The vertical
dashed lines denote the Fermi level. (d)–(f) Distributions of poles for the “best” solutions. The horizontal dashed lines denote the exact values
of amplitudes of the poles.
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FIG. 5. Test of the C-SPX method (M02: pole model). A four-pole model is considered. In the C-SPX calculation, the locations of the four
poles are restricted in a narrow region, while their amplitudes are free of limitations. The number of individual Monte Carlo runs is 1000.
(a) Distribution of the poles. Here the horizontal dashed line means the exact amplitudes of the poles, while the vertical dashed lines denote
the exact locations of the poles. (b) Goodness-of-fit function χ2 for repeated Monte Carlo runs.

significantly improve fidelity of the calculated spectrum and
computational efficiency of the SPX method.

The C-SPX method is at first examined by using the four-
pole model [i.e., scenario (ii)]. Because the analytic continua-
tion calculation without extra constraints has been done before
(see Fig. 4), we try to limit the locations of the poles with Pγ ∈
[−4.5,−3.5]

⋃
[−1.5,−0.5]

⋃
[0.5, 1.5]

⋃
[3.5, 4.5] and re-

run the calculations. (We will discuss the tricks about how
to speculate the restricted zones for the poles in Sec. VI.)
The number of individual Monte Carlo is reduced to 1000.
The calculated results are displayed in Fig. 5. Figure 5(a)
shows the distribution of the poles. The horizontal and vertical
dashed lines denote the exact amplitudes and locations of the
poles, respectively. Figure 5(b) shows the collected χ2 for
individual Monte Carlo runs. We find that once the constraints
are imposed, the computational accuracy of not only the loca-
tions but also the amplitudes of the poles is greatly improved,
and it becomes easier to figure out the global minimization.

And then the eight-pole model [i.e., scenario (iii)] is used
to test the C-SPX method. The amplitudes of the eight poles
are the same, but they reside in a wide frequency range. It
is rather difficult to get the correct solution by using the
traditional analytic continuation methods. As for the SPX
method, it is tough to arrive at the global minimum unless
the number of individual Monte Carlo runs is increased up
to 106, which is very time consuming. However, if we as-
sume that the amplitudes of the poles are known and try to
optimize their locations by the C-SPX method, it is easy to
reproduce the correct spectrum. Now the number of individual
Monte Carlo runs can be reduced to 1000. Figure 6 shows
the benchmark results. For the SPX method, though the peaks
at the low-frequency region are roughly resolved, it fails to
reproduce the high-frequency peaks. However, by using the
C-SPX method, both the high- and low-frequency peaks are
accurately resolved. Furthermore, we find that the values of
the goodness-of-fit function χ2 are more scattered when the
SPX method is used [see Fig. 6(b)]. It implies that the SPX
method is easier trapped by the local minima than the C-SPX
method.

C. Resonance model

The third example concerns the analytic continuation of
Matsubara Green’s function of a BCS superconductor [37].
Its spectral function reads as

A(ω) =
{

1
W

|ω|√
ω2−
2 , if 
 < |ω| < W/2

0, otherwise.
(42)

Here, W denotes the bandwidth (W = 6.0), and 
 is used to
control the gap’s size (
 = 0.5). This spectrum is comprised
of flat shoulders, steep peaks, and sharp gap edges. These un-
usual features pose severe challenges to the existing analytic
continuation methods. Figures 7(a) and 7(b) show the analytic
continuation results obtained by the SPX method without any
constraints. Clearly, the calculated spectrum exhibits extra
shoulder peaks around ±2.0 and long tails for |ω| > 3. The
energy gap and the sharp band edges are not well captured.
Then constraints are applied to the locations of the poles.
They are allowed to appear in a restricted frequency range
([−3.0, 0.5]

⋃
[0.5, 3.0]). The calculated results are shown in

Figs. 7(c) and 7(d). It is clear that the major characteristics of
the exact spectrum are well reproduced by the C-SPX method.
The excrescent peaks around ±2.0 are mostly suppressed,
leaving small ripples.

D. Matsubara Green’s function

In this subsection, let us concentrate on a realistic case,
Matsubara Green’s function from quantum many-body simu-
lation. We just consider the following single-band half-filling
Hubbard model:

H = −t
∑
〈i j〉, σ

c†
iσ c jσ − μ

∑
i

ni + U
∑

i

ni↑ni↓, (43)

where t is the hopping parameter (t = 0.5), μ is the chemical
potential (μ = 1.0), U is the Coulomb interaction (U = 2.0),
n is the occupation number (n = 1.0), σ denotes the spin, i and
j are site indices. The inverse system temperature is β = 10.0.
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FIG. 6. Test of the C-SPX method (M02: pole model). An eight-pole model is considered. In the C-SPX calculation, the amplitudes of the
eight poles are fixed to 0.125, while the locations are optimized. The number of individual Monte Carlo runs is 1000. (a) Calculated and exact
spectral functions. (b) Goodness-of-fit function χ2 for repeated Monte Carlo runs.

This model is defined in a Bethe lattice. It was solved by the
single-site dynamical mean-field theory (dubbed DMFT) [81]
in combination with the hybridization expansion continuous-
time quantum Monte Carlo impurity solver (dubbed CT-HYB)
[7]. All the calculations were done by using the IQIST software
package [82,83]. The major outputs of the DMFT + CT-HYB
calculations are the Green’s function and the self-energy func-
tion at the imaginary axis. In this example, the Matsubara
Green’s function is analytically continued to extract the spec-
tral function by the MaxEnt method and the SPX method.

The Matsubara self-energy function will be treated in the next
subsection.

The analytic continuation results are shown in Fig. 8. Since
the Coulomb interaction is comparable with the bandwidth
(W = 4t = 2.0), the ground state of this model should be
metallic, but close to the Mott metal-insulator transition [84].
Thus, it is not strange that the spectral function exhibits a
three-peak structure (i.e., the quasiparticle resonance peak in
the vicinity of the Fermi level + lower and upper Hubbard
bands), which is a hallmark of the strongly correlated metallic

FIG. 7. Analytic continuations of fermionic correlators (M03: resonance model). The exact and calculated spectral functions are shown in
the first row, while the corresponding distributions of poles are shown in the second row. (a), (c) Results obtained by the SPX method. (b),
(d) Results obtained by the C-SPX method. In the C-SPX calculations, the locations of the poles are limited in [−3.0, 0.5]

⋃
[0.5, 3.0].
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(a) (b) (c)

FIG. 8. Analytic continuations of fermionic correlators (M04: Matsubara Green’s function). (a) Calculated spectral functions. (b), (c) Dis-
tances between the reproduced Green’s function G(iωn) and the raw Green’s function G(iωn). In (b) and (c), all the data are scaled by a factor
of 103 for a better view. The error bars of G(iωn) are also shown.

systems [81]. We can observe that the spectral functions given
by the MaxEnt method and the SPX method [see Fig. 8(a)]
match with each other, so the results should be reliable.
Figures 8(b) and 8(c) show the real and imaginary parts of the
reproduced Green’s functions, which are compared with the
input data. Apparently, the original Matsubara data are well
reproduced, which implies the derived pole expansion formula
[see Eq. (21)] is reasonable.

E. Matsubara self-energy function

Aside from one-particle Green’s functions, it often is nec-
essary to analytically continue the self-energy functions after
the DMFT simulations [81]. Now we would like to demon-
strate how to convert the self-energy function from Matsubara
to real frequencies by using the SPX method. The high-
frequency asymptotic behaviors of self-energy are different
from those of one-particle Green’s function. When approach-
ing the high-frequency limit, the real part is a nonzero
constant, and the imaginary part decays like �1/(iωn) where
�1 is the first moment of the self-energy [85]. So the input
data of self-energy should be preprocessed. The original data
are taken from the DMFT solution of Eq. (43). At first, the
Hartree term �H is subtracted from �(iωn):

�̃(iωn) = �(iωn) − �H . (44)

Note that �H is approximately equal to the asymptotic value
of the real part of �(iωn) when n goes to infinite. It is also the
zeroth moment of the self-energy. Sometimes �̃(iωn) could
be further normalized by division through its first moment �1

[30,85],

�̃(iωn) = �(iωn) − �H

�1
, (45)

but it is not necessary. Then, we perform analytic continuation
by using the SPX method as usual and take �̃(iωn) as the input
data. The analytic continuation procedure will convert �̃(iωn)
into �̃(ω). Finally, �̃(ω) is supplemented with the Hartree
term �H to get �(ω):

�(ω) = �̃(ω) + �H . (46)

The benchmark results are illustrated in Fig. 9. The results
obtained by the MaxEnt method [25,26] are also displayed
as a comparison. When ω > 0, the results obtained by both

methods are consistent with each other. If ω < 0, the results
obtained by the SPX method exhibit an additional peak near
ω = −2.0 [see Figs. 9(a) and 9(b)]. On the contrary, the
MaxEnt method only yields a smooth spectrum. Anyway, the
reproduced Matsubara data generated by both methods are
quite close to the original Matsubara data [see Figs. 9(c) and
9(d)].

VI. APPLICATIONS: BOSONIC CORRELATORS

In this section, we are going to test whether the SPX
method supports analytic continuations of bosonic correla-
tors. Traditionally, the analytic continuations of single-particle
Green’s functions have attracted the most attention [25].
This is because the obtained single-particle spectral functions
can be easily observed by photoemission spectroscopy. Over
the last 10 years, advances in quantum many-body theories
have made it possible to study strongly correlated electron
systems beyond the single-particle level [86–89]. The two-
particle quantities have become more and more important
since they are the key building blocks in these newly estab-
lished many-body computational methods [90–92]. Similar to
the single-particle Green’s functions, the two-particle quan-
tities can not be compared directly with the experiments.
We have to find a reliable method for the analytic contin-
uations of two-particle functions and get the corresponding
dynamical susceptibilities, which can be indeed measured
by experiments. Since the two-particle quantities are usually
formulated on the bosonic Matsubara frequencies [93–95],
the analytic continuation methods for fermionic correlators
should be modified to meet this requirement. This is not al-
ways a trivial task [96]. In this section, we demonstrate that
the SPX method can, with the appropriate kernels, symmetry
relations, and constraints, also be used for bosonic functions.
Six examples are presented here. The benchmark results indi-
cate that the SPX method is able to treat not only synthetic but
also realistic two-particle correlation functions.

A. Gaussian model

The first example we address here is a Gaussian model. The
analytic structure of the exact spectral function is

A(ω)

ω
= α1 exp

[
− (ω − ε1)2

2γ 2
1

]
+ α2 exp

[
− (ω − ε2)2

2γ 2
2

]
,

(47)
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(a) (b)

(c) (d)

FIG. 9. Analytic continuations of fermionic correlators (M05: Matsubara self-energy function). (a), (b) Self-energy function at real axis,
�(ω). (c), (d) Distances between the reproduced self-energy function �(iωn) and the raw self-energy function S(iωn). In (c) and (d), all the
data are scaled by a factor of 102 for a better view. The error bars of S(iωn) are also shown.

where α1 = α2 = 0.5, γ1 = γ2 = 0.5, ε1 = −ε2 = 2.5.
Clearly, A(ω) is an odd function. It exhibits two distinct
peaks at energies ε1 and ε2. And the two Gaussian peaks are
antisymmetric about ω = 0.0. There is a huge gap between
the two peaks (
gap ≈ 3.0). The Matsubara data are generated
by using Eqs. (12) and (14). The inverse system temperature
β is 10.0.

In Fig. 10(a), the exact spectrum is drawn and compared to
the calculated spectra as obtained by the SPX and MaxEnt
methods. Both methods could capture the major character-
istics, including the two-peak structure and the big gap, of
the spectrum. The lower panel of Fig. 10 shows a typical
distribution of the poles. The overall profile of this distribution
is also Gaussian type. There are a small fraction of poles in the
band-gap region, but their contributions are trivial.

B. Pole model

For the second example, we consider a four-pole model. Its
analytic form is as follows:

G(z) =
4∑

i=1

αi

z − εi
, (48)

where α1 = α3 = 0.5, α2 = α4 = −0.5, ε1 = −ε2 = 4.0, and
ε3 = −ε4 = 1.0. The exact spectrum exhibits four off-
centered δ-like peaks at ε1, ε2, ε3, and ε4. These peaks are
also antisymmetric with respect to ω = 0.0. Note that sim-
ilar spectra are usually seen in molecule systems (such as
the Hubbard dimer) and the momentum-resolved Kohn-Sham
eigenvalues (i.e., the “band structure”) of condensed matter
systems [51,66]. We just use this equation or Eq. (24) to
generate the Matsubara data. The inverse system temperature
β is 20.0.

In this example, we respect the symmetries of the Green’s
function and spectral function. In other words, G(z) is treated
as a bosonic correlator of a Hermitian operator, and the cor-
responding spectrum can be defined in the positive half-axis
only. The exact and calculated spectral functions are shown
in Fig. 11(a). As for the MaxEnt method, it resolves the
low-frequency peak at ω = 1.0 quite well. However, it fails
to resolve the high-frequency peak at ω = 4.0. The resulting
high-frequency peak is much broader and smoother than the
exact one. On the other hand, the SPX method does an ex-
cellent job. Not only the positions but also the heights of the
two δ-like peaks are precisely reproduced. In Fig. 11(b) the
poles belonged to the “best” solution are visualized. Clearly,
the weights and locations of the poles agree quite well with
the exact values.
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FIG. 10. Analytic continuations of bosonic correlators (M06:
Gaussian model). (a) Exact and calculated spectral functions. The
vertical dashed line denotes the Fermi level. (b) Distribution of poles
for a “good” solution as gathered in the SPX simulation. Notice that
the weights of these poles are rescaled for a better view.

C. Resonance model

For the third example, we consider a resonance model. Its
spectral function is defined as follows:

A(ω) =
{ 1

W
ω√

ω2−
2 , if 
 < ω < W/2
0, otherwise.

(49)

It is obviously a variant of Eq. (42). The W and 
 parameters
are the same with those used in M03 (see Sec. V C). This
spectrum has finite weights only at the positive half-axis. It
should exhibit a sharp resonance peak at ω = 
 and a broad
platform [see Fig. 12(a)]. We try to generate the bosonic
Green’s function via Eqs. (16) and (18). The inverse system
temperature is β = 10.0.

As usual, both the MaxEnt and SPX methods are employed
to solve the analytic continuation problem. The results are
visualized in Fig. 12(a). We observe that the simulated spectra
exhibit two broad humps at ω ≈ 0.8 and 2.1, respectively.
However, none of the important features of the ideal spectrum
are captured. Therefore, we resort to the C-SPX method again.
Since there are two band edges in the true spectrum, we
introduce two cutoff parameters, namely, �l and �r , where
ωmin < �l < �r < ωmax. Here, the superscripts “l” and “r”
mean the left and right band edges, respectively. Thus, the for-
bidden region for the poles becomes [ωmin,�

l ]
⋃

[�r, ωmax].
Next, we try to calibrate the two parameters and evaluate
the corresponding χ2(�l ) and χ2(�r ). The calculated results

(a)

(b)

FIG. 11. Analytic continuations of bosonic correlators (M07:
pole model). Only the spectra in the positive half-axis are shown.
(a) Exact and calculated spectral functions. (b) Distribution of poles
for the “best” solution as collected in the SPX simulation. The
horizontal dashed lines mark the exact amplitudes of the poles.

are presented in Fig. 12(b). We find that neither χ2(�l ) nor
χ2(�r ) is monotonic function. They both exhibit minima:

�l
c = arg min

�l

χ2(�l ), (50)

�r
c = arg min

�r
χ2(�r ). (51)

We can conclude that �l
c = 0.5 and �r

c = 3.0. They are the
optimal cutoff parameters. Such that the restrictions are fixed.
We conduct the analytic continuation simulation with the SPX
method again. The simulated spectrum is shown in Fig. 12(a)
as well. It is apparent that the C-SPX method outperforms the
SPX method and the MaxEnt method in this example. Both
the sharp resonance peak at ω = 0.5 and the broad platform at
1.0 < ω < 3.0 are well reproduced. The only deviation is the
small ripples in the platform region as seen in the simulated
spectrum. But these ripples can be further suppressed by using
more poles and collecting more “good” solutions.

D. Spin-spin correlation function

For the fourth example, we consider a spin model in the
XY chain. Its Hamiltonian reads as

H = Jxy

∑
〈i j〉

(
Si

xS j
x + Si

yS j
y

)
, (52)
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(a)

(b)

FIG. 12. Analytic continuations of bosonic correlators (M08:
resonance model). (a) Exact and calculated spectral functions.
(b) Goodness-of-fit function χ 2 with respect to two artificial cut-
off parameters �l and �r , which are used to restrict the possible
locations of the poles. Here, the two vertical bars denote the optimal
cutoffs �l

c and �r
c, which are approximately 0.5 and 3.0, respectively.

where Sα = σα

2 are the spin- 1
2 operators (α = x, y, z), 〈i j〉

denotes the nearest neighbors, and Jxy = 1. This model can
be exactly solved by the Jordan-Wigner transformation. The
energy spectrum is given by

εk = Jxy cos(ka), (53)

where a is the lattice spacing. The local spin-spin correlation
function χzz(τ ) = 〈Sz(τ )Sz(0)〉 is basically a density-density
correlator in the sense of spinless fermions. Its exact expres-
sion reads as [97]

χzz(τ ) =
∫ π

−π

dk dk′

(2π )2

eτεk e(β−τ )εk′

(1 + eβεk )(1 + eβεk′ )
. (54)

Therefore, the corresponding spectral function is

A(ω) =
∫ π

−π

dk dk′

2π

(1 − e−βω )eβεk′

(1 + eβεk )(1 + eβεk′ )
δ(ω − εk′ + εk ).

(55)

It is obvious that there are thresholds at ω = ±2Jxy because
max |εk − εk′ | is 2|Jxy|.

The input Matsubara data χzz(iωn) used in the SPX method
are generated by the continuous matrix product operator
(dubbed cMPO) method [98]. Within this approach, the par-
tition function Z at finite temperature is formulated as a
space-time tensor network living on an infinite cylinder with
circumference β = 1/T . This tensor network is contracted by
a boundary continuous matrix product state (dubbed cMPS)
with bond dimension d through a process of minimizing free
energy. With these in hand, one can get direct access to the
local two-time correlator χzz(τ ) as well as χzz(iωn) in the
thermodynamic limit without error bar and time discretization
error:

(56)

and

χzz(iωn) = 1

Z

∑
nm

|〈n|Sz|m〉|2 e−βEn − e−βEm

iωn − Em + En
, (57)

where K is a matrix obtained by contracting the Hamilto-
nian cMPO and local boundary cMPS, and En and |n〉 are the
nth eigenvalue and eigenvector of K , respectively. In the
present case, we set β = 20.0 and d = 16.

Figure 13 shows analytic continuation results of the spin-
spin correlation function. The exact spectrum is generated by
using Eq. (55). As is seen in the upper panel of Fig. 13, the
MaxEnt method yields a wrong spectrum with strong oscilla-
tions. Although these oscillations will be gradually suppressed
with increasing temperature, the MaxEnt method has trouble
in reproducing the sharp band edges at |ω| ≈ 2.0 and the gen-
tle slopes at 1.0 < |ω| < 2.0 and |ω| < 1.0. By using the SPX
method, the calculated spectrum resembles the exact one as a
whole. Especially, the oscillations are absent and the quasilin-
ear behavior near the Fermi level is well reproduced. However,
the calculated spectrum manifests two Gaussian-type peaks
around ω ≈ ±1.6, instead of gentle slopes. Furthermore, there
are nontrivial weights in the high-frequency region (|ω| >

2.0).
In order to remedy the above deviations, we have recourse

to the C-SPX method again. In this method, the locations of
the poles could be restricted. To be more specific, we intro-
duce a user-supplied cutoff parameter �, which is between
ωmin and ωmax. The forbidden region for the poles is set to
[ωmin,�]

⋃
[�,ωmax]. Thus, the remaining problem is about

how to figure out the optimal �. We just carry out a series
of standard SPX calculations with different � and record
the corresponding χ2. Note that the χ2(�) function is not
monotonic. The optimal � should be �c = arg min� χ2(�).
In the lower panel of Fig. 13, χ2(�) is shown. This plot can
be split into two parts: (i) � < 2.0. χ2 drops quickly as �

increases. (ii) � > 2.0. χ2 at first increases quickly, and then
it approaches its asymptotic value step by step. It is apparent
that the �c is about 2.0, as indicated by a vertical bar. Now
the constraint is fixed. The spectrum obtained by the C-SPX
method is shown in Fig. 13(a) for a comparison. It agrees well
with the exact spectrum. Not only the two thresholds but also
the gentle slopes are reproduced perfectly.
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(a)

(b)

FIG. 13. Analytic continuations of bosonic correlators (M09:
spin-spin correlation function). (a) Exact and calculated spectral
functions. (b) Goodness-of-fit function χ 2 with respect to the cutoff
parameter �, which is used to limit the left and right thresholds of
the spectral function. Here, the vertical bar denotes the optimal cutoff
�c, which is approximately 2.0.

E. Current-current correlation function

In the fifth example, we would like to show how to extract
optical conductivity σ (ω) from current-current correlation
function �(iωn) by using the SPX method. In imaginary-time
axis, the current-current correlation function �(τ ) reads as

�(τ ) = 1

3N
〈j(τ ) · j(0)〉, (58)

where N is the number of sites, j is the current operator,
and 〈. . . 〉 means the thermodynamic average [25]. �(τ ) is
a bosonic function. Its spectrum, the frequency-dependent
optical conductivity σ (ω), is an even function, i.e., σ (ω) =
σ (−ω). �(τ ) is related to σ (ω) via the following equation:

�(τ ) =
∫ +∞

0
dω K (τ, ω)σ (ω). (59)

Here, the kernel K (τ, ω) is already defined by Eq. (17). Since
the SPX method needs Matsubara data as input. We should
convert �(τ ) to �(iωn) via Fourier transformation. The

FIG. 14. Analytic continuations of bosonic correlators (M10:
current-current correlation function). Here, the impact of the size of
input data (Nω) is studied. The χ 2 as a function of Nω is shown in the
inset.

relation between �(iωn) and σ (ω) reads as

�(iωn) =
∫ +∞

0
dω K (ωn, ω)σ (ω). (60)

The kernel K (ωn, ω) is evaluated by using Eq. (18). In this
example, the analytic expression of σ (ω) is assumed to be

σ (ω) = T1(ω) + T2(ω) + T3(ω)

1 + (ω/γ3)6
(61)

and

T1(ω) = α1

1 + (ω/γ1)2
,

T2(ω) = α2

1 + [(ω − ε)/γ2]2
,

T3(ω) = α2

1 + [(ω + ε)/γ2]2
, (62)

where α1 = 0.3, α2 = 0.2, γ1 = 0.3, γ2 = 1.2, γ3 = 4.0, and
ε = 3.0. This model is borrowed from Ref. [22]. It manifests
two peaks in the positive half-axis. The narrow one at ω = 0.0
is called the Drude peak, which signals a metallic state. An-
other broad hump is at approximately ω = ε, which is usually
from the contributions of interband transitions [99]. Then the
Matsubara data of �(iω) is generated by Eqs. (60) and (18).
The inverse system temperature β is 20.0.

Figure 14 shows analytic continuation results by using the
SPX method and the MaxEnt method. At first, the Drude peak
is very well described. Second, another peak ascribed to the
effect of interband transitions is formed but at a slightly small
energy. This is not surprising. In the current SPX simulations,
only 10 data points are read as input. The maximum Matsub-
ara frequency is around 2.80, which is smaller than the energy
scale of the peak on the real axis (ω ≈ 3.0). It is expected
that the peak should be described poorly. If more data points
are included and more information is added, the theoretical
spectrum should be improved. Similar trends have been ob-
served in the previous studies [22,96]. Third, the spectrum by
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(d) (e)

(a) (b) (c)

(f)

FIG. 15. Analytic continuations of Lindhard functions of a 2d doped Hubbard model (M11). (a)–(c) Momentum-resolved spectral functions
A(k, ω). (a) Shows the exact spectrum, while the spectra shown in (b) and (c) are obtained by the SPX method and the MaxEnt method,
respectively. (d)–(f) Spectra at some selected high-symmetry points k in the Brillouin zone. Here k = (π/2, 0), X (π, 0), and M (π, π ).

the SPX method exhibits a shoulder peak in the vicinity of
ω = 0.5. The origin of this additional peak remains unknown.
To examine the size effect of the input data set, we enlarge
the number of input data points up to 40 and perform the
calculations again. We find that the interband transition peak
is improved, and the shoulder peak is suppressed, but the gain
and loss in the goodness-of-fit function are ambiguous.

F. Lindhard function

The Lindhard function represents the basic building block
of many-body physics. It describes the charge response of
electrons to an external perturbation [1,2]. In this example,
we will try to address the analytic continuation problem of the
Lindhard function. The analytic expression of the Lindhard
function is as follows:

χ (iωn, q) =
∑

p

nF (εp) − nF (εp+q)

iωn + εp − εp+q
, (63)

where p and q are the wave vectors, nF (ε) means the Fermi-
Dirac distribution,

nF (ε) = 1

eβ(ε−μ) + 1
, (64)

and εp denotes the band dispersion. Since we consider a
doped tight-binding model on a square lattice with the nearest-
neighbor hopping,

εp = −2t[cos (px ) + cos (py)]. (65)

Here, t is the hopping parameter (t = 0.25). The chemical
potential μ is set to −0.5, and the inverse temperature is set to
50.0. Note that this model is the same with the one as used in
Ref. [96]. The momentum-resolved spectral functions should

be evaluated by −Im χR(ω, q)/π , where

χR(ω, q) =
∑

p

nF (εp) − nF (εp+q)

ω + iη + εp − εp+q
. (66)

We at first try to calculate χ (iωn, q) along the selected high-
symmetry directions (� − X − M − �) in the first Brillouin
zone via Eq. (63). Next, the Matsubara data are analytically
continued to obtain χR(ω, q). The theoretical χR(ω, q) is then
compared to the exact one as evaluated by Eq. (66).

The upper panels of Fig. 15 illustrate the momentum-
resolve spectral functions. Figure 15(a) exhibits the exact
spectrum, while the analytic continuation results obtained by
the SPX method and MaxEnt method are shown in Figs. 15(b)
and 15(c), respectively. Near the � point, the exact spectrum
manifests a single low-energy mode, which consists of low-
energy excitations close to the Fermi surface. It is called the
zero-sound mode. Along � → X or � → M, the zero-sound
mode will be broadened by Landau damping. We can see
that both the SPX method and the MaxEnt method correctly
capture the zero-sound mode and its broadening trend. Let us
look at the (π/2, 0) point, which is indeed the midpoint of
� − X . As is evident in Fig. 15(d), the simulated spectra are
well consistent with the exact one. When going from X to M,
the exact spectrum acquires a simple structure. But it seems
that both methods perform poorly here. For example, the
exact spectrum for the X point forms an asymmetric peak at
approximately ω = 1.0. However, the peak’s center is shifted
to ω = 0.8 and the low-energy shoulder peak becomes more
remarkable in the simulated spectra [see Fig. 15(e)]. As for the
M point, the exact spectrum consists of a relatively flat bump
structure between ω = 1.0 and 2.0. However, the simulated
spectra consist of a spurious peak around ω = 1.3 ∼ 1.4 [see
Fig. 15(f)]. In the previous study, Schött et al. investigated the
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same model by using various analytic continuation methods
[96]. They found that the MaxEnt, Padé, NNT, and NNLS
methods favor sharp peaks, instead of a broad flat feature
for the M point under intermediate noise (δ = 10−4). Only
for very low noise (δ = 10−10), the flat bump structure can
be recovered by these methods. Overall, the SOM method
performs the best across various noise levels. But there are
still small wiggles in the simulated spectrum.

VII. APPLICATIONS: MATRIX-VALUED
GREEN’S FUNCTIONS

In Secs. V and VI, we just examine the SPX method
for analytical continuations of various fermionic and bosonic
systems. Heretofore the correlation functions we treated are
assumed from single-band models or diagonal components
of matrix-valued Green’s functions of multiorbital models.
However, quantum many-body computations do also pro-
vide off-diagonal Green’s functions, such as in the DFT +
DMFT context relevant for electronic structure calculations of
strongly correlated materials [100]. So, a question naturally
arises. How about the SPX method for the matrix-valued
Green’s functions, especially for the off-diagonal compo-
nents?

Since the spectral functions for the off-diagonal Green’s
functions might be negative and can not be interpreted as a
probability distribution, the traditional MaxEnt method fails
[25]. In the last decade, many efforts have been devoted to
remedying this problem and improving the MaxEnt method.
One possible way to overcome this limitation is to figure out
an optimal basis in which the off-diagonal elements are elim-
inated [101]. Only the diagonal elements are treated. Another
way is to construct some auxiliary Green’s functions with
positive-definite properties. Based on the analytic continua-
tions of these auxiliary functions, the spectral functions of
the off-diagonal components are derived. This is the so-called
MaxEntAux method [31,32,102,103]. Recently, a notable idea
has been proposed by Kraberger et al. [30,85] They decom-
posed the spectral functions A into A+ − A− and generalized
the Shannon-Jaynes entropy S[A] to the positive-negative en-
tropy S[A+, A−], such that the positive-definite condition is
satisfied and the traditional MaxEnt method works. Simi-
larly, Sim and Han tried to extend the MaxEnt method by
introducing the quantum relative entropy [35]. Their method
is formulated in terms of matrix-valued function, and the
Bayesian probabilistic interpretation is maintained just as the
conventional MaxEnt method [25]. In addition, Fei and Gull
also extended their NAC method to support analytic contin-
uations of matrix-valued Green’s functions [51,53]. Anyway,
reliable methods for performing the analytic continuation of
the whole Green’s function matrix are highly desirable. In this
section, we would like to benchmark the SPX method for two
kinds of matrix-valued Green’s functions.

A. Gaussian model

As the first example, we apply the SPX method to a simple
two-band model. We adopt the procedure as described in
Ref. [35] to construct the matrix-valued Green’s function. At
first, two spectral functions A11(ω) and A22(ω) are generated

by using the Gaussian model [see Eq. (41)]. The parameters
are as follows: Ng,11 = Ng,22 = 1, ε11 = −ε22 = 2.0, w11 =
w22 = 1.0, �11 = �22 = 0.5. Next, the two spectral functions
form a 2×2 diagonal matrix, i.e., A12(ω) = A21(ω) = 0.0.
This matrix is rotated by a rotation matrix R:

R =
[

cos θ sin θ

− sin θ cos θ

]
, (67)

where θ = 0.1 denotes the rotation angle. Clearly, for θ =
0.0, the off-diagonal elements of the matrix-valued spectral
functions are all zero. Third, the Matsubara Green’s function
is constructed via Eq. (8). We choose the fermionic kernel
[see Eq. (10)]. And random Gaussian noises are added to the
Matsubara data to mimic a realistic QMC situation. Finally,
we get a 2×2 matrix-valued Green’s function.

Now we apply the MaxEnt method and the SPX method to
treat this matrix function in an elementwise manner. For the
diagonal elements (G11 and G22), they are treated as before
since their spectral functions are all positive. While for the
off-diagonal elements (G12 and G21), the positive-negative
entropy approach suggested by Kraberger et al. [30] is em-
ployed. As for the SPX method, the self-adaptive sampling
algorithm is used to refine the calculated spectra. The number
of self-consistent iterations is around 5 [104]. The number
of poles for positive and negative parts is equal (i.e., N+

p =
N−

p = Np/2). The analytic continuation results are visualized
in Fig. 16. We can see that with the help of the self-adaptive
sampling algorithm, the spectral functions obtained by the
SPX method agree quite well with those obtained by the Max-
Ent method and the exact spectra, irrespective of the diagonal
or off-diagonal elements.

B. Pole model

In the first example, we examine a condensed matter case in
which the spectrum is usually broad and smooth. In this exam-
ple, let us turn to a typical molecule case. We adopt a two-pole
model to construct the spectral functions for diagonal ele-
ments [see Eq. (20)]. The parameters are as follows: N11

p =
N22

p = 2, A11
1 = A11

2 = A22
1 = A22

2 = 0.5, P11
1 = −P22

1 = 2.0,
P11

2 = −P22
2 = 1.0. Next, the spectral functions are rotated to

build the matrix-valued Green’s function. The rotation matrix
R is given by Eq. (67). The rotation angle θ is also 0.1, similar
to the first example.

As is evident in Fig. 17, the SPX method works quite
well. Not only the diagonal elements but also the off-diagonal
elements are accurately resolved. Especially, the four trivial
peaks in −2.0 and −1.0 for A11 and in 2.0 and 1.0 for A22

are also captured [105]. On the contrary, the MaxEnt method
completely fails just as expected. For the diagonal elements, it
tends to generate smooth peaks instead of sharp δ-like peaks.
For the off-diagonal elements, unphysical oscillations appear
near the Fermi level. So, at least in this example, the SPX
method is superior to the MaxEnt method.

VIII. DISCUSSIONS

A. Noisy data

Matsubara data from realistic quantum many-body simu-
lations are usually noisy [93–95]. The analytic continuation
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(a) (b) (c)

FIG. 16. Analytical continuations of matrix-valued Green’s functions (M12: Gaussian model). (a) Calculated and exact A11. (b) Calculated
and exact A12. (c) Calculated and exact A22. Note that in the SA-SPX method, the SPX method is combined with the self-adaptive sampling
algorithm to refine the spectra.

methods that based on the interpolation approach, such as the
Padé [19–21], NAC [51], and Carathéodory [53] methods, are
quite sensitive to the noise embedded in the input data. In the
presence of moderate noise, these methods often suffer from
unphysical oscillations or violate the causality of the spectral
function.

Here we would like to demonstrate the robustness of the
SPX method with respect to noisy Matsubara data. As men-
tioned above, the δ parameter is used to control the magnitude
of noise [see Eq. (40)]. The larger the δ parameter is, the
noisier the Matsubara data are. We regenerate the Matsubara
Green’s functions with various noise levels by using the work-
flow as introduced in Sec. IV. Four noise levels, i.e., δ = 0.0,
10−6, 10−4, 10−2, are considered.

Let us treat the fermionic systems at first. The M01 and M02

models are selected as representative cases. Figure 18 shows
the benchmark results. When the Matsubara data are clean
(δ = 0.0), almost all the features of the spectral function of
the M01 model are well resolved, and all the sharp peaks in
the spectral function of the M02 model are perfectly retrieved.
When the noise level is small or moderate (δ = 10−6, 10−4,
or 10−3), the analytic continuation results are almost the same
with those for noiseless Matsubara data, and the goodness-
of-fit function remains small. When the noise level is large
(δ = 10−2), the performance of the SPX method is more or
less affected. The goodness-of-fit function gets worse. For the
M01 model, the position and weight of the lower Hubbard
band are retrieved. The quasiparticle resonance peak is well

reproduced. However, the upper Hubbard band is split into
two peaks, and two sizable gaps emerge between the quasi-
particle resonance peak and the lower and upper Hubbard
bands. As for the M02 model, the low-frequency peaks are
well reproduced, but the positions of the high-frequency peaks
are shifted slightly.

We have already revealed that the SPX method is quite ro-
bust for the fermionic Matsubara data. How about the bosonic
functions? Now we would like to examine the robustness of
the SPX method with respect to noisy Matsubara data for
bosonic functions. The M10 model (for the analytical contin-
uation of the current-current correlation function) is selected
as the test case. The analytic continuation results are shown in
Fig. 19. We find that the SPX method yields almost identical
spectra for 0.0 � δ < 10−4. When δ = 10−3, the Drude peak
is slightly depressed and a shoulder peak around ω = 0.9
becomes prominent. Once δ = 10−2, the Drude peak becomes
extremely narrow. The shoulder peak around ω = 0.9 disap-
pears, but a large spurious structure comes out at ω = 0.5,
which is probably due to the SPX method giving too much
weight to the noise.

As a whole, it is suggested that the SPX method is noise
tolerant. It works quite well even when the noise level is
relatively large.

B. Incomplete data

Aside from the noises, sometimes the input data could
be broken. The purpose of this subsection is to discuss the

(a) (b) (c)

FIG. 17. Analytical continuations of matrix-valued Green’s functions (M13: pole model). (a) Calculated and exact A11. (b) Calculated and
exact A12. (c) Calculated and exact A22. The insets in (a) and (c) show two small peaks that are easily overlooked.
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FIG. 18. Robustness of the SPX method with respect to noisy Matsubara data for fermionic correlators. (a), (b) Are for the M01 model
(scenario iii, three Gaussian-type peaks), while (c) and (d) are for the M02 model (scenario ii, four δ-like peaks). (a), (c) Synthetic and calculated
spectral functions. (b), (d) Noise-dependent goodness-of-fit functions χ2. Here, δ denotes the noise level. See Sec. IV for more details.

robustness of the SPX method with respect to the incomplete
Matsubara data. We take the M10 model as the test case again.
At first, we generate the input data using Eqs. (60) and (61).

FIG. 19. Robustness of the SPX method with respect to noisy
Matsubara data for bosonic correlators. The results for the M10 model
are shown. The size of input Matsubara data is fixed at 40.

The size of full input data is Nw = 40. Since the first Mat-
subara frequency point ω0 is essential to realize the sum rule
for bosonic systems [see Eq. (27)], and the last Matsubara
frequency point ωNw−1 is relevant with the high-frequency
behaviors of the spectrum, so �(iω0) and �(iωNw−1) are
always kept. Then we try to pick and remove some data points
randomly in the rest of the input data. We test four cases with
Nr = 25, 30, 35, 40, where Nr denotes the size of the residual
data.

The analytic continuation results are shown in Fig. 20. We
find that the SPX method is insensitive to the completeness
of the input data. Even when Nr = 25 (it implies that 37.5%
data points are unavailable), the calculated spectrum is still
reasonable and exhibits little deviations when compared to the
one obtained with full input data and the exact one.

C. Comparison with the other methods

Compared with stochastic analytic continuation. As men-
tioned before, both the SPX method and the SAC methods
[37–43] are classified as the ASM approach [43,62–64]. So
these methods share some common features. Now we will
elaborate on their similarities and differences: (i) Both meth-
ods are based on the stochastic algorithms. They employ
the Monte Carlo sampling algorithm to locate the global
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FIG. 20. Robustness of the SPX method with respect to incom-
plete data (M10: current-current correlation function). The raw input
data contain 40 data points, and we try to remove some data from
them randomly. The Nr denotes the number of residual data points.

minimum of the loss function. (ii) In the SPX method, the
correlator itself is parametrized by many poles in the complex
plane. While in the SAC methods, the spectral function is
parametrized by a large number of δ functions (or rectangle
functions) in continuous frequency space. In other words, the
SPX method tries to fit the G(iωn) data directly, while the
SAC methods try to fit the A(ω). (iii) Both methods support
imposing additional constraints to reduce the configuration
space and accelerate the Monte Carlo sampling procedure.

Compared with pole fitting method. Quite recently, Lin et al.
proposed a three-pronged projection-estimation-semidefinite
(PES) relaxation method [66] to perform analytic continuation
of Green’s functions. Their method adopts the pole repre-
sentation of the Matsubara Green’s function as well. At first
glance, the SPX method and the PES method are quite similar.
However, the key ideas of the two methods are completely
different. Next, we would like to clarify this issue.

The PES method consists of three steps: (i) The noisy
Matsubara data are projected into the causal space. In this
step, the Matsubara data are fitted by

Gproj(iωn) =
M∑

m=0

Aproj
m

iωn − xm
. (68)

Equation (68) looks like Eq. (20). But, xm in Eq. (68) is a fine
uniform grid on real axis:

xm = ωmin + m

M
(ωmax − ωmin), m = 0, 1, . . . , M (69)

where M + 1 is the total number of grid points, ωmin and ωmax

denote the left and right boundaries of the grid, respectively.
The projection step can be considered as an analytic continu-
ation method by itself, but its quality is greatly constrained by
the resolution of the grid on the real axis. In other words, the
number of grid points M must be as large as possible in order
to resolve the pole locations accurately. So, the objective of
the projection step is to project the noise data into the causal
space and filter the noise, instead of performing analytic

continuation directly. (ii) The AAA algorithm is used to re-
duce the number of poles and estimate their locations [73,74].
Since the AAA algorithm is sensitive to the noise level, it takes
the projected Matsubara data as input. Note that the locations
of poles given by the AAA algorithm are not accurate. They
just serve as an initial guess. (iii) The SDR algorithm [72]
is used to obtain an effective fitting of the Matsubara data in
the form of Eq. (20). Here, the projected Matsubara data from
the projection step and the initial guess of the locations of the
poles from the estimation step are taken as inputs. The SDR
algorithm employs a bilevel optimization approach to locate
the global minimum of loss function χ2.

Clearly, the PES method is a decisive approach. In the
projection step, the locations of poles are fixed, and only the
amplitudes of poles are optimized. This is a convex optimiza-
tion problem and can be easily solved. In the next two steps,
due to the limitations of the AAA and SDR algorithms, the
number of poles must be relatively small. Therefore, the PES
method is useful for extracting the spectra of molecules and
band structures in solids, which usually feature by multiple δ-
like peaks. But it is hard to resolve broad and smooth spectral
functions if the poles reside in the real axis only [66]. Just as
its name implies, the SPX method is a stochastic approach.
Within the SPX method, both the amplitudes and locations
of poles are optimized at the same time. This is a highly
nonconvex optimization problem. But, thanks to the simulated
annealing algorithm [75,80], the optimization problem can be
efficiently solved. There is no need to project the noisy data
into causal space, make an initial guess for the amplitudes and
locations of poles, and limit the number of poles. The compli-
cated AAA and SDR algorithms are not required anymore.
This is the major reason why the SPX method can be used to
retrieve the spectral functions for both condensed matter cases
and molecule cases.

IX. CONCLUDING REMARKS

In this work, we have developed a stochastic approach,
namely, the SPX method, for analytic continuations of
Matsubara Green’s functions. In the SPX method, the Mat-
subara data are represented by a sequence of poles, and the
amplitudes and locations are optimized by using the sim-
ulated annealing algorithm. Some representative examples,
including the single-particle Green’s functions, self-energy
functions, two-particle correlation functions, and matrix-
valued Green’s functions, etc., are employed to benchmark
the usefulness and robustness of this method. The calculated
results are compared with the exact spectra if available and
the ones obtained by the MaxEnt method. For most of the
examples, the performance of the SPX method is compara-
ble or superior to that of the MaxEnt method. Applications
to the synthetic and realistic Matsubara data reveal that this
method could resolve not only low-frequency smooth peaks
in condensed matter cases but also high-frequency sharp
peaks in molecule cases. Thus, it provides a promising route
to extract dynamical responses from imaginary-frequency
single-particle and two-particle correlation functions.

The SPX method overcomes most of the shortcomings
of the available analytic continuation methods and mani-
fests competitive performance and applicability. The major
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advantages are summarized as follows: (1) It supports analytic
continuations of fermionic correlators, bosonic correlators,
and matrix-valued Green’s functions. (2) The SPX method
is rather robust to external noise. It works quite well at
intermediate- and low-noise levels. It is also robust for in-
complete Matsubara data. (3) The SPX method can recover
broad peaks and multiple δ-like peaks precisely. In other
words, it supports analytic continuations for both condensed
matter cases and molecule cases. (4) Combining with the well-
designed constrained algorithm and self-adaptive sampling
algorithm, the SPX method can resolve singular structures
(such as sharp peaks and band edges) in the spectra. (5) Once
the simulation is finished, the SPX method can yield approx-
imate expressions for the Matsubara and retarded Green’s
functions. Thereby the tricky Kramers-Kronig transformation
is avoided.

In addition to solving the analytic continuation problems,
the SPX method should have broad applications in the finite-
temperature quantum many-body simulations. For example, it
could serve as a noise filter and generate inputs for the other
noise-sensitive analytic continuation methods, such as the

Padé [19–21,24], the NAC [51], and Carathéodory methods
[53]. It could generate training data sets for machine-learning-
assisted analytic continuation methods [54–59]. It could be
used to perform bath fitting in the dynamical mean-field
theory [72,81], and evaluate the high-frequency asymptotic
behavior of single-particle Green’s function. It could pro-
vide a compact representation to store and manipulate the
two-particle Green’s function [93,95]. Thus, exploring further
applications of the SPX method is highly demanded.
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