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We calculate the zero-temperature dc electrical conductivity in the collisionless Aiw/kgT — oo limit at
superconductor-insulator transitions in the (2 4+ 1)d XY model universality class. We use a dual model consisting
of a single Dirac fermion at zero density, coupled to a Chern-Simons gauge field and in the presence of a
quenched random mass, with or without an unscreened Coulomb interaction. Our calculation is performed in
a 1/Ny expansion, where Ny is the number of Dirac fermions. At the fixed point without Coulomb interaction,

we obtain the universal conductivities (oy, 0xy) = (0.97 — 0.52/Ny, —0.24 4+ 1.64/Ny) - (2¢)?/h. At the fixed

point with Coulomb interaction, we find (0., oy,) = (0.97 + 1.09/N;, —0.24 + 0.93N;) - (2¢)*/h. At zeroth
order, the model exhibits particle-vortex self-dual electrical transport with o, < (2¢)?/h and small, but finite
oyy. Corrections of O(1/Ny) due to fluctuations in the Chern-Simons gauge field and disorder produce violations
of self-duality. These fluctuations reduce/enhance the longitudinal conductivity at the fixed point without/with

the Coulomb interaction.
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I. INTRODUCTION

Continuous quantum phase transitions [1,2] are some of
the most intriguing phenomena in condensed matter physics,
due to the possibility of emergent behaviors that are differ-
ent from the proximate phases. Superconductor to insulator
transitions (SITs) in disordered two-dimensional thin films,
the subject of this paper, provide some of the best examples
(see [3,4], for reviews). Here, as a tuning parameter, such
as the charge density, disorder, or external magnetic field, is
varied, the electrons in the disordered film transition between
a superconducting and insulating ground state. At a critical
value of the tuning parameter, the electrons form a metal with
finite, nonzero dc resistance (measured as the temperature
T — 0) on the order of the quantum of Cooper-pair resistance
Ro = h/4e* ~ 6.45 k2/0.

How should we understand this? One hypothesis [5,6] is
that such transitions are due to the phase disordering of the
superconducting order parameter, rather than the loss of su-
perconducting pairing amplitude [7]. The critical properties
should then be described by a model of interacting charge-
2e Cooper-pair bosons moving in a random potential in two
spatial dimensions [5,6]. In this theory—generally known as
the dirty boson model—the critical resistivity is identified
as a universal critical amplitude [5,6,8], which takes a value
~1/R reflective of the delocalized charge carriers. The rele-
vance of the dirty boson model to field-tuned SITs is directly
implied by ac conductance measurements that find a nonzero
superfluid stiffness across the transition and into insulating
phase [9,10]. By contrast, the relevance of the boson model
to SITs in zero magnetic field has been questioned (see, e.g.,
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[4]). (Measurements such as those in [9,10] have not been car-
ried out for SITs with time-reversal symmetry.) In this paper,
we restrict our attention to the simplified setting of boson-
only models, which ignore possible fermionic quasiparticle
excitations.

One of the more intriguing possibilities suggested by the
dirty boson model is that the transition might be self-dual, i.e.,
the critical Hamiltonian for Cooper-pair bosons on the brink
of localization is the same as the dual critical Hamiltonian for
vortices [11-13] on the brink of condensation. A consequence
of self-duality is the so-called semicircle law for the dc elec-
trical conductivity,

4¢? :
2 2 _
oo (5.

This relation is particularly interesting because it relates the
dissipative (o,,) and nondissipative (oy,) parts of the conduc-
tivity to a universal constant, Ry. There is strong experimental
evidence [14] that field-tuned transitions are self-dual with
0xx ~ 1/Rp and o,, ~ 0. This may be surprising, given the
presence of the nonzero magnetic field, and suggests an emer-
gent particle-hole symmetry [15]. Measurements [3,4] of the
longitudinal resistance on the order of Ry at charge density
or disorder-tuned SITs are suggestive of an underlying self-
duality, so long as the impurities are nonmagnetic.

The argument for self-duality within the boson model is
indirect [5,6]. Here, we will consider an alternative descrip-
tion, given in terms of (24 1)d quantum electrodynamics
with a single Dirac fermion coupled to a Chern-Simons gauge
field [16-19]. In close analogy to theories [20-22] for the
half-filled Landau level, we will refer to the Dirac fermions

(1.1)
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in this description as composite fermions. In this composite
fermion model, self-duality is a consequence of an unbroken
particle-vortex symmetry that (loosely speaking) acts on the
Hamiltonian of the model as a time-reversal symmetry and
therefore fixes the composite fermion Hall conductivity to be
zero [19]. (The composite fermion conductivity al.]/f is dis-
tinct from the electrical conductivity o;;. We will recall the
correspondence between the two in Sec. IV B.) This means
that, so long as particle-vortex symmetry is preserved, the
composite fermion theory will yield self-dual response. Note,
however, that the precise manner in which self-duality (1.1)
is realized depends on the specific value of the composite
fermion longitudinal conductivity. For instance, a compos-
ite fermion longitudinal conductivity of %Rél (with ox‘g =0)
reproduces (1.1) with o,, = 0, while any other value of the
composite fermion longitudinal conductivity gives self-dual
transport with nonzero o,,.

We will study a limit of the composite fermion theory that
corresponds to lattice bosons at integer filling with charge-
conserving disorder and vanishing external magnetic field [8].
(Simplifying the model in this way unfortunately takes us
further away from the experiments reviewed in [3,4].) In this
limit, the critical properties are those of the dirty (2 + 1)d XY
model [8], recently clarified in [23]. (In the classical 3d XY
model, the disorder we consider reflects a position-dependent
critical temperature that is nonuniform with respect to two of
the three spatial dimensions.) In the fermion dual, the Dirac
composite fermions lie at zero density in the presence of a
quenched random mass.

An unscreened Coulomb interaction is believed to be im-
portant for the experimentally realized SITs [5,6]; in the
(2 4+ 1)d XY model, the Coulomb interaction corresponds to
a relevant perturbation. General constraints on the transport
properties of a self-dual SIT, with Coulomb interactions, were
derived in [24,25]. The stability of these results to fluctuations
in the Coulomb interaction, in the presence of disorder, is not
addressed in these papers.

In Ref. [26], we showed that the composite fermion theory
we consider here admits renormalization group (RG) fixed
points at finite disorder, with or without the Coulomb inter-
action, when the mean of the random mass is tuned to zero.
Other symmetry classes of disorder did not yield accessible
fixed points. The random mass fixed points are controlled
within a 1/N; expansion, where N is the number of fermion
flavors. Related works studying the effects of quenched
randomness on theories of Dirac fermions coupled to a fluc-
tuating boson include [27-32]. In this paper, we determine
the electrical conductivity at the random mass fixed points
of [26], with or without the unscreened Coulomb interaction,
to O(1/Ny). Our results are summarized in Egs. (4.18) and
(4.19) and Figs. 5(a) and 5(b) (see below). (Such calculations
of the quantum critical conductivity are notoriously challeng-
ing, e.g., [33-35].) At O(1 /NJ?), the theory exhibits self-dual
electrical transport with oy, S 1/Ryp and finite, nonzero oyy.
The leading O(1/Ny) corrections, due to fluctuations in the
Chern-Simons gauge field and disorder, violate self-duality.
The nature of this violation depends on whether or not
the Coulomb interaction is present. At the unstable fixed
point without Coulomb interaction and only short-ranged

interactions, fluctuations reduce the longitudinal conductivity,
while at the stable fixed point with Coulomb interaction, the
longitudinal conductivity is increased (above 1/Ryp).

There are two important things to note about our results.
First, the random mass does not preserve particle-vortex sym-
metry. This is not the underlying reason why we find nonzero
composite fermion Hall conductivity: The O(1/Ny) violation
of self-duality is due to the fluctuations of the Chern-Simons
gauge field. There is a nonzero composite fermion Hall con-
ductivity in the pure limit without disorder. We are unaware of
a calculable model of a disordered fixed point that is self-dual.
Second, we calculate the conductivity in the phase-coherent
regime fiw/kgT — oo (where w is the measuring frequency).
This regime gives a universal conductivity tensor that, in
general, differs from conductivity in the incoherent regime
hw/kgT — 0 [35]. Extending our results to the incoherent
regime using quantum Boltzmann methods, such as those
recently employed in [36], is of great interest.

The structure of this paper is as follows. In Sec. II, we
define the model that we study. In Sec. III, we sketch the
calculation of the composite fermion conductivity for general
values of the coupling constants. In Sec. IV, we evaluate these
composite fermion conductivities at two RG fixed points,
corresponding to disordered quantum critical points with or
without the unscreened Coulomb interaction, and use the du-
ality dictionary to translate these quantum critical composite
fermion conductivities to electrical conductivities. In Sec. V,
we discuss our results. Four appendices contain the technical
details of the calculations summarized in the main parts of
the paper: Appendix A contains the derivation of the effec-
tive gauge field propagator; Appendices B, C, and D contain
details for the evaluation of loop diagrams.

II. THE MODEL

In this section, we define the Dirac composite theory of the
SIT. See [26] for additional details.

A. The effective action

The total Euclidean effective action for the Dirac compos-
ite fermion theory has three parts,
Stot = So + S¢ + Sais- (2.1
We will define each part in the following three paragraphs.
To begin, Sy is a Euclidean action of quantum electrody-
namics in 3d. It consists of a two-component Dirac fermion v

that is coupled to a dynamical Chern-Simons gauge field a,,
(h=2e=1),

Ny
. . 8
So = Z/dzxdt Uy (a, — l—af)l/fl
I=1 VNr

+ Pry? (aj — i\/LNT aj) "

+ X ada + L (—24da + AdA).
2 4

In Eq. (2.2), ¥ =¢¥7y? and the 2x2 gamma matrices
y" are chosen such that the anticommutator {y*, y"} =
251540, where , v € {0, 1,2} = {r,x, y} and 15,5 isa2x2

2.2)
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identity matrix in the 2d spinor space. We follow the Einstein
summation convention, with, for instance, the spatial indices
J € {x,y} summed over above. (Being in Euclidean signature,
upper and lower indices are equivalent and will be used inter-
changeably.) The Chern-Simons term ada = €""*a,,d,a; (and
similarly for the other Chern-Simons terms), where the Levi-
Civita symbol €°'? = +1. Here, N; is the number of Dirac
fermion flavors. Sy is dual to the critical 3d XY model when
N; =1 and the Chern-Simons coefficient ¥ = ﬁ [16,17,19],
with the Dirac mass playing the role as the critical tuning
parameter. We take Ny > 1 in order to study the theory within
a controlled 1/N; expansion. A, is a probe, nondynamical
electromagnetic gauge potential that serves to define the elec-
trical current and corresponding electrical conductivity of the
model. The gauge coupling g is set to unity in the infrared; we
keep g general for the moment.

Next, we introduce the Coulomb interaction. Following
Refs. [26,37], the Coulomb interaction dualizes into the com-
posite fermion theory as

1 d3k
Se=» / X O woar k), (2.3)

(2m)?
where we introduced the effective Coulomb coupling w, =
2
8677*2. Here, e, is the charge of the Cooper-pair bosons (nom-
inally, e, = 2e). The Fourier space integration measure is
d*k = dk.dkydky, where k is the zero-temperature Matsub-
ara frequency. We adopt the following notation throughout
this paper:

k= (ky, ky)’ ku = (ko, ky, ky)v |k| = \/k)% +k‘27
k= \Jk§ 4k + k2.

The T subscript indicates that ar is the transverse component
of the Chern-Simons gauge field: ar is related to the Carte-
sian components (ay, ay) via a.(q) = i%aT(q) and a,(q) =
—i %ar (9), provided we choose Coulomb gauge, wherein the
longitudinal component of a; is set to zero.

Finally, we turn to the introduction of the quenched ran-
domness. Previous analyses [26,31] show that if all types of
disorder (quenched random couplings that couple to com-
posite fermion bilinears), regardless of the symmetry they
individually preserve, are added to the theory, the system
flows to strong coupling, out of reach of any analytic control.
However, if charge-conjugation symmetry is imposed, only a
random mass term m(x)yr is allowed and the theory flows
to an accessible disordered fixed point [26]. Here, following
[26], we make this symmetry assignment based on the fact
that ¢ is even under charge-conjugation and odd under
time-reversal. Because the fermion theory with random mass
is believed to be dual to the bosonic description of the XY
model with random mass, which has both charge-conjugation
and time-reversal symmetries, the fermion model should pos-
sess an emergent time-reversal symmetry, in addition to the
explicit charge-conjugation symmetry. Applying the standard
replica trick to disorder average the theory, the action picks up
the term,

2.4

-1 ' _ _
Sdis = 7/d2thdt/ Z 8m (Ipr'(ﬂr)x,r (wr’wr’)x,r’v (25)

rr'=1

where r, r’ are the replica indices and the number of replicas
n, is to be set to zero in the last step of any calculation. The
replica indices are not important in the later calculations, so
we will not write them out explicitly anymore (this is also why
we did not include them in the earlier parts of the total action).
The parameter g,, is the disorder strength, which is always
non-negative. The random mass does not preserve particle-
vortex symmetry. This will be apparent later when we discuss
the quantum critical conductivity of the model.

B. The effective gauge field propagator

In the Cartesian basis, the one-loop gauge field self-energy
induced by the Dirac fermions is

Hl—loop _ j Sll«vkz - k,U-kV )
v 16 k

(2.6)

This self-energy is O(Nj(?), i.e., the same order as the bare
terms in the total action that are quadratic in the gauge field.
Adding together this self-energy S., and the Chern-Simons
term in Sy involving a, only, we obtain the one-loop gauge
field action,

1 [ d%k Gk
Sgauge =3 (ap arh ; k

ir |k|
2 ) @2r) k| g% k+ k| w,
() ¢
ar k

where g5 = fz—ﬁ This action defines the one-loop corrected
gauge field propagator.

The computation we summarize in the next section is per-
formed with the gauge field, expressed in the Cartesian basis.
We therefore translate the gauge field propagator, defined by
Eq. (2.7), to the Cartesian basis,

Q2.7)

1
Do (ko, k) = —

2
————————(sx k+ |klw,), (2.8)
k ,(z+g§(+wxgzx|k| X

1 1 K €iik;
Doi(ko, k) = —Dip = — oY < 1" ]),
k K2+g§(+%

2.9)

1 2 kik
D;j(ko. k) = m(%) (fSij - k—zj)
K=+ gy + —5—
(2.10)

To obtain D, above, we have used the gauge fixing term

(Vay’

57— See Appendix A for details.

III. COMPOSITE FERMION CONDUCTIVITY

In this section, we sketch the computation of the com-
posite fermion conductivity, to O(1/Ny). The details of this
calculation are in Appendices B, C, and D. This composite
fermion conductivity is related to the electrical conductivity
considered in the next section.
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q+p 1 1
(b) (c)

FIG. 1. Two-loop diagrams with random mass corrections, denoted as I1 ije

A. Definition of the composite fermion conductivity

The composite fermion conductivity aigf (w, p) is deter-
mined by the real-frequency retarded gauge field self-energy
er], which is related to the imaginary-time self-energy HE‘]’-‘ as
follows: '

i .
o) (w, p) = —Hf§<w+ 0%, p)

= H“"(zpo — w+i0%, p). 3.1
Our definition of olu includes the contributions from the
composite fermions; it does not include the tree-level Chern-
Simons term. We decompose TT}$' into symmetric IT{g) and

antisymmetric H:‘X) components as
Pup
i (p) = (‘”“‘%) e+

To extract the symmetric component of l'[ﬁ‘j", we will set
(i, v) = (x, x) and evaluate

© e TS (). (3.2)

1
tot tot
Y = —z me, (3.3)

P |

1@

i
I (p) = < N,

ig

2
0 (p) = —2(—> Ny fk Trly,G(@)G(k + Q)G G(p + @) x 27 g8 (ko),
sq

N,

where we have used the shorthand [, = [ ;
composite fermion propagator,

4’k
Q@n)y3

—iG(k) =

2
8 ) Ny / Try,.G(9)G(q + k)y,G(q + k + p)G(p + q)] X 27w gwd(ko),
k.q

koy® + kiy!
K2+ kiki

The antisymmetric component will be obtained by contracting
%" with €unrls

tot __ Pr€uvd ot
(A) — 21pl uv*

3.4)

B. Two-loop corrections to the conductivity

The O(1/Ny) corrections to the composite fermion con-
ductivity af, obtained through O(1/Ny) corrections to TTj%
through Eq. (3.1), involves two-loop and three-loop diagrams.
The one-loop corrections have already been included in the
one-loop corrected gauge boson self-energy.

We begin here with the two-loop diagrams. The two-loop
corrections result from self-energy corrections due to the ran-
dom mass flij to O(g,) and the fluctuations of the gauge
boson IT;; to O(1/Ny). The diagrams contributing to these
corrections are shown in Figs. 1 and 2. In each figure, dia-
grams (b) and (c) are equal.

We start with the corrections due to the random mass. The
diagrams in Fig. 1 are

(3.5)

(3.6)

f (2;1)3 and the trace is performed over the Dirac indices. Here, G(k) is the

(3.7)

To evaluate the gauge field diagrams in Fig. 2, we replace the disorder-induced four-point interaction by the gauge field
propagator and disorder strength coupling by the fermion-gauge field coupling,

% (p) =

M (p) =

where D, is the gauge field propagator.

4
_ngf / TI‘[J/;J.G(CI)VaG(C] + k)yy,G(g+ k + p))/ﬂG(p +¢)] Daﬂ(k),
k.q

2 4
_N;‘; f Ty, G(@)vu Gk + )ysG(@yyG(p + )] Dap k),
k.q

(3.8)

(3.9)

235142-4



UNIVERSAL CONDUCTIVITY AT A TWO-DIMENSIONAL ... PHYSICAL REVIEW B 108, 235142 (2023)

(©)

FIG. 2. Two-loop diagrams with gauge field corrections, denoted as I1

If the Coulomb interaction is present, the 3d Euclidean
symmetry that rotates the temporal and spatial directions into
one another is lost in the gauge field propagators; this sym-
metry is already broken by the random mass. (This is due
to the fact that the Coulomb interaction, considered as an
instantaneous interaction, is fundamentally due to an electron
density-density interaction that is mediated by the temporal
component of the electromagnetic gauge field. We have trans-
lated this interaction into the composite fermion theory [26].)
This makes the evaluation of these integrals by a naive Feyn-

The only nonzero contribution of the random mass dia-
grams is to I1,,,

1949 (pg, p = 0)

[Pol

2
=3x (-1 i N X ! X
N UN;) A F o6

(3.10)

man parametrization difficult. Instead, we reexpress all terms
in the integrands involving ¢ using partial fractions in a way
that allows us to carry out the UV-finite integrals over g, after
which we perform the k integrals. The lengthy calculations
that do this are relegated to Appendices B and C. We now
summarize the results.

This result was first obtained by Thomson and Sachdev in
[31]. Note that the disorder strength g,, ~ 1/N; when eval-
uated at the fixed points, described in the next section.

The gauge field diagrams result in nonzero contributions
to both the symmetric and antisymmetric components of IT;;.
The antisymmetric component is

J

1 g ! —7+ (=1 + z?)ArcTanh 1
ngbﬂ)( )= __g_/ dz p? z+( +Z2) rcTanh[z] y ’ G.11)
2|p| Ny 82z Ay + Byx/1 =722
2 4
Ay =SS g Wik (3.12)
K K
The symmetric component is
0 (2) +f "(—2)
Mg (py. p = 0) = | | f : (3.13)
D)+ f(=2)  —5Crz(—1+ )+ /T =229 +7%)  6(—1+22)(Cy — Cy 22 + 24/1 — 72) arctanh]z]
= (3.14)
2 19272 z[ Ay~/1 — 22+ By (1 — 72)] 19272 z[ Ay~/1 — 22+ By (1 — 72)]
where
K2 —i—g‘}‘( Wy
Ay = , By=w, Cy=— (3.15)
8% &

As a consistency check, we note the precise agreement of our results in Egs. (3.11) and (3.13) for the gauge field diagrams,
evaluated at w, = 0, with the earlier computations of these same diagrams, computed in the absence of the Coulomb interaction,

in [38-40],
L g« 4+ 72
H(u+b+c) . __ 5 2 ’ 316
w P ) 2|pl Ny k2 + g4 P30 (3.16)
& (prw, = 0,6 = 0) = =8 0.00893191. 3.17)
Ny

C. Three-loop corrections to the conductivity

The three-loop diagrams that contribute to the composite fermion conductivity at O(1/N;) are given in Fig. 3. As the
figure indicates, these diagrams involve a combination of disorder and gauge field fluctuations. Diagrams of the same form
in which the two horizontal internal lines are of the same type, i.e., both disorder or both gauge field lines, vanish by
charge-conjugation symmetry (Furry’s theorem).
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FIG. 3. Three-loop diagrams with both random mass and gauge field corrections, denoted as I1,,,. We use a convention in which different
diagrams are differentiated by the direction of momentum flow in fermion lines in the left and right triangles, rather than using diagrams with
fixed triangle orientations and twisted or line-crossed internal horizontal lines.

Each of the four diagrams in Fig. 3 are equal. Summing them gives

N ig \* &Pk dPq &
Flu(p) = 4 x (—1>2<i) < [ 990 160 — Q)G Glk — p)]

N

We define the first trace integral appearing in (3.18) as

4’k
CanQ. p) = / s THIG( — Q) Gy, Gk — )l = /

)} 2m) 2n)3
X Dyp(Q) % 21 gn8(—Q0 + po) Tr[1G(q + Q)ysG(q)y,G(g + p)].

The second trace integral has the same structure, but different momentum dependency,

d3
/ (ans'Tf[lG(q + QG G(g + p)l = Cpu (=0, —p) = =Cp,(Q, p).

(3.18)
k. (k — Q)ok: (k — p)
Y (13)Tr[)/gj/a)/z)/;47/p](k_ e (k_p)‘;. (3.19)
(3.20)

The last equality uses the fact that the fermion Green’s function G(k) is odd with respect to k, G(—k) = —G(k).
Computing the exact form of the triangle subdiagram C,,, is the primary step, which can be done by appropriate integral
reductions. Once obtained, the evaluation of the Q integral in Eq. (3.18) is straightforward. The calculation details are relegated

to Appendix D.

Here we summarize the results of these calculations. The symmetric component [1(s) of I1;; is found from

ﬁxx(Po,P =0)= ﬁyy =4gn |P0|/ dz
0

1

167 3/14 22[F2 + (F2 — w?) 72]

x (=D (Pl-wez+ F V1422 ] [wy 4 2w, 22 — 4gy (1 + 2]

+2z[(1+ 22 F — wezv/ 1+ 22 [—we 27 + gy (1 +229)]),

2 4
where F = <18

component [T of I1;; is found from

(3.21)

, g§( = 11—6. Taking the zero external momentum limit of Eq. (3.3), we find 1:[(5) = [1,,. The antisymmetric

o0
L,y (po. p = 0) = —dgupo / d
0

We use Eq. (3.4) to extract the antisymmetric component, [1(x, =

D. Summary of the composite fermion conductivity to O(1/Ny)

We now collect the results of the previous two subsections.
Using the definition of the composite fermion conductivity
in Eq (31) and HE(]“ = Hij + Hij + Hija we find that to
O(NLf, gm), the composite fermion conductivity equals

1 3g i . -
V] _ m (a+b+c)
o =———+ —(II +1II
xx(a)) 16 967T w ( (S) (S))

x (|pol — iw, p = 0), (3.23)
i b = .
ol () = 5(ngAj’” )+ Ta)(Ipol — io, p=0). (3.24)

We note that g,, ~ 1/N; at the finite disorder fixed points.

Z
2 4 Z
K7+ g + wigy =

K 2(1 4222 = 2z/1+22)
. (3.22)
12871 + 72
2poIly
2|po| *

(
IV. QUANTUM CRITICAL ELECTRICAL TRANSPORT

A. RG flow and critical composite fermion conductivity

The perturbative RG flows for this system S (2.1) were
found in [26]. In that study, we allowed for the possibility of
a dissipative Coulomb interaction. We will not consider this
possibility here. With the Fermi velocity set equal to unity,

the beta functions (8x = — “g_ii) are
8m

Bu. = wiz = D= w,[5 — Fywi0)], @D
’ 2

& L E(w,, K)]. (4.2)

= 2gn(z— 1 — 3 =—2m[
Bs., gm(z Yiu) 8 b
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FIG. 4. RG flow of the strength of the random mass (g,, = 27g,,)
and Coulomb coupling (w,), evaluated at Ny = 2. The circle denotes
the fixed point without the Coulomb interaction. The star is the fixed
point with finite Coulomb interaction.

The dynamical exponent z, fermion anomalous dimension
Yius and loop-functions F,,, F, are defined as follows:

gm

z=1+ P — Fy(wy, k), 4.3)
g]n

iy =2— +F, — F,, 4.4

Vi . + 4.4)

Fy(wy, k)

1 /°°d g1(2y* — 1) + wyey/1 +)?

T 4N LT A [T @ + ) g
4.5)

F(wy, «)
_ 1 /“’dy g1(=2y* —3) —w,/1+)?
ANy Jooo T+ [V (81 +62) + g1w]
V1I+y2(g = «?) + grwy
+ = (4.6)
201+ y)[V1 + (83 + &%) + grwy |

where g = g% = f2—6. The dynamical critical exponent and
fermion anomalous dimension determine the inverse correc-
tion length exponent: v =z — Yy - Figure 4 depicts the RG
flow diagram for these beta functions (4.1) and (4.2).

As Fig. 4 indicates, a finite-disorder fixed point exists
whether or not the Coulomb interaction is present. The dis-
ordered fixed point without Coulomb interaction is unstable
to the inclusion of the Coulomb interaction.

In the absence of the Coulomb interaction (w, = 0), B, in
Eq. (4.1) vanishes. At w, = 0, the y integral in Eq. (4.2) can
be evaluated analytically. The solution g7, is given by

& (=3 +16g)) + (3 + 16g) k>
om o= _F.(0,k) =
2 1272 Ny (g3 + k2)?
1.41091
~ . 4.7)
Ny

where we plugged in k = ﬁ in the rightmost equality. Sub-
stituting these fixed point values of w, and g, into the
expressions for the conductivity, Egs. (3.23) and (3.24), we

obtain at w = 0,

g L 006518 o “8)
ol = — _— w, = 0), .
16 Ny !
0.0577949
o) = ———— (w,=0). (4.9)
Ny

The correlation length and dynamical critical exponents at this
fixed point are [26] (v, z) = (1, Lj).

In the presence of the Coulomb interaction (w, # 0), we
have to solve the flow equations in (4.1) and (4.2) together.
The fixed point solution is found to lie at

0.393787

(Wi, &)~ (0.184193, 2
f

>. (4.10)

Using Eqgs. (3.23) and (3.24), this gives the dc composite
fermion conductivity,

" 1 n 0.0744856 (w, % 0) @.11)
oV = — 4 ——— Wy , .
to16 Ny
, _ —0.0538345
of = 0T, #£0), (4.12)
’ Ny

The critical exponents at this fixed point are [26] (v, z) =
(1, 1).

We observe that the combination of disorder and
Chern-Simons gauge field fluctuations enhance the compos-
ite fermion longitudinal conductivity, whether or not the
Coulomb interaction is present. Further, these fluctuations
produce a nonzero composite fermion Hall conductivity,
Egs. (4.9) and (4.11). We note that the composite fermion Hall
conductivity—a measure of broken self-duality—remains
nonzero in the pure limit (g, = 0) at leading order in 1/Ny.
We believe this to be a deficiency of the perturbative calcula-
tion presented in this paper. We will comment further on this
below.

B. Electrical response

To determine the quantum critical electrical transport at the
fixed points described in the previous subsection, we must
first recall the dictionary that relates the composite fermion
and electrical conductivities [19]. The two- and three-loop
calculations described previously can be understood to give
rise to the following quadratic effective action, in which the
composite fermion is integrated out:

off _ d’kdw —iw
" 1 1
X a,-oij aj—i-ZE(),'j Ea,-aj—ZA,-aj—i—AiAj .

(4.13)

Here, we have used our gauge freedom to set ag = Ag = 0.
Terms that are higher order in the gauge field a; are ignored.
We integrate over a; to obtain the effective electrical response
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FIG. 5. Electrical response components for two fixed points with varying number of fermion flavor Ny. The values in the figures are all in
the unit of i The curves are depicted based on Egs. (4.15) and (4.16) without any expansion of Ni (a) Zero Coulomb interaction (w, = 0) and

;

finite disorder, (b) Finite Coulomb interaction (w, # 0) and finite disorder, and (c) Infinite Coulomb interaction (w, = 00) without disorder.

action,
d*kdw —iw
eff
DCF = WTEQU‘A,‘ UijAj’ (414)
where the electrical conductivity is
aV 1)?
O = > 5 <—> , (4.15)
(o) + e+ &) \om

4
vy L 2
Oy = L 2% . (i) . (4.16)
(o) (@b )\

An immediate consequence of this dictionary is that

2 2 (Ux]/)jc)z + (ng - é)z 1) 4.1
Uxx+0xy= V2 v 1 7" 2_ . (7)
(o) + (o + 27 &

This shows that self-dual electrical transport (1.1) occurs
when the composite fermion Hall conductivity ax‘/; = 0. Our
system, however, is not self-dual, since a;/; # 0 [see Egs. (4.9)
and (4.12)].

We now use (4.15) and (4.16) and the composite fermion
conductivities computed in the previous subsection to obtain
the electrical conductivities. We begin with the fixed point
without the Coulomb interaction. Plugging in the composite
fermion conductivities (4.8) and (4.9) into Eqgs. (4.15) and
(4.16), we find the dc electrical conductivities to O(1/Ny),

0.524133 .
Sy LOEY I
Ny Ny 2

(4.18)

(O ny) = (097 -

(wy = 0).

Similarly, for the fixed point with Coulomb interaction, we
use the composite fermion conductivities (4.11) and (4.12) to
obtain the dc electrical conductivities,

1.08735
—,—0.24
N +

f Ny ) 2w

(4.19)

0.926541 1
(Oxx, Oxy) = (0.97 + —)

(wy # 0).

At O(1 /NJ?), we see that self-duality (1.1) occurs with finite,

but nonzero o,, and a longitudinal conductivity oy < Rél.
The O(1/Ny) corrections, due to disorder and the fluctuating
Chern-Simons gauge field, lead to violations of self-duality.
These violations are due to the nonzero composite fermion
Hall conductivity o¥, either without (4.9) and with (4.12) the

xy?

Coulomb interaction. We notice that the disorder and gauge
field fluctuations suppress/enhance the longitudinal conduc-
tivity when the Coulomb interaction is absent/present. This
behavior arises from the difference in sign of the composite
fermion Hall conductivities. The expressions for the quantum
critical electrical conductivities, (4.18) and (4.19), are reliable
at large Ny. To interpolate these results to small, but finite
Ny, we use the exact expressions that obtain from substituting
the composite fermion conductivities, either without (4.8) and
(4.9) or with (4.11) and (4.12) the Coulomb interaction, into
Egs. (4.15) and (4.16). The results are plotted in Figs. 5(a) and
5(b).

We end this section with two speculative comments.

The first comment concerns another way to obtain self-
duality. Examining the composite fermion Hall conductivity
(3.24), we observe that ox‘g ~ m, where “finite” refers to
an O(1) constant independent of w,. Taking w, — 0o, with
all other parameters held fixed, results in ax")’, = 0. We plot
the corresponding electrical conductivities in Fig. 5(c). We do
not have an argument for why the Coulomb coupling would
flow to strong coupling; w, = oco is not a fixed point of the
beta functions (4.1) and (4.2). We note that in [26] we studied,
in addition, the effect of dissipation, which allowed for fixed
points with infinite strength dissipative Coulomb interaction.
The gauge field propagator at such fixed points is different
from that considered in this paper and so a determination of
the electrical conductivity at such fixed points is left for future
work.

The second speculative comment concerns the lack of man-
ifest time-reversal invariance of the composite fermion action
(2.2). As we mentioned, because this theory is believed to
be dual to the (2 + 1)d XY model, the composite fermion
theory should have both charge-conjugation and time-reversal
symmetries. The lack of manifest time-reversal invariance
implies that time reversal must be emergent. The leading-
order perturbative calculations presented here (using the 1 /Ny
expansion) do not realize emergent time-reversal invariance
since ox‘ﬁ’, # 0. We speculate that the following “averaging”
procedure produces a conductivity for the theory that is “more
faithful” to both the manifest and emergent symmetries. We
consider the conductivities of the model defined by (2.1),
as already presented, and its time-reversal conjugate. [The
disorder and Coulomb parts of the total action are invariant
under time-reversal, assuming zero-mean white noise dis-
order, and so this is tantamount to considering (2.2) and
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its time-reversal conjugate, in which the signs of the first
and third Chern-Simons levels are flipped. The beta func-
tions of the time-reversed theory are identical to (4.1) and
(4.2), since they are even functions of the ada Chern-Simons
coefficient.] We can easily adapt the transport calculations
presented earlier to the time-reversed theory. As might be
expected, but we have also checked, the result is the same
longitudinal conductivity and opposite sign Hall conductivity.
(This statement holds for both the electrical and composite
fermion conductivities.) We then declare the “more faithful”
conductivity to be the average of the conductivities obtained
from (2.1) and its time-reversal conjugate. The results of
this “averaging” are as follows. Either with or without the
Coulomb interaction, the electrical Hall conductivity is zero,
reflective of unbroken time-reversal symmetry. The longitu-
dinal conductivities without or with the Coulomb interaction
are simply given by the longitudinal conductivities in (4.18)
or (4.19). Notice that in both cases, self-duality is violated,
because disorder and gauge field fluctuations reduce/enhance
the longitudinal conductivity to a value different from 1/Ry,
at vanishing (“averaged”) Hall conductivity. This self-duality
violation might be expected since the random mass does not
preserve particle-vortex symmetry. Whether this “averaging”
procedure can be justified in a principled way remains to be
seen.

V. DISCUSSION

In this paper, we calculated the quantum critical electri-
cal conductivity at a superconductor-insulator transition in
two spatial dimensions, in the universality class of the dirty
(24 1)d XY model with vanishing external magnetic field.
For our study, we used a composite fermion theory, consist-
ing of a single Dirac fermion, coupled to a Chern-Simons
gauge field and in the presence of a quenched random mass.
This theory is believed to be a “fermionic dual” to the usual
“bosonic” description of the XY model. There are at least
two reasons to prefer the composite fermion description. The
first is that it can exhibit a particle-vortex symmetry at the
level of its Lagrangian. A consequence of this symmetry is
the semicircle law (1.1), which appears to be realized in some
experiments [14]. A second reason to prefer the composite
fermion theory is that an unscreened Coulomb interaction is
straightforwardly included in the model. This allows for a
comparison of the properties of the theory with or without the
Coulomb interaction.

Our calculation of the critical conductivity was performed
in an expansion in 1/Ny, where Ny is the number of fermion
flavors. Our results are summarized by Eqs. (4.18) and (4.19)
and in Figs. 5(a) and 5(b). At order 1/N?, the theory is self-

dual, realizing the semicircle law (1.1) with o, < (2¢)?/h
and small, finite o,,. Fluctuation effects due to the gauge field
and the random mass contribute corrections of order 1/N; to
the conductivity that violate self-duality. The nature of these
corrections depends on whether or not the Coulomb interac-
tion is present. We find that fluctuations reduce/increase the
longitudinal conductivity at the fixed point without/with the
Coulomb interaction. There does not appear to be a qualitative
difference between the Hall conductivities at the two fixed
points.

In the previous section, based on the leading corrections
to the composite fermion Hall conductivity, we speculated
that infinite strength Coulomb interactions of the sort we
studied in [26] might produce self-dual transport. Such fixed
points required a dissipative Coulomb interaction, a feature
not considered in this paper. We leave an explicit calculation
of the critical conductivity at such infinite strength Coulomb
interaction fixed points, with dissipation, for future work. We
note that such fixed points have dynamical critical exponent
z> 1

It would be interesting to carry out these electrical transport
calculations at the dirty XY model fixed point found in [23],
i.e., within the usual bosonic description, and to compare the
results to those in this paper. The fixed point in [23] does
not include the unscreened Coulomb interaction. The bosonic
description of the dirty XY model fixed point gives critical
exponents that are in closer agreement with numerical experi-
ment [41] when Ny — 1, than those of the composite fermion
theory [at least to O(1/Ny)].

There are two aspects as to why we focused on a theory
corresponding to a model of lattice bosons with charge-
conserving disorder. First, regarding the type of disorder
within this lattice boson model, we found in [26] that other
types of disorder do not yield accessible disordered fixed
points with or without a finite Coulomb interaction. These
calculations were performed to leading order in a 1/Ny
expansion. It is possible that higher-order calculations or
calculations performed using a different choice of artificial
expansion parameter (perhaps one that preserves the same
symmetries as the Ny =1 theory) may find nontrivial fixed
points. Second, regarding the commensurability constraint,
the dual composite fermions acquire a finite chemical poten-
tial if this is relaxed. It would be extremely interesting to find
disordered fixed points in this more general situation, as we
believe it more closely resembles the experimentally-realized
superconductor-insulator transitions, in particular, magnetic
field-tuned transitions. Recent work has shown [42,43] how
the optical conductivity is constrained by the anomaly struc-
ture of emergent symmetries in a class of non-Fermi liquids
(so-called “Hertz-Millis” theories) consisting of a Fermi sur-
face coupled to a gapless bosonic order parameter. Such
models are closely related to the theory we studied (see [44]
for a related theory studied recently), when the composite
fermion density is nonzero. It would be worthwhile to under-
stand the interplay of this emergent anomaly structure with
particle-vortex symmetry.
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APPENDIX A: GAUGE BOSON PROPAGATOR

Start from Eq. (2.7), with A = +g§‘ ,B=ik |k|,and C = g§( k + |k| w,. This one-loop effective action includes the leading-
order polarization,

k2
Moo = —gx (AD)
kik;
rr = (51']' - k_21>nij = —gy k. (A2)

We work in Coulomb gauge (vanishing longitudinal component of the gauge field). Including the gauge-fixing term, f (V i )2 ,
which preserves SO(2) rotation invariance, the one-loop effective action is

B
Sé%ﬁ:,%e fixed) / (a0 ar) <B C) (a0> (A3)
—k

iky —ik,
A Blkl [ 0 o 0 ap
= lim > / @ a ax||s S 2 Rt GO B RS
. Si kb 0 kiky kk))\a
Bl TEC R ok

where fk f (2]1); We obtain the gauge field propagators (2.8)—(2.10), upon first inverting the 3x3 matrix kernel and then
taking the limit A — 0.

APPENDIX B: TWO-LOOP RANDOM MASS CORRECTIONS TO THE COMPOSITE FERMION CONDUCTIVITY
In this Appendix, we detail the evaluation of Egs. (3.5) and (3.6), following [31].

1. f1®+o
We first consider the subdiagram of Eq. (3.6),
L dk (4 -+ K)o

NN = [ ——17, 1(+i 270 (k Bl
//:\\ /(27T)3 o )(QO+kO)2+(k+Q)2 o ®D

de . (q0)800 + (qa + ku)(saa
@nyp " (g0 + 0> + (k + ¢) 2

d2£ (%)500 + (E )S(ra .
-/ S e ) = i D) o + 0, (B3)

Then, the full diagram of Eq. (3.6) reads

% po, p=0) (B4)
ig ? 4’k
=-2 \/—N—f Ny /qTr VxG(CI)</ 2n)? ——1G(k +¢)1 x 2ﬂ5(ko)8m)G(CI)VxG(P +4q) (BS)
. 2
=22 ) N | TnG@)i Iy o + 0)G(@)y,G(p + ) X gm (B6)
N,
f q
2
ig (g, (g ve (g + P)eve }
-2 Ny [ Te|y, 0¥ 0 Ve . B7
(JJW) f/q r[ Zrg T )2+ O P+ @0 <8 @7
Using
Trlya¥p YoVe VaVel 4p 4z (@ + Phe = 2(po + q0) (4* — 45) (B8)
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we obtain

2
+ig ) / d’qdgy 1 2(po+q0) (¢ — &)
Nf 8m

&t (po. p = 0) = 2(=1) I (@)
0 VN QY [R+q] @ +Ppo)+¢ o
2
= 2(—1)< +ig> Nrg gy 2(po +40) (" ~ ) b d g
VNr QY [2+af (o +pt+atl] QPG +€

+i d
=2(— U(ﬂ%) Nfgmfz—j]:<2(po+q<>)qo

1 245 —2(po + q0)* + [(po + q0)* + ¢§] log [(q°+p°) N\ 1 A2
X — — log|: ] (B9)
4m [(Po + q0)* — qo] am G
Here, we used
Adie 1 1 A%+ g} 1 A?
/ T iy N (B10)
o Qm)rqgi+02  4n q5 4 93
We simplify the integrand by defining
1 2q2 —2(po + q0)* + [(Po + q0)* + q3 ] log [(‘]””0) I\ 1 ,
K(g0) = | 2po +qo)go x 1 - (—log[a5])
i [(po + 90 — 2] ”
[ —log[a3]\ (o + g0)q0 1 [(po+ 0)* + g3 ] log [ 2] BI1)
4 7(po + 240)po 2 (Po +240)* Py
A change of variables gives
/ quK( )y = | |/ 10 [ ]+10 [ ]) x(1+x) _1 1+x2+(x+1)2 lo x2
- =x — X —_—
o 2m o= Apo) = 1Po g eI 20 = 20+20) Blx+1p
x(1+x) —1 X4+ @x+1)? x2
|Po|/ D 1+ log >
27 4m 1(1+2x) = 2(1 + 2x) x+1)
— oy x(1+x) —1 X4 @x+1)? x2
—_— — — 1 1 . B12
+|p°'/ G ) vronp s el K rr o al ] rrye ®12)

The principal value of the second term [ dxlog[ Po] X [...] is zero. If we make the plot, we find it is an odd function with respect
tox = ;, so after we shift x — x — 5, the integral vanishes. For the same reason, the log A? term in Eq. (B9) vanishes.
Hence, we symmetrize the first llne of Eq. (B12), the log ¢ term of Eq. (B9),

/ quK(qo)+K( q) _ / dxlOg[xz][x(lex)( X2+ (x4 1) [ x? D
Dol 1+ log

27 472 | 1(1 4+ 2x) 2(1 + 2x) (x+1)2
—x(1 —x) X2 4 (—x + 1)? x2
1 1 B13
+ 1(1—2x)( T R N T (B13)
1
= — X @. (B14)
2 96
Thus, we conclude that
t+ig\’ L Ipol
(b+c) 0) = 2(—1 8 Nign X — 1Pol . B15
(po,p=0)=2( )<\/17f f8m X 5 X o (B15)
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2. f1@
Next we turn to Eq. (3.5). Again, consider the subdiagram,

:/ &’k (qo+ko+po)ot+(a+k+p) -7, (@0+p)y+(@+Pp) -7
(2m)3 " (qo + ko +po)* + (¢ + k+p)? (g0 +po)® + (¢ +p)?

(q0)70 + (q) '712.(%4—’60)70‘#((1‘1""‘7) o

o X 2w (ko) gm (B16)
(90)* + (q)* (90 + ko)* + (g + k)?
d*k (q+k+p) @+ P gp(@+k)o
=gn | —=:1 1y, kL] . (B17)
8 / QI Yk P (4 PP @ @R |
Consider the terms involving k. Setting p = 0, we find
d*k (q+k+p) (q+k)s
otanpo) = [ g (B18)
Q2m)* (g+k+p) (g+k) ko=0,p=0
_ d*€ (qo + ko + po)sro + (€ + P)eSra (g0 + k0)So0 + (£)o 8o (B19)
(2n)? (qo + ko + po)* + £ (qo+ko? + € ;=0 p0
_ d*€ (qo 4 po)8:0 + ()r8za (g0 +0)850 + (£)o 80 (B20)
@) (qo+po) +€ (qo + 0 + ¢
_ dzl (fIO + PO)QO StOSGO dzl ezsabam(snb 1 (B21)
QrY o+ poP + 1M+ €1 ] @2 d o+ po)+ &g+ €1
Now we set © = v = x. First consider the temporal component of the gamma index trace in Eq. (3.5),
Tf[Vr YeVu=xV¥p Vo yv:x] 81’0800 = TY[VOVKVpr)/o)/x] = (—l)Tr[J/KVpr)/x] (B22)
Contracting this with the momentum gives
(=DTrtlyeyev,vx (@ + Phedp = 2G0(po + qo)- (B23)

Next consider the spatial components of the gamma index trace. We perform the trace in 2 — € spatial dimensions, rather than
two spatial dimensions,

Tf[Vr Y Yu=xVYp VYo Vv:x] (Sabsru&rb = Z Tr[VaVK nypyayx] = Tr|:)/;< YxVp Z(Vayxya)} (B24)
a=2—e number of indices a
= Trlyeyxvp Qys — 2 — €)ya)l = € Telyevi¥p ¥al- (B25)

Contracting this with the momentum yields

€ Trlyiva Vo val (g + Pleqp = € X (=2)qo(po + qo)- (B26)
Putting this all together, we find
2
+ig d’q 2q0(po + q0)
M80.p =0 = <D 2 ) Nre
g UN ) ] @) o + po)? + (@ + 0071 [ + 2]
d* (40 + Po)qo e 1
2 12 2 ¢ 25 st o) (B2D)
(27)* [(qo + po)* + €14 + €°] (27)% 2 [(q0 + po)* + €14 + €°]
We wish to extract finite parts of this expression. The finite part of the first d£ integral is
f d*e (go + Po)qo _ 1 (o + po)ao o [(QO + Po)z} (B28)
Q27)% [(qo + po)® + €1[q3 + €] 47 po(po + 290) a1
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For the second integral, we need to extract the é part. Using the usual Feynman parametrization,

d*>=<4 £ 1 d><e (U1 ¢
25 T2 4 021 2 Yy (B29)
(27)% 2 [(qo + po)* + €1 [q3 + €] Q2m)* Jo  2[€° + A(x, g0, po)]?
fld 3 T O = 1+ OE) (B30)
= —-—— = — €).
y 22x 4
It remains to perform the d*q integral, which has the same structure as the one above,
/‘ d*q 240(po + qo) dgo 1 (@ +Po)go [(qO + Po)z] B30
@) [(qo + po)? +a*1 143 + 4?1~ J 27 27 po(po + 2q0) % 1
Putting this together, we have
2
+ig dqo 1 (g0 + po)qgo
(a)( —=0)= (— 5 49 T AU
po,p=0)=(-1) Ny gm /
NaTs 27 27 po(po + 240)
(q0+r0)* (1 (qo+ Po)go (40 + po)? 1
x log 5 — log 5 - —
9 41 po(po + 2q0) 93 4gr
(B32)
+ ’ 1 |pol
18 Po
= (-1 Nrgn X — X —. B33
= (= )( \/7> 1 8m X 5o X e (B33)
Summarizing the results of this section, we find the random mass diagrams equal
+ig 1 Ipol
@rb+o 0)=3x (-1 Njgm X =— X —. B34
MU(pp)()\/ﬁffgzﬂ% (B34)

Notice there is no off-diagonal component. By Eq. (3.1), this self-energy contributes the following to the composite fermion
conductivity:
n®p = 0 _ —38m

ofr = lim H”(p 0, |pol = ilo]) =

(B35)
Po—>0 Do 96 x 27’

where we set the g2 = 1 and @ > 0.

APPENDIX C: TWO-LOOP GAUGE FIELD CORRECTIONS TO THE COMPOSITE FERMION CONDUCTIVITY
In this Appendix, we detail the evaluation of Egs. (3.8) and (3.9).

1. Useful integrals

To evaluate gauge field corrections to the composite fermion conductivity, we need the formulas given in the next two
subsections. In the expressions below, A is a momentum integral UV cutoff.

a. Basic integral building blocks

The simplest integrals we will need are the following:

d~_*kl_/f‘ dck*dk A D

Qre ke Jy  @rpkr 2x?

Qm)3 K2(k+ p)*  8|p|’
S (p,q) = d : = K ! — (C3)
’ (2 )3 (k4 p)*(k + q)? Q2n)3 (KK —p+q)?  8lp—gq|’
J(p, q) = a’k : = : (C4)
’ Qn)3 kK2(k + p)*(k +4¢)*  8|pllgllp—ql’
/ = “ _ AL pa (C5)
Q) (k+ p)Pk+q)? 272 8|p—gq]
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Next we consider the integral

o.q) = d’k k? [ &k k+q’+*k+pP—(k+p+9P+2p-q
PO= ] Gaypk+prh+qrh+p+ar ) @) k+ p2k+ g2k + p+q)
1 1 1 2p-q

= 4 _ + .
8lgl ~ 8lpl  8lp—ql  8lpllgllp —ql

(Co)

It is symmetric, I(p, q) = I(q, p).
Next we consider the more complicated integral,

L. 0) d’k 1 1 < 1 1 ) 7

4p,q) = = - .
@m)} (k)*(k + pPk+ gk +p+a)*  8lpllgl(p-a)\lp—aql |p+4ql

To prove this result, we reexpress the integrand using partial fractions,

/ d3k 1 %)
Q2m)} (k) (k+ p)*(k + ¢)*(k+ p+ q)*

[ &k ( 1 B 1
) @ N®P*k+pPk+q? (P +pPk+p+q)?

1 1 1
- C
+(k+q)2(k+p+q)2(k+p)2 (k+q)2(k+p+q)2k2)2p-q )

= ! < b1 ) (C10)
8p-q) Ipllgl\lp—ql |p+4ql

Now consider the three-propagator integral

dq q-ps _ (Ik] + |p| = Ik = p]) (Ipl (ps - k) + |k| (ps - p))
= (=1 . (C11)
27)} (9)*(q + p)* (g +k)? 16 k| |p| (k- p+ |kl |pD) |k — pl

Consider the four-propagator integral

L(p57 D, k) = /

_ / d’q k-q
) @Y g+ RXq+k+pPg+p)?*
M (k; p) is not symmetric with respect to k, p. It is difficult to evaluate this four-propagator integral using the usual Feynman

parametrization. [The three-propagator integral (C11) can be evaluated in this way.] Instead, we use the partial fraction trick in
Eq. (C9) to rewrite it as multiple three-propagator integrals, and then use the three-propagator result in Eq. (C11). We find

M(k; p)

(C12)

k-q

d3q
Mk, p) =
(k:p) /(271)3 q*(q +k)*(q + k4 p)*(g + p)*

3
q 1 1
= — (k- _
/(271)3( q)(qz(quk)z(qﬂv)2 q*(q + k) (g +k + p)?

1 1 1
+ —_
(g+k*g+k+p2(q+p? ¢*g+k+pPg+ p)z) 2(k - p)

a3t € —k)-k
= Lk,k,p)—Lk,k,k+p)+0—Lk, k+ p, +
2 p P P kst r It 360 ] Gy e pre—k+ pr
2
= L(k,k,p)—L(k,k,k+p)+Lk,p,p—k) — ——————— — Lk, k+ p, P)). (C13)
2(k-P)< 8lpllp — kI |kl
A “quadratic in ¢ integral” can be obtained from the above building blocks,
dq (k-q) (k- q) _ [ e Stk -oR-g1 (C14)
) q* (g + k)* (g +k+ p)(g+ p)?* ) q* (g + k)* (g +k+ p)*(g + p)*

1
=3 (L(k, p.k+ p) — kK2 M(k; p) — L(k, p, p — k) + K> (C15)

8Ipllp — k| |k|>'
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b. More complicated integral formulas

The momenta ps = (p(s), s, pg) and ps = (qg, g%, q;) appearing below are arbitrary external three-momenta that are inde-

pendent of any integral momentum variables. We list the following integrals:

d’q q-ps _ (_1)|P|2(P5 k) + [k|*(ps - p)
Qr ) (¢*) (q2)2(61+p)2(q+k)2 16 |k [pl* |k — pl
d: : -k
mips= [ Gy FariE - CVlewE
d°q (q-ps) (a-pe) _ K (ps- pe) + (ps - k)(ps k)
) q*(g+k)1q? 32 [k|3 ’
d’q (q-ps)?
Qr)* q*(q + k)* (g + p)*
_Apl Ikl +21pl + [k — pl) (ps - k)* + |k| (Ip| + 21k + |k — p| ) (ps - p)*
- 16 |k — p| k| |p| (k| 4 |pl + |k — p| )?

|k = pl |kl [PICIk| + 1pl + [k = pl) p5 + 21k| |p| (ps - k) (ps - p)

’

N(ps: p. K)lpurc = /

Ray(ps, pes k) =

S(ps;k, p) =

+ 9
161k — pl 1K1 1] (KL + 1ol & 1k — pl 2
d’q (q - ps)*
R vk, p) =
3(ps: k- p) f 27) g + PP G+ PP

_ P’ k= plk* pE (lk — pl + |k + |pl) + 2k* p* (ps - k) (ps - p)
B 16|k — p| kI [pI* (k| + |pl + [k — p| )
" K (|k — pl + k| 4+ 2Ipl) (ps - p)* + p*(Ik — pl + 2k + |p]) (ps 'k)z_
16 [k — pl 1k [p® (k] + [p| + |k — p| )?

Next we consider

dq (q-ps)
M, (ps; k =
2(175’ ’P) / (27.[)3 qZ(q+k)2(q+k+p)2(Cl+p)2

_/ d3q( ’ )2( 1 B 1
N 2 R VT Oy T RS CRrel Py 5 cT gy ey

1 1 1
+ —
g+ (qg+k+p*g+p? ¢ q+k+pPg+ p)z) 2(k - p)

1
= 3G [S(ps;k,p) —S(psik. k+p)

/ d*q (q- ps)?
2 )3 (g +k)* (g + k + p)*(q + p)?

—S(ps;k+ p, p)]-

To further evaluate, we can shift the momentum,

d*q (q-ps)’ _ [ 4 [ —k)-ps]
@2y (g + k)7 (q+k+p)ig+p) @2m)> (L + p)*(L — k + p)?
_ d*t (L-ps)* =2(L- ps)(k - ps) + (k- ps)’
(2n)3 CU+prPl+p—k)?
= S(ps;p, p— k) = 2(k - ps) L(ps; p, p — k) + (k- ps)°
Thus, we have reduced M, to a linear combination of integrals we have already computed,
M (ps;k, p) = [S(ps;k, p) = S(psik.k+p) = S(ps;k + p. p)
2(k - p)
+S(ps; p. p — k) = 2(k - ps) L(ps; p. p — k) + (k - ps)z—]
8lpllp — k| Ik|
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(C17)

(C18)

(C19)

(C20)

(C21)
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2. Anti symmetric component of IT¢+9

The antisymmetric part of the gauge field propagator is

wprks 85 aprksd
DAml(k) K X (6 B 2)L )»]) C (k) € B )\. }»J

It is important to keep in mind that C is a function of the momentum k carried by the gauge field.
We want to evaluate HET)”),

(b+c) Pr€pvr NG
My (p) = 2] (p)

P (=Dg" [ Pk [ dq iy, ik+9)7v:  iq°vs  i(p+9) v
- X 2 Tr 2 yol 2 yﬁ 2 Vv 2
q (k+q) q (p+a)

2|pl Ny @2y ) @)

The following identity is useful:

Sia  Sip  Bic
€ijk€abe = Det| 8ja i Sje
Ska  Sb Oke

Consider the following terms in the integrand in Eq. (C25):

iq°vy, itk+q@)ve iq°Ve i(p+ @)V (€apn kybyj)
Tr[ Ve VsV T (pregun) LR
q (k+q) q (r+q k?
1

q*(k + 9’*¢*(p + )
1 1
_ x 8(2(p - a) + PPk + [(p - 24 2k - q)—
Ph T POt a? (lg"(p-)+pq] ((p-9)q +pq] q)k2
We perform the convergent g integral first,
d’q d’q 1 2112 2 1
/(2 )3(E (C29))—/(2ﬂ)3 kt ot ar 8(U(p-q¢)+plk"+[(p-q) +p ]kwI)P
Look at
d’q p-q+p [ &q sp+ 9 —p =1+’
2n)} (k+ q)*q*(p + q)* @n) (k+9?¢*(p+9)?

TrlyuVp Ve Ve VYo VoVl @” (k + @) q° (p + @) (Pr€pn)

1 [ & 1 1
= - — +
2 / (2m)3 ((k +9%¢?  k+9*p+q9?  (k+9*P(p+q)?

B 1( 1 Lo P )
2\8lk|  8lp—k| ~ 8lpllkllp—kl )’

where we used a formula in Appendix C 1 a. Next consider

d*q (p-q+pk-q 1 d3q< k-q k-q
Q) (k+qP¢*(p+q? 2 @n)
1K +k2+k~p
2\ 16]k| 16|k — p|

+ p* Lk, p, k))

where we used Eq. (C11). Therefore,

k+qP¢  k+9P(p+q?  (k+q?¢(p+q)7?

Eq.(C29)) = = — — + ==
/(2 )3( (2 <8|kl 8|p—kl  8|pllkllp — kI k* 2\ 16/k| = 16]k —

k-p
1/1 1 P > 1 1 1+— 4p2
=-—- + + ==+ + = Lk, p, k)
2<|k| lp—kl  Ipllkllp — k| 2<2|k| 2k — pl

k-p
1 -1+ 8 4 p*
<—+ "2>+ d + pL(k 0.K),
k| |k — pl 2 |pllkllp — k|
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(C24)

(C25)

(C26)

(C27)

(C28)

(C29)

(C30)

(C31)

(C32)

(C33)

(C34)

(C35)
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where we used

dq k- —K*
q 9 __ , (C36)
Qn)} (k+q)*q*  16]k]|
a? k- 4k
1 4 _ EPEEP (C37)
(2r) (@ + k)3 (g +p) 16]k — pl
Summarizing, we find that Eq. (C25) equals
1 (=g ([~  dkd®, 1{1 —1+5%2 2 4p?
o p ):_2( )¢ /CA(k) | —+ L) s P + — p L(k, p, k)
2lpl Ny (2w)> 4\ Ikl |k—pl 2|pllkllp — k|
1 (=g - dked’k 1 k- 2 4 p? 1 1
=L, )g<ka) A L AR A R— +” Lk, p,k) + — — )
2lpl Ny (2m)’ 41k —p k> 21pllkllp — kI 41kl 4lk — pl
(C38)
3. Anti-symmetric component of IT®
We aim to evaluate
v —1)g* Ca(k) €uprkndy;
ne Préu pay = P ( //T G(@yeG(g + k) 1Gg + k G A CaphTnOni
) (P) = 2] I, (p) 20 N, L, 1y, G(@)vaGlg + k)yG(q + k + p)ysG(p + q)] e
(C39)
1 (-Dg* [ 2 2 2
=s———— [ Catk) [[=8(k-p)(p-@ky —8(p-q)ky + 8(k - q)p°ky + 4(p - @)p’ky
2[pl Ny Ji q
+12p°¢%ky + 80k - )(p - Qpy + 4 (p - @)py — 4k - p)G°py — 4k - p)p*qy — 8(k - @)p*qy — 4P gy
1 ky8,
5 5 5 > x == (C40)
q°(q + k) (g +k+ p)(q+p) k
The integral over g in Eq. (C40) can be decomposed as
IC:/C1(P D+Ck-9)+Cq* +Calk-q)(p- )+ Cstk-q) + Cok - )k -q) + G (p- q)2 (Cal)
p 7*(q + k(g +k+ p)*(qg+ p)*

for some C;, independent of ¢g. Using the building block integrals from Appendix C 1 and writing the norms |k| = k, and |p| = p
we find

-1 1 1 2p 3p —k*p
Ie =\ —F+ + + + +
2|k| ~ 4lk—pl 4k + pl 4lk[ |k — pl ~ 4lk| |k + p| 2|k| |k = pl (k- p)

+ il + il + r + 7

2|kl |k — pl (k- p) = 2|kl |k + pl(k-p) = 2|kl |k + pl(k-p) ~ 8lk|(|p||k| + k- p)
N v N P N -p

8lk — pl(pllkl +k-p) ~ 8lkllk—pl(pllkl+k-p) 4K+ |kl |k + pl+k-p)
+ r + r

8k (k2 + k| [k + pl +k-p)  8lk+ pl (kK + k[ Ik + p| + k- p)
n —Ipl k| —plk+pl

8k + pl (k* + |kl |k + pl +k-p) ~ 8lk| (k* + |k| [k + p| + k - p)
+ r + —r

8kl (p* + Ipllk —pl —k-p) ~ 8k —pl(p*+Ipllk — pl =k - p)

P’ P’

+ +
81kl |k — pl (p* + Ipl |k — pl —k-p) ~ 8|kl (p* + Ipllk + pl +k-p)

— 1
+ r . . (C42)
8k + pl (P> + Ipl Ik + pl +k- p) 8|kl |k + pl (p* + |pl |k + pl + k- p)
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Note that, throughout the calculation, we have kept p general. Many terms above are individually divergent when integrated over
k. We cut off the divergent k integrals with the cutoff A: For instance,

/ ' dcost / take A (C43)
COoS =
—1 0 2m)3 )
k1 _ N (C44)
Qr)Ylk—pl  4rx?  127%
/ d’k —k*p . PP(12 +7?) —pA (C45)
QrY 2kl lk—pl(k-p)  64x2 472

We are careful not to shift the momenta arbitrarily in any divergent integral; otherwise, we are liable to obtain an incorrect result.

4. Combining the anti-symmetric components of II“ and 1%+

We now add together the antisymmetric components of I1 and I1%*¢ in (C40) and (C38) to find

1 g ~ 1 k-p P’ 4p2 1 1
e+ (p) = ———/c (k)[z x (— + + =Lk, p k) + — — ——— | + Zc |. (C46)
) 20pI Ny S 41k —plk*  2|pllkllp —k| 4kl 4lk — pl
To perform the integral over k, we take p to lie along the &, axis, with k - p = |k||p| cos 8, so thatk - p = 0 and
/ r /ld G/Adkhkz( ). (C47)
— (.= cos
(27)3 1 o (@n)

After performing the fOA dk integral, we perform a % expansion, and then do the f_ll d cos 0 integral. The log A divergent terms
vanish after the angular integration. Letting cos# = z, we symmetrize with respect to z to get rid of terms that are odd in z and
should therefore vanish after performing the z integral. The result is

1 (-Dg* ! —z+ (=1 + z*)ArcTanh 1
) = 5o SO [z pp SR , (c48)
2|17| Ny -1 82z Ay + By/1 — 22
ol = wH“’*‘*‘”(p 0. [pol — ilw)), (C49)
with Ay +gX ,Bx = w‘g}
Asa con51stency check When w, = 0 (vanishing Coulomb interaction),
1 (=gt « , 4+
" (pyw, =0 +0 1 A+—A C50
w  pee=0=g ey e a 7P e 8T an (©30)
which agrees with [38]. We drop the linear divergence since it is an artifact of the (gauge-noninvariant) hard cutoff.
5. Symmetric component of IT¢+)
Now we consider the symmetric component of I1*¢). We will need the symmetric part of the gauge field propagator,
Sym |k| 1 2
(ko, k) = ~ 1 —cos” 6 (C51)
K;ggi—i—wx\/l—cos g%(
X
1 kik; 1
DIk k) = (S | g) y . (Cs2)
0 Ikl K’ e 4w /T — cos26
Here we are denoting v/ 1 — cos?> 0 = |k|/|k|. We parametrize the gauge field propagator as
Sym(k) (800880 fa(k) + 80idp; 8ij fp(k) + 8aidp; kik;fc(k)), (C53)
where f4, fz, fc are constants. Using the gauge field propagator above, the symmetric component of TT?+¢) is
C 1 C
Mg () = 58T (p) (C54)

S (=Dt [ dk [ dq [ iq"y, ik+@)Tye iq"Ve  i(p+q) Ve

5 : DM (k). (CS5
2 Ny Jerp) @ T T ke P <p+q>2} (). ()
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The trace Tr[. . .],, in the integrand evaluates to

iquyp v i(k+ q)’zyr vy i q”zya ) i(p+ q)“zyx] (% ) DEP (k)
q (k+q) q (p+a) 2
1
T Pkt a2 (p+ g7
+ (Pakp + Ppka) @ + (Gukp + apke) [=2(p - @) — @1+ (quPp + 4pPa) T
+(qaqp) [=4(p - 9) — 24D D" (k)
1
T PhF QPP+ P
+ (Pakp + Ppka) @ + (Gukp + qpka) [=2(p - @) — 41+ (quPp + 48P 4
+(quqp) [=4(p - @) — 24D DY (k). (C57)

Next, we decompose the terms in the integrand with different ¢ dependencies into various partial fractions,

(C56)

Gupl2k-q)(p-@)— k-G + k-9 +P-9q +4"]

Gup2k- ) (p-@)— k- D@+ k- d + -9 q*+4*]

Tr[. . ‘]MV(%)Di);}m(k) (C58)

1 1 —k? —p?

2(q +k)*(q + p)? * 2¢* ¢* * 2(q + k)*q* * 2(q + p)q*
n k? p? n —k-p 1

2@ +k)*g+pret  (@+k*g+prg q*(q +k)*(q + p)?
N (—ZfB(k -q) = 2fc k(- q) — 2fako g0 L Yepik-g) +2fc PR (k- q)+2f1 P ko qo)

(q +k)*q* (q+k)?*(g+p*q
n 2f(p-q) + 2fa pogo + 2fc (k- p) (k - q) + (—2)qu2 + fo (k-9 + faq5
(q+Kk*@+prqe (q+Kk3*q*

f8 P’ + fo p* (k- q)* + f p* 4}
(q+k)*(q+pPq* '

Each of the terms in the first few lines diverge as |¢g| — 0" in the IR, however, their sum is IR finite. Combining some of these
terms with one another, we perform the following ¢ integral:

- aaﬂDily;“(k)[

} + (Pakp + ppka D2 (k)

(C59)

+(+2)

dBg 1/ 1 —k? —p? K2 p?
q3_(22+ syl p24+ 2p 24) (C60)

2r)»2\q*q* (q+k)rq" (@G+prq (@+k)(q+p)rq
1' d3 1 2 d3 _k2 k2 2

=5 q3(22+ p24)+ 6]3( > T 2p 24)] (C61)
21 @arY \q*q* (q+p)rq QrY \(q@+k)3q* (q+k)3(q+p)rgq

_ 1 f d*q ¢ +2(q - p) / d*q K 2—2k2(q'p)] ©62)
21 @n) (g+p)qt (27)3 (g + k)*(q + p)* ¢*
171 . —k? 1 2(p-k)+K2(p -

SR R AT S A Y YO a2 p)} (C63)
21 8|pl 8p 8 |pllkllp — kI 16k°p’ |k — p|
1 p-k

=P (C64)
2 8kl |pl 1k — pl

where we have used the “dot ps” formulas in Appendix C 1 b, with ps = p The remaining integrals over g are straightforwardly
performed using formulas we have already given.
Next, we recall the following list of SO(3) noninvariant integrals that we evaluated in Appendix C 1 b,

d*q k-q

9 Rkk).  ps=(0.k) 65
Gy gl =Rk ps =00 (C65)
d3 ki
L9209 _ Ri(ksk), ps = (ko,0,0), (C66)

@2m)} (g +k)*q*
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d’q k- q) / ko qo
:N k; ,k ) :N k 5 1k )
@y @+ g+ prg  ErP (2n>3 G+ 0gtprg el
d’q P9 / Poqo
’7k L ;7k7 9
Qnr)} (g+k)* (g + p)* ¢? Lips. k. p). Q) (g+k)* (g + p)* ¢? (P03 k. p)
and
d*q  (k-q)?
T — Ry(k,kk),
@y qrhrg  REEl
/ d’q q :f d*q (g + igy)(q. — iqy) :/ d*q (q-(0,1,i)(g- (0,1, —i))
(27)3 (g + k)* ¢* @r)y (g+k)?q* ()} (g +k)*q*
, , 262 + k2
= RZ((Ov 15 l)v (07 17 _l)’ k) = Ws
dq 4 dq (¢-(1,0,0))° K4k
- = R,((1,0,0), (1,0,0); k) = )
@parkrd ) @y qring R OO0000 =05
Finally, we will need
d*q k- q)°
= Rs(k;k, p),
@ny @t P+ g ok P
dq 3
= R3((1,0,0); %, p),
)3 (g + k(g + p)?q* s(( sk p)
d3 2 d3 2 _ 2 1
| o= | e e = — Ry((1,0,0):k, p).
2r) (q+k)y(q+p)rq Q2r)Y (q+k)(q+prq 8|kl |pl 1k — pl
Plugging these in, we find the g integral equals
5 Sym
k
(2 el (2) ®
(p, k ,
:(fA+2fB+fck2)[2Z )+( k) 3(p )]+[2f3k~p+2fck2k-p+2fAk0p0]J3(P,k)

k2 + fsk* + fok*
P I NG k) + 2R Nek p, k) 42 9 Nk ., )

+ [2fp L(ps k, p) + 2fa L(po; k. p) + 2fc(k - p) L(k; k, p)]
2% + K LK k2+k§:|

1 k
+(= )[fB TR T SRR TTS

+2p7 (f5 I3k, p) = R3((1,0,0);k, p) 1+ fe Ra(ks k, p) + fa Rs((1, 0, 0); k, p))

(C67)

(C68)

(C69)

(C70)

(C71)

(C72)

(C73)

(C74)

(C75)

Note that in the definition of [, above, we do not include the factor 2 which counts the contribution from diagrams b and c.

6. Symmetric component of IT®

The symmetric component of I is

. 1
e (p) = 58w L (P)

=% (_;jg (j:; (;’;)3 Hy, G(@)1Glq + K)Glg + k + pysGlp + )l DI (K)
(=g [ Pk [ dq
Ny Q23 ) @2n)
247k - )+ 3K ¢ =247 (p- @) — P’ ¢ — ¢* 1 + kakgl—4q" — 4(p - @)]

+ quqpl2p” — 471 + pappl2q® + 2(k - q)]

+ Paqpl2(k - @) — 3k* + 2471 + ppqal—2(k - p) — 2(k - q) — k* — 4(p - @) — 2¢°]
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+koqpld(k - p) + 4(k - @) + p*1+ quksld(k - @) + p*1 + pakplg® + 4(k - 1 + kaps[—2(p - @) — ¢°1)
1
% g*(q+ k) (g +k+ p)?(qg+ p)?

Above, we have used the parametrization of the symmetric part of the gauge field propagator in Eq. (C53).
We rewrite the first part of the integrand using partial fractions,

D" (k). (C76)

. 2(k - p) k> — k* — 2k2p? 24>
thyﬁ (k)8“ﬁ< 2 2 i st 5 2 2
(g +kyq+k+prg+p” q(@+k+prlg+k)
—2(k - p) +2k> — (q + k)? 5 N 3 N 3
P @q+k+pPq+p?  (@+rk+pig+k)?  (@+k+pPg+p?  (@+k+pPg
k-p)— L
& -3 2). (C77)
(g +k+p)3(qg+k3g+p)
Integrating this over g gives
3
D3y (k)Sap ([2(k YK =K = SKp*1Ja(k, p) + 2K 3k + p. k)
5 -1 3 -1
+[=2(k - p) +2k7]J3(k + p, p) — I(p, —k) + 7Jz(k+p, k) + EJz(ker,p) + 7Jz(k+p, 0)
-1
+ k- p) stk k= p)+ — Ik, p)) (C78)
3 k| k| -1 1 1 k|
= D" (k)3q ([—k“ — Sk p*1Jatk, p) + - +—+ + + )
ap 0P 2”0 aplk —pl  Aplk+pl " 4p 16k —pl | 16lk+pl | 2plk+ pl
(C79)
=Dy (k)8 ([—k4 N W i P S — ) (C80)
ap \-0xp 2 o 4p 16k —p| " 16lk+pl ' 2plk+pl )
Next, we use partial fractions to reexpress
—4g* — 4(p -
Dzyﬁm(k)k“kﬂ 2 261 » qz) 2
q*(q +k)*(g+k+ p)(g+p)
= (D (k)kok )( 2 = 2 ~ 2 ) (C81)
b SN g+ K2k +pPa+pR @+ +k+pRq+p? (g +kPg+k+ pPg

Integrating this over g gives

(D25 (kaky) 2p* Ja(k, p) = 2J5(p, p — k) — 2 J3(k, k + p))

— -1 -1
= (D™ (ko k < P n P + + ) (C82)
(Da (Okaks) 4lk| |k — plk - p) — 4kl |k + pl(k - p) ~ 4lk||pl |k — pl ~ 4lk||pl |k + pl

The next term is
(2p* — 4k?)

sym fC(k'Q)2+fAQ(%+qu2
D (k)qq
ap YU 2 I g+ k + (g + p)

q*(q +k)*(g + k + p)*(q + p)?
fetk- @ + (fa — fo)ag + f5 ¢

= (2p* — 4k%)

= (2p* — 4k*) . (C83)
¢*(q+ k)2 (g + k + p)*(qg + p)?
Integrating this over g gives
Q2p* — 4 (fe Mok k, p) + (fa — f3) Ma((1,0,0);k, p) + fzJ3(k — p, k). (C84)
Moving on to the next term
. 2¢% +2(k - q)
D (K)papp———ak @
q*(q+ k) (g +k+ p)(g+p)

DY (k) ( K + ! + ! ) (C85)

= o PaP .

4 PN+ 02 q+k+pPa+p? " (@+k+pPq+kPg+p?  (q+k+pig+pPed
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Integrating over g gives

D (k)papp(—k> Ja(k, p) + J3(k, k — p) + J3(p, k + p)) (50
k| k| ! !
= [felk-pP + fa P} + 2( + + * )
[felk-p)* + fapo + f5 0] 8Ipllk —pl(k-p)  8lpllk+plk-p) 8lkl|pllk—pl  8lkl|pl|lk+ pl
(C87)

Next, we consider (arranging the terms by their power of q)

DY (ke Paq,s[-~~] +Qapﬁ[~--]
ot O G+ kg +k+ prta + p?

_ —Afctk-p)(p-q)k-q)—4fp(p-q)(P-q) —4f2(p-9) (Poqo) [—2fs(k - p) —4fsk*1(p - q)

q*(q +k)*(g + k + p)*(q + p)? q*(q +Kk)*(q + k + p)*(g + p)*
[—2fc(k - p)k - p) — 4fck* (k- p)l (k - q) [—2fa(k - p) — 4£4k*1(po 90) (C88)
q*(q +k)*(q + k + p)*(g + p)* *(q + k(g +k + p)*(qg+ p)*

Integrating over g gives
—4fctk-p)Fi —4fs B — 4fa Fs + [=2f5(k - p) — 4f5 K1 M(p; k) + [=2fc(k - p)(k - p) — 4fc k* (k- p)I M (k; p)
1 1 2
+ [=2falk - p) — 4fAk2]|:§J3(k, k+p)— §J3(k —p.k)— %h(k, p) —M(p; k)], (C89)

where F|, F>, and F; are defined below:

F1=/ (p-q)k-q)
~Jo @@+ k(g +k+ pPg+ p)
:/1 [+ p? =P — 1k q)
¢ 23*(q+k)*(q+k+pPig+p)?

:l/( (k- q) 3 Pk - q) 3 (k- q) )
2J,\P@+*g+k+p? P+ g+k+pPg+p?  (g+k)*(g+k+pP(g+ p)?
1
= E(L(k; k,k+ p) — p* M(k; p) — L(k; p, p — k) + k> J5(p, p — k), (C90)
_ / r-9)p-q
¢ @+ )X q +k+ p)qg+ p)?

:1/ [(g+p’ =P -1 -9
2J,4*(@+ k) (g+k+pig+p)y?

:1</ @ -9 _/ r@e-q _/ -9 )
2\Jg @*(q+Kk3(q+k+p?  J,¢*(q+k3(q+k+p2g+pP  Jg(q+kP(q+k+pP(g+ p)?
1
= SLpsk, k+p) = PP M(p;k) — L(psk, k — p) + p* J3(k, k — p)), (C91)

_ / (- 9) (Poqo)
~ Jy g+ Kq+k+ p)(g+ p)

_ 1( / (Poqo) B / P* (Poqo) B / (Poqo) >
2\J, P+ g+k+p?  J, g+ (q+k+p2q+p?  J,(q+k)*q+k+ p)g+ p)?

Ll PP-q-p-q > )
= —(L(Po: k. k + —/ — L(Po: k. k — p) + pt Js(k, k —
2( o P 0 42(q+ K2 (g +k+ p)(q + p)? (Po Pt podsl P

1/ P’ p' P )
=3 L(posk, k + p) — EJs(k,ker)— 714(/@1))— Efa(k,k—p)—p M(p; k)

—L(ﬁo;k,k—P)+P<2)13(k,k—17)>- (C92)
Note that M (p; k) is not symmetric with respect to the exchange of its arguments.
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Next, we consider

kaqpl. .1+ qukgl...]
q*(q +k)*(q + k + p)*(q + p)*

sym( )

_ 8k @tk - q) + fo () k- q) + fakoqol | (k- @)4fp(k - p) + 4fc K2)k - p) + 23 P + 2fc(k?) p°]

q*(q +k)* (g +k+p)*(g+p)?* q*(q +k)*(g +k + p)*(g + p)*
[4fa(k - p) + 2f4 P*1 kogqo
q*(q + k(g +k+ p)*(qg+ p)*
Integrating over g gives
(85 + 8fc K*1 Fy + 8fa Mo (ks k, p) — Fa] + [45(k - p) + 4fc () (k - p) + 25 p* + 2fc(®) p 1M (k; p)

k2 1
+ [Afatk-p)+2fsp ][ Sk +p, p) — —J4(k D) — —Js(k k—p)—M(k, p)]

where, using (C15),

F:/ (k-gq)k-q)
YT ) @+ Ng+ k+ pPg+p)?

21/ [(q+k7 -k — g1k - q)
2 J, ¢*(q+Kk)*(q+k+ p)(g+ p)?

1
= —( L&k, p, k+ p) — kK> M(k; p) — L(k, p, —k)+k2—>.
2( PP P pp 8171 1p — kI IK]

We also note the integral relation,

:/ (k - ) ko g0l _/ k-q)k-g—k-q)
T > (q + k)*(g + k + p)*(q + p)?

= M(k; k, p) — Fy,

q*(q +k)*(q + k + p)*(qg + p)*

where the definition in Eq. (C23) for M, was used. In fact, M, (k; k, p) can be simplified further in terms of J,, J3, Ja, I.

Finally, we consider
+pakpl. .. ]+ kopgl...]
q*(q +k)*(q +k+ p)*(g + p)*

_ (k- q) [4f(k - p) + 4fck*(k - p) + 4fskopol  (p-q) [=2fs(k - p) — 2fck*(k - p) — 2fa kopo]
q*(q + k)*(qg + k + p)*(q + p)* q*(q + k)*(qg + k + p)*(q + p)*

Dy (k)

Integrating over g gives
[4fs(k - p) + 4fck’(k - p) + 4fa kopol x 3[J3(k + p. p) — kK Ja(p, k) — J3(k, k — p)]
+ [—2fgk - p) — 2fck>(k - p) — 2fa kopol x S[Ja(k + p, k) — p*Ja(p, k) — J3(k, k — p)].

Putting these results together produces I, (schematically),

f _/(2 p ]‘”< ) Dug

The result is a lengthy expression that we do not write out here.

7. Combining the symmetric components of I1® and IT¢+

We add together (C99) and (C75) to find [including multiplying (C75) by a factor of 2] the symmetric component,

4 3
qatbte) (atbrer, ~ _ (=Dg d’k
(s) ( ) = _Sﬂvnuu (P) - N—f (27_[)3 Qlye + 1)
-1 4 1 A 2 k2
_ (g / dcos@/ Ak > (21 + 1o).
Ny Ja 0 Qr)

(C93)

(C94)

(C95)

(C96)

(C97)

(C98)

(C99)

(C100)

As before, we take the external momentum p to lie along the &, direction so that k - p = |k||p| cos 6. This choice allows us to set
allk - p=0in 21, + I, expression. We plug in the propagator in (C53), perform the dk radial direction integral with cut off A,
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and perform a % expansion to find

4 1
A
HE‘S‘;’b+‘)(p) = —]g7|p|/ dcos@( " (cos0) + f;(cos ) 10g|:
i -1

Pl
7, fi" are odd functions of cos € so they both vanish after performing the angular integration. Symmetrizing f;" (cos6) to

remove any antisymmetric part, we find

(;”'*(z)+f0"’~*(—z) (—5Cy z(=1+ )+ /1 =229+ 22) + 6(—1 + 22)(Cy — Cy 22 +2«/1—z)arctanh[z])

i| +f1w‘(cosé)A>. (C101)

2 19272 z[ Ayv/1 — 22 + By (1 — 22)]
(C102)
where z = cos 8. Thus, we have
. _1 4 1 Wy + Wy
O_)?;oop‘gduge — Hgg;rb+c)(p — 0’ |P0| N ia)) — ( N)g f dz 0 (Z) 2f0 ( Z)- (C103)
f -1
This agrees with Eq. (3.14) in the main text.
As a consistency check, we note that our result agrees with [39,40] when w, = 0,
w =0
=)+ f""(—2) &% I 3 >
) =2 g 192727 (9z+ 27 + 12(z° — 1)arctanh[z]) (C104)
and so
1
1
/ d cos Ofw*_ (cos ) ~ (0.00893191 = — x 0.14291062. (C105)
_ k=0.2 =L o= 16
APPENDIX D: THREE-LOOP CORRECTIONS TO THE COMPOSITE FERMION CONDUCTIVITY
1. Triangle subdiagram
We begin by evaluating Eq. (3.19),
d*k (k — Q)ok: (k — p)
Cou(Q, p) = Tt Vo Vo Ve £, DI
2 (0. p) f(z ST Vet s ®1)
First, we expand the trace,
Trlvo Vo Ve YiuVol = GouTrlVo Ve Vel — 8pc TtlVo Va Vil + 8pa TtlVo Ve Vil — 8po TtlVa Ve Vi) + (82, TrlVo va vyl
= San TrVo Ve Vol + 8o, Trlva vV Vo) + (2o Tt Vo Vi Vol — S1o Ttl¥a Vi Vo 1) + Soa Trlyz Yu ¥yl (D2)

where Tr[y,vpY.] = 2i€ .. Contracting this trace with the momenta gives
Tt Yo Va Ve Vi Vol(k — Q)oke(k — p)p (D3)
= 2ik*€rauko + 2ik*€auppp — di€nupkakypp + 2ik €0y Qo + di€naokuky Qs
+2i(p - Q)eyapuky — 2i(k - Q)epap Py + 2i€upnknPpQu + 2i€,pakyppQu — 2i(k - P)egyn Oy
+2i€r ke o Qn + 2i€qryke puOn + 2i€onka Do Oy + 2i€qpykupoQn — 2180 €1 pyke Po Oy - (D4)

The k dependence of the integrand is of one of the following types: k> ko, kZ, kokg, k.
To evaluate the integrals over each type, we will use the following integrals:

ok Kk, | o+ 0
"= Gy k-0PRG—pr 16 p-0l )
I = d3k k2 _ 1 1 (D6)

=] Gork—0rG—pr Sip-0l’
[ &% K, Q1+ 1pl— 10— p) (101 Py + 11 Q) o

=] Gar k- QPR G—pr  1610I1P10—pl@-pTiQliph
3

Jup = f (Zlﬂ’; — Q)f kﬁﬁ(k 5 = APy + BQuOp + CpaQy -+ DQupy + Ebup (D8)
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where the coefficients are

_ 2p°101+ 10 —Ip=Ql(p- 0+ 0 +Ipl (p- Q= 2Ip — 0l 10] +20%)

A , (DY)
320pllp— 0l(p- Q0+ IpIIQI?
5 201+ 1pP —1p = QI(p- 0+ ) +101 (- Q + 2" = 2plIp — Q) 10)
32101 1p = Ql(p- 0 + Il 101 ’
—p- 2 _|p— 2 —|p—=
Copo P 0tP —Ip=0lI0+ 0> +1pl (0| - Ip~ Q) oI
320p— 0l (p- 0+ IplI0?
_ 2 _ N2
_2p-Q—p+Ip—Qlipl +10 - Q 1)

32[p =0l (p-Q+1pl1QD

Equation (D8) is not easy to derive directly from the usual Feynman parametrization. To derive it, we contract both sides of the
equation with ppg, Qs 0p, PaOp, QuPg, Sup. This gives a set of linear equations that we solve for A, B, C, D, E (note that some
conditions may not be linearly independent in this procedure).

Plugging this into the expression for C,,,(Q, p) gives

Con(Q, p) = (%) X i(=2€0ap Lo + 2€01pPp I — 4€0upPp Jooy + 26000 Qo I + €100 Qs Ty
+2(p - Qénap Iy — 2€50uPn Uo - Qo) + 2€,00Pp Qa Iy + 2€00aPp Qu Iy — 2€0y @y (s - Do)
+2€r1yPa Oy Jr + 2€arnPuQn Jr + 2€1pnPp Oy Jo + 2€0pnPp Oy Iy — 280p€1pnPpQy J7)- (D13)
Note that I, I, J,, Jop are functions of p and Q.

2. The complete 3-loop diagrams ﬁij

Equipped with Eq. (D13), we can compute the full 3-loop diagrams in Eq. (3.18). Consider the integral over Q,,. The delta
function 6(—Qq + po) arising from the disorder line allows us to set Qg = po. It remains to integrate over O, and Q,. Define

0, = \/Q)%TQ)z The gauge propagator is

Anti; oy K €apr On 63
Dyg'(Q) = e — < 0 > (D14)
X X6 X /P%+Q,2- r
2 2
VP O; 1 w, O
Dy (Q) = 0? X pE) P 1+ ?2— , (D15)
' & T e Yyt

and

D;;(Q) =

1 1 0,
X 8ii — 29, ) (D16)
2 2 ﬂ+wL ! Q%
Py +O; & N

Parameterize (Qx, Q) = Q,(cos ¢, sin ¢) and rewrite Eq. (3.18) as

< dQo, O,
2m)?
where it is understood that (Qo, O, Qy) = (po, Orcos ¢, O, sing). To simplify further, we set the external momentum

P = (Po, Px, Py) = (Po, 0, 0), and change to the dimensionless variable z, defined by z = Q,/|po|. Integrating over d¢, we
obtain Eqgs. (3.21) and (3.22).

2
,.,(p) = 4 x gm/O fo d¢ Dop(Q)Copn(Q, p) x (=1)Cpu(Q, p), (D17)
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