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Quantum computers and simulators promise to enable the study of strongly correlated quantum systems. Yet,
surprisingly, it is hard for them to compute ground states. They can, however, efficiently compute the dynamics
of closed quantum systems. We propose a method to study the quantum thermodynamics of strongly correlated
electrons from quantum dynamics. We define time-averaged classical shadows (TACS) and prove it is a classical
shadow(CS) of the von Neumann ensemble, the time-averaged density matrix. We then show that the diffusion
maps, an unsupervised machine learning algorithm, can efficiently learn the phase diagram and phase transition
of the one-dimensional transverse field Ising model both for ground states using CS and state trajectories using
TACS. It does so from state trajectories by learning features that appear to be susceptibility and entropy from a
total of 90 000 shots taken along a path in the microcanonical phase diagram. Our results suggest a low number
of shots from quantum simulators can produce quantum thermodynamic data with a quantum advantage.
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I. INTRODUCTION

Simulation of strongly correlated electrons in the context
of quantum chemistry and condensed matter physics is one
of the potential areas in which quantum computers will have
a significant advantage over their classical counterparts [1–3].
Strong interaction between the ostensibly simple electrons can
give rise to novel phases, including high-temperature super-
conductivity [4,5], strange metallic behavior [6], fractional
excitations [7], and quantum spin liquids [8]. Condensed
matter physics aims to understand these novel behaviors
by studying their phase diagrams and phase-defining fea-
tures. However, failure of perturbation theory and exponential
scaling of the Hilbert space for strongly correlated elec-
trons presents a formidable challenge to classical simulation
methods such as exact diagonalization, density matrix renor-
malization group (DMRG) [9–11], quantum Monte Carlo
[12], and dynamical mean-field theory[13]. Whereas, this
same challenge provides an exciting opportunity for near-term
quantum computers.

Harnessing the power of a quantum computer to simulate
quantum systems [14] requires (i) algorithms that can be ex-
ecuted in a reasonable time and (ii) the ability to learn from
quantum experiments without exponentially many measure-
ments. Studying the phases via ground state preparation is a
QMA-complete problem [15–19], which cannot be carried out
in a reasonable time, even with quantum resources. However,
performing dynamics on a quantum state is known to be a

*These authors contributed equally to this work.

BQP-hard problem [20,21], possible within polynomial time.
Likewise, it has been shown that shadow tomography [22]
methods such as classical shadows (CS) [23–25] are effec-
tive at predicting properties using very few measurements.
Thus, if we could combine dynamics simulations and classical
shadows, we would have an efficient algorithm to simulate
condensed matter systems.

We need to prepare low-energy initial states to use dynam-
ics to simulate the dynamics of condensed matter systems and
exploit quantum ergodicity [26]. Although preparing ground
states of local Hamiltonian on a physical lattice is a challeng-
ing problem on a quantum device, it is always possible to
prepare some low-energy state with a constant-depth circuit
[27,28]. Ergodicity then provides a link between statistical
averages and time averages obtained from the dynamics of the
low-energy state. It is important that the observables of inter-
est, such as the order parameter, equilibrate before the qubits
decohere. Nevertheless, rapid equilibration for most local ob-
servables is a feature shared by many interacting quantum
systems [29–31]. Thus equilibrium dynamics of low-energy
states appear to be a promising route to studying equilibrium
quantum phases and phase transitions.

In this manuscript, we present an algorithm for identifying
phase diagrams and phase transitions of strongly correlated
systems motivated by how physical quantum systems operate.
It consists of (i) identifying an initial state, (ii) generating state
trajectories by evolving this state in time, (iii) using shadow
tomography to convert the quantum state to classical data,
and (iv) applying unsupervised machine learning methods to
discover phases of matter and their phase transitions [32–41].
A schematic overview of our approach is shown in Fig. 1.
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FIG. 1. Schematic overview of our study. (a) Classical shadows (CS) of ground states and time-averaged classical shadows (TACS) from
dynamics of a time-reversal invariant GHZ state are generated using quantum simulation. (b) The classical data from quantum simulation is
then fed into diffusion maps, an unsupervised machine learning algorithm to learn the phases.

We obtain numerical results using diffusion maps [42,43],
an unsupervised machine learning (UL) algorithm [44,45] to
learn phase features from unlabeled data. First, we bench-
mark diffusion maps on CS data from ground states of
a 100-qubit one-dimensional transverse field Ising model
(1DTFIM) simulation. Diffusion maps identifies the magnetic
phase transition, its continuous nature, and the magnetization
behavior as a function of the magnetic field (see Sec. II)—
another machine-learning-from-CS success story [23–25,46].
Generalizing CS to time-averaged CS (TACS), a shadow to-
mographic [22] representation of the time-averaged density
matrix [26], we then show, in Sec. III, on a 20 qubit 1DTFIM,
diffusion maps also identify the quantum critical region and
crossovers along a path in the microcanonical phase diagram
from a total of 90 000 shots on state trajectories. Diffusion
maps do so efficiently by learning features from TACS that ap-
pear to be susceptibility and entropy. Hence, we can efficiently
study the phases and phase transitions of strongly correlated
electrons by quantum-simulating state trajectories.

II. VON NEUMANN’S MICROCANONICAL ENSEMBLE

A central goal of quantum computing is to build qubits that
are completely isolated from their environment. While this is
not the case today, the current development of quantum error
correction techniques [47,48] promises to have noise-resilient
logical qubits in the future. Simulating quantum systems on a
quantum computer will therefore take place within the micro-
canonical ensemble. But quantum microcanonical dynamics,
the evolution of a closed quantum system under Schrödinger’s
equation, does not directly produce the microcanonical en-
semble.

Following von Neumann’s 1929 paper [26,49] on the quan-
tum ergodic theorem, it is straightforward to derive a link
between time averages and statistical averages using density

matrices. Assuming we start from an initial state |ψ (0)〉 and
evolve under a Hamiltonian H via a quantum circuit algorithm
to |ψ (t )〉, the equilibrium distribution is captured by the von
Neumann ensemble, the time average of the density matrix

ρvN = 1

T

∫ T

0
dt |ψ (t )〉〈ψ (t )| −−−−→

T →∞
ω

=
∑

n

Pn|ψ (0)〉〈ψ (0)|Pn, (1)

where Pn is a projector onto the nth degenerate subspace of the
energy eigenvalues, i.e., Pn = ∑

k∈n |Ek〉〈Ek|. The T → ∞
limit, obtained in exponential time [26,31,50,51], results in
equilibration of all observables. Existence of ρvN results in
the ergodic principle that time averages of observables should
be captured by the statistical averaging with respect to ρvN .
Specifically, in the Schrödinger picture,

〈O〉T = 1

T

∫ T

0
dt〈ψ (t )|O|ψ (t )〉 (2)

= 1

T

∫ T

0
dtTr(|ψ (t )〉〈ψ (t )|O) (3)

= Tr(ρvN O) −→
T →∞

Tr(ωO), (4)

where again the T → ∞ limit produces equilibration in the
sense that they are indistinguishable with respect to observ-
able O [31]. Thus the time-averaged density matrix is a link
between time averages and statistical averages governed by
the von Neumann ensemble ρvN , a link that holds regardless
of whether the system equilibrates.

The connection to Boltzmann’s microcanonical ensemble,
obtained by quantizing the classical microcanonical ensem-
ble, is achieved by taking the thermodynamic limit, measuring
only coarse-grained observables, requiring nondegenerate en-
ergy level spacings/gaps, and considering “typical” initial
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states. The coarse-grained observables used by von Neumann
were a commuting set of generators of global symmetries,
a restriction more recently generalized [52] as part of the
development of quantum thermodynamic resource theories
[53]. The typical initial states were the first recorded use of
typicality arguments [49]. Under these circumstances, von
Neumann obtained

ω ∼ ρmc = 1

�

∑
E<En<E+�

|En〉〈En|. (5)

Namely, for the purposes of computing Tr(Oω), there is no
difference between using ω and ρmc, a maximally mixed
state within an energy window [E , E + �] containing �

states. Von Neumann extended this claim to a second ensem-
ble, ρ ′

vN = |ψ (T )〉〈ψ (T )|, that also satisfies ρ ′
vN ∼ ρmc. The

equivalence to ρmc is also readily proven with the seemingly
stronger requirement that each eigenstate satisfies the eigen-
state thermalization hypothesis [54–56]. So, in this way, ρvN

reproduces ρmc.
A central new ingredient in von Neumann’s approach to

describing the microcanonical ensemble is the initial state,
which is never fully forgotten under a unitary evolution. For
each initial condition, it’s necessary to check whether the time
series was run long enough for relevant observables to reach
equilibrium. The same observable will equilibrate at different
times depending on the initial conditions. It turns out, this time
depends on the effective dimension given by deff = 1/

∑
p2

k ,
where pk = | 〈ψ | |Ek〉 |2 [50,51]. Here, the overlaps pk mea-
sure how many energy eigenstates have a significant weight in
|ψ〉. Remarkably, a large effective dimension results in rapid
equilibration. Furthermore, there is a bound on the equilibra-
tion time given by the second largest pk if it is significantly
smaller than 1/deff [50]. The distribution of the pk’s likely also
affects equilibration times [57]. These arguments suggest we
choose initial conditions that exhibit a small overlap with most
energy levels and or a macroscopic occupation of a single
energy level.

Because we will use a machine learning method as part
of our study of von Neumann’s microcanonical ensemble, we
need to compare it to what we already know to validate the
approach. In the next section, Sec. III, we will turn to a CS
data-driven ground state before continuing to our TACS data-
driven thermodynamic study in Sec. V.

III. GROUND STATE DATA

To verify our approach to phase classification and
phase-defining feature identification, we first apply it to
ground states of the ferromagnetic 1DTFIM defined by the
Hamiltonian:

H1DTFIM = −
∑
〈i, j〉

ZiZ j + hx

∑
i

Xi, (6)

where 〈.〉 denotes nearest neighbors, Zi is the Pauli Z op-
erator, and hx is a parameter proportional to the transverse
magnetic field. At zero temperature, this model has a ferro-
magnetic phase for |hx| < 1, and a paramagnetic phase for
|hx| > 1. The ground state study uses diffusion maps to detect
the second-order phase transition at hx = 1 for a 100 site
1DTFIM. The ground states were generated using density

matrix renormalization group (DMRG) [9–11] with ITENSOR

package [58]. Training datasets were generated using two
kinds of measurements on these ground states: (i) compu-
tational basis measurements to obtain the Z dataset and (ii)
measurements on a random Pauli basis to obtain the CS
dataset.

A. Classical shadows

Obtaining any meaningful information from a quantum
computer requires performing measurements on a quantum
state, which is destructive to the quantum information by
nature. Since the dimension of the Hilbert space increases
exponentially in the number of qubits, a naive strategy to learn
the state requires an exponentially large number of copies.
Aaronson [22] introduced an alternative method using the
notion of shadow tomography, an approximate classical de-
scription of the quantum state, in which M properties of a
quantum state can be estimated with error ε by only O( log4 M

ε2 )
copies of the state. We can think of a shadow as an approxi-
mation of a quantum state ρ by summing over measurement
outcomes x, obtained by performing measurements on bases
b for a quantum state x, i.e.,

S[ρ] =
∑
b,x

P(b)Pb,xρPb,x, (7)

where Pb,x is a projector onto the measurement outcome x on
basis b, and P(b) is the probability of choosing b.

Based on this notion, Huang et al. [23–25] devel-
oped an algorithm called classical shadows and showed
that it is highly successful at learning the properties of a
many-body system. Two kinds of measurement protocols
were proposed to construct classical shadows- (i) random
Clifford measurements on the entire Hilbert space and (ii)
random single-qubit Pauli measurements. Protocol (ii) re-
sults in very shallow measurement circuits and thus is more
suitable for the NISQ-ERA [59] hardware. After measuring
each of the qubits in some random Pauli basis X , Y , or Z
with outcomes ±1, the post-measurement wavefunction is
given by the product state |s(n)〉 = ⊗L

l=1 |s(n)
l 〉. Here, |s(n)

l 〉 ∈
{|0〉, |1〉, |+〉, |−〉, |i+〉, |i−〉} is a Pauli basis state to which
the lth qubit has collapsed. The classical shadow SN [ρ] is
obtained by summing over N such randomized measurement
outcomes as follows [also see Fig. 2(b)]

SN [ρ] = 1

N

N∑
n=1

|s(n)〉 〈s(n)| (8)

= 1

N

N∑
n=1

∣∣s(n)
1

〉 〈
s(n)

1

∣∣ ⊗ · · · ⊗ ∣∣s(n)
L

〉 〈
s(n)

L

∣∣ . (9)

The underlying quantum state ρ can be approximated by
adding the reduced classical shadows [see Fig. 2(a)]. This sum
simplifies to the following expression from Ref. [23–25]

ρ ≈ σN (ρ) = 1

N

N∑
n=1

σ
(n)
1 ⊗ · · · ⊗ σ

(n)
L , (10)

where

σ
(n)
l = 3

∣∣s(n)
l

〉〈
s(n)

l

∣∣ − I. (11)
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FIG. 2. Diagrammatic description of classical shadows showing
a linear relationship between SN [ρ] and estimator σN [ρ] ≈ ρ. (a) The
full-density matrix ρ can be approximated by summing over reduced
classical shadows with a coefficient that grows exponentially in the
number of remaining qubits. (b) A classical shadow SN [ρ] is ob-
tained by summing over N measurement outcomes on random Pauli
bases. For a given N , a reduced density matrix, that involves smaller
coefficients in the expansion, can be approximated more accurately
compared to the full density matrix.

The definition of SN (ρ) presented above is different from
Refs. [23,24] which defines it to be the dataset of shots itself
and not the density matrix obtained from these shots. But both
definitions are complete for Fig. 2 (whose derivation from
tensor network diagrams is presented in Appendix A) shows
the density matrix SN (ρ) defined above is linearly related
to the estimator σN (ρ) of the quantum state ρ obtained by
Refs. [23–25]. Hence, the two definitions are informationally
equivalent.

Although estimating the exact density matrix requires
N → ∞, we still desire to predict various linear as well as n
onlinear functions of ρ [e.g., Tr(Oρ) and Tr(ρln(ρ)) respec-
tively]. This can be achieved with N ∝ ln(L)4k/ε2 copies of
the state, where k is the locality of operator O [46]. It was
shown in Ref. [24] that classical machine learning algorithms
can efficiently predict the ground state properties of gapped
Hamiltonians in finite spatial dimensions after learning the
classical shadows from a training set. An example of interest
is classifying the quantum phases of matter. Classifying the
symmetry-breaking phases is conceptually simple because it
involves calculating tr(ρO) for some k-local observable O,
such that tr(ρO) � 1 ∀ ρ ∈ phase A and tr(ρO) � −1 ∀ ρ ∈
phase B. Here, phase A includes all the symmetry-preserving
states whereas B includes the symmetry-breaking ones.

In contrast to classifying symmetry-breaking phases,
capturing continuous phase transitions and classifying
topological phases involves nonlinear-in-ρ observables like
critical exponents and entropy, which are harder to estimate
than linear observables. Learning such nonlinear functions
requires an expressive ML model. A central object in kernel-
based ML is the kernel function, a local similarity measure in
the feature space where the samples live. Ref. [24] proposed
a kernel based on mapping from classical shadows to a
high-dimensional feature space that includes the polynomial
expansion of many-body reduced density matrices. Learning
nonlinear functions requires access to k-body reduced density

matrices, where k may be large, but with enough shots,
classical shadows can accomplish this. Using such a kernel,
Ref. [24] found a rigorous guarantee that a classical ML
algorithm can efficiently classify phases of matter, including
the topological phases. We will employ this kernel to study
the continuous phase transition in the 1DTFIM.

B. Machine learning method: diffusion maps

Let’s now turn to the final step in our approach: applying
an unsupervised machine learning method called diffusion
maps [42,43] to extract features from the shadow tomog-
raphy data. A diffusion map is a nonlinear dimensionality
reduction technique that relies on learning the underlying
manifold from which the data points have been generated.
Recently, this method was used to identify phases and phase
transitions in systems with complex order parameters, which
are difficult to learn using linear methods (such as principal
component analysis (PCA)). Examples of such phase learning
studies include: topological phases and phase transitions [39],
incommensurate phases, and many-body localized phases in
quantum systems [41], and topological quantum phase transi-
tion [40].

In the application of diffusion maps, we imagine a random
walk on a dataset X (x1, x2, . . . , xS ), where the xs are esti-
mators σN (ρ) (see Sec. III A) of density matrices ρ obtained
from different points in the phase diagram. These estimators
are collections of shots arranged into N × L matrices; here, L
is the number of qubits. The transition probability P( j\i) of
jumping from xi to x j in a single “time step” is proportional
to the kernel function k(xi, x j ), a non-negative similarity mea-
sure between the two data points. Here we use the classical
shadow kernel function prescribed in Ref. [24], defined to be
for two points x and x̃ in the dataset

k(shadow)(x, x̃) = k(shadow)(σN (ρ), σN (ρ̃))

= exp

⎛
⎝ N∑

n,n′=1

τ

N2
exp

(
γ

L

L∑
l=1

Tr
[
σ

(n)
l σ̃

(n′ )
l

])⎞
⎠.

(12)

γ and τ are hyperparameters.This kernel measures the local
similarity between x and x̃ by comparing the trace distance
between the CS estimates of all k-reduced density matrices.
For the diagonal components (x = x̃) of the kernel matrix, the
trace distance between the k-reduced density matrices is the
2nd Renyi entropy. We then construct a transition probability
matrix P such that

P( j\i) = k(shadow)(i, j)∑
s k(shadow)(i, s)

. (13)

After t time steps of the random walk, the transition probabili-
ties are given by the matrix Pt , where Pt

i j gives the probability
of going from xi to x j in t time steps, it’s a sum of the prob-
abilities associated with all of the possible paths to go from
xi to x j in t time steps. As t increases, the diffusion process
unfolds, where data points situated along the overall geomet-
ric structure of the dataset become more strongly connected
because of the abundance of strongly connected intermediate
points along the way.
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Given this random walk, we can define a “diffusion dis-
tance” to quantify this idea of connectivity between two data
points:

Dt (xi, x j )
2 =

S∑
s=1

∣∣Pt
is − Pt

s j

∣∣2
, (14)

where the bigger the diffusion distance, the weaker the con-
nection between them. This allows us to map the data points
onto a new ‘diffusion space’ so that the diffusion distance in
data space is equal to the Euclidean distance in this new space.
Following Ref. [42], we will do so with the map:

xi → yi = [
λt

1ψ1(i), λt
2ψ2(i), · · · , λt

S−1ψS−1(i)
]
(15)

where λk and ψk are eigenvalues and right eigenvectors of the
matrix Pt , ψk (i) is the ithe element of the kth eigenvector.
Then the diffusion distance is,

D2
t (xi, x j ) = |yi − y j |2 =

S−1∑
k=1

(
λt

k

)2
[ψk (i) − ψk ( j)]2. (16)

Plotting data in this new space provides an intuitive geometric
picture of the data manifold.

The map provides several features we can exploit when in-
terpreting the data. In Eqs. (15) and (16) the k = 0 component
is ignored because the leading eigenvector, ψ0(i) = 1√

S
, λ0 =

1, is constant for all i by the Perron-Frobenius theorem,
but this constant eigenvector impacts the other eigenvectors.
We note that adding a constant term ψk (i) → ψk (i) + C to
all other eigenvectors preserves the diffusion distance. Ad-
ditionally, Eq. (16) suggests a dimensionality reduction, as
the terms with bigger λk will dominate the sum increasingly
as t → ∞. So plotting the data xi in the truncated space
[λt

1ψ1(i), λt
2ψ2(i), λt

M . . . , ψM (i) with M determined by keep-
ing only the significant eigenvalues λm � λM+1, implies they
are accurately separated by distance Dt (xi, x j ). Lastly, we
see that t is arbitrary, and choosing a different t rescales the
lengths of each component of the vector y. Hence, the data
exists on a hyperplane in Euclidean space up to a certain shift
in the origin and a one-parameter rescaling of the axes.

So, using the properties of the diffusion space, we can
define diffusion coordinates dc1(i) = A(ψ1(i) + C), dc2(i) =
B(ψ2(i) + C), . . . that map the data xi onto a Euclidean space
that through the choice of constants A, B,C, . . . allow us to in-
terpret the coordinates of each point and visualize the geometry
of the data.

IV. PHASE CLASSIFICATION OF GROUND STATES

For the ground state study, we used two datasets, one the
computational basis measurements and the other generated
via CS tomography. The first (Z dataset) contains qubit mea-
surements only along the Z axis [in Eq. (7), P(b) = 1 for
b = Z , P(b) = 0 for all other b]. While the other (CS dataset)
has randomized Pauli measurements using the CS method
[P(b) = 1

3 for b ∈ {X,Y, Z}]. Both of them contain 200,
100-spin 1DTFIM ground state shots for each state obtained
from different hx values (hx ranging from 0.1 to 100). Since
the Z magnetization is the order parameter for TFIM, the

FIG. 3. Learning phases from ground state (CS and Z) data.
(a) and (c) show the ten largest eigenvalues of the P matrix (ex-
cluding the trivial k = 0) for (a) Z data and (c) CS data datasets.
(b) Z data points in 5D diffusion space visualized in 2D, using metric
MDS. Clustering clearly emerges based on the two phases of the
model. (d) CS data points in 2D diffusion space, the figure reveals
the symmetry-breaking phase transition. In this case, there is a direct
correlation of relevant parameters, the z magnetization and the hx

values, with machine-learned diffusion coordinates dc1 and dc2, re-
spectively. Notice the CS data show one cluster in (d) with nontrivial
geometry associated with the critical point, while the Z data show
two clusters in (b) with trivial geometry and no understanding of the
critical point.

unsupervised learning algorithm should be able to learn the
phases of the model from the Z dataset. Using this knowledge,
we compare the Z dataset and the CS data to see if the UL
algorithm can successfully identify phases in each case and if
so how it does so.

By deploying diffusion maps armed with the shadows
kernel function in Eq. (12), utilized for both data sets as our
UL model, we are able to identify the phases from both the Z
data and the CS data. In both cases, we set τ = 1, γ = 1. For
the Z data, we chose the first five nontrivial eigenvectors as
the diffusion space basis vectors because the P-matrix, given
in Eq. (13), eigenvalue spectrum shows the first five eigen-
values to be larger than others as demonstrated in Fig. 3(a).
Mapping the states from Z data onto this five-dimensional
diffusion space, we found that clear clustering emerges based
on the phases of the states. We used multidimensional scaling
(MDS), a dimensionality reduction method [60] that seeks to
preserve point-to-point distances, to project these states onto a
2D plane. We see a clear separation of the two phases even on
this 2D reduced space [see Fig. 3(b)], indicating the machine’s
success in identifying the two phases.

From the CS data, the unsupervised learning algorithm
was also able to learn about the phases and the underlying
parameters of the model. We can see in Fig. 3(c) that the
P matrix has two nontrivial eigenvalues larger than the rest.
The eigenvectors corresponding to these two eigenvalues are
the basis vectors of the reduced diffusion space. Figure 3(d)
shows all of the ground state classical shadows projected onto
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this two-dimensional plane. It shows three groups- the top left
and the bottom left are the all-up and all-down states, whereas
the group on the center-right are states in the disordered phase.
This closely resembles the spontaneous symmetry-breaking
phase transition of 1DTFIM [61]. The learned diffusion co-
ordinates (dc1 and dc2) have direct correlations with the
magnetization 〈Mz〉 and the field values hx respectively, as
shown in Fig. 8 and demonstrated in Appendix C.

The above-mentioned clustering is dependent on the
number of snapshots N for a given state. However, the dimen-
sionality reduction and the subsequent clustering will settle
down after a minimum value of N has been reached (Nc). In-
creasing the value of N beyond that point does not change the
results in any significant way. We find Nc (Z data) < Nc (CS
data), so it is easier for the algorithm to learn the phase space
structure of the Z data (hence fewer snapshots are required)
than the CS data.

A striking feature of the diffusion map results presented in
Fig. 3 is the geometry it reveals about the data. In the case of
Z data, it finds the data is separated into two distinct clusters
[Fig. 3(b)], while in the CS data case, it finds only one cluster
but that this cluster has a nontrivial geometry with three curves
meeting at the critical point [Fig. 3(d)]. This geometry is
directly a consequence of visualizing of the data space through
the lens of the kernel function that defines distances between
data points via Eqs. (13) and (14). Another kernel function
might see the same CS data as separate clusters. Hence, it is a
striking feature of the kernel of Eq. (12) that it can capture the
full geometry of phase defining features in the TFIM model.

V. MICROCANONICAL DYNAMICS OF THE 1DTFIM

Despite the successful identification of the ground state
phases with the CS+ML model, the fact remains that the
problem of calculating ground states is a QMA-hard problem
[18]. We now turn to an algorithm built using Schrödinger
dynamics, a known BQP class algorithm, that aims to reveal
the microcanonical phase diagram as a proxy for a ground
state study.

Consider now Fig. 4, a sketch of the thermodynamic
phase diagram of the 1DTFIM relating internal energy E =
〈ψ (0)|Ĥ |ψ (0)〉 to the transverse magnetic field hx inspired by
Ref. [62]. this phase diagram is relevant for a microcanonical
dynamics study governed by the entropy S(E , hx ). It exists
even for a simulation over a finite time T and with a finite
number of spins N and a specific choice of initial conditions
but with finite T , finite N , and initial choice-dependent errors
that round phase transitions. We present in this figure our
expectations for the phase diagram in this context, pointing
out phase transitions where the phase diagram will sharpen
in the thermodynamic limit. We further highlight the path
through the phase diagram carried out by our simulations
below, showing that we expect it to cross the quantum critical
region, and so be sensitive to the phase diagram at a rounded
level even in the long-T , large-N limit.

To reveal the phase diagram expected from microcanonical
dynamics presented in Fig. 4, we need an experimentally pro-
ducible classical representation of the quantum data obtained
from a microcanonical dynamics simulation. Noticing that the
time-averaged integral amounts to an expectation value of the

1 10
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Ferro

Initial State
Quantum Critical

Anti-ferro

Initial State

Quantum Paramagnetic

Phase

Quantum Disorder

Classical Paramagnetic

Phase

FIG. 4. A sketch of the expected 1DTFIM phase diagram at finite
T and finite N as a function of internal energy E and transverse
magnetic field hx . This diagram is a modification of the canonical
ensemble representation of the phase diagram in Ref. [62], adapted
to the microcanonical ensemble. The spectrum is mirror symmetric
about E = 0 due to the chiral symmetry C = ZY ZY ZY . . .

pure state density matrix |ψ (t )〉〈ψ (t )| over the probability dis-
tribution PT (t ) = (1/T )(�(T − t〉) − �(−t )), where �(x) is
the Heaviside step function, we see we can construct time-
averaged classical shadows (TACS) by the quantum channel

TACS[ρ] = lim
T →∞

∫
dt

∑
b,σ

PT (t )P(b)Pb,σ |ψ (t )〉〈ψ (t )|Pb,σ .

(17)

Hence by sampling the joint probability distribution PT (t )P(b)
to obtain (ti, bi ), i = 1, . . . , N , and then measuring one shot σi

from |ψ (ti )〉 in basis bi we obtain a finite-shot TACS via

TACSN [ρ] =
N∑

i=1

|tibiσi〉〈tibiσi|. (18)

This approach captures the power of CS tomography and
enables an experimental study of microcanonical thermody-
namics.

With this shadow tomography method in mind, we ran
quantum dynamics simulations of 1DTFIM using the TDVP
algorithm [63,64] starting from the GHZ state |ψ (0)〉 =
|000···〉+|111···〉√

2
to generate TACS data from 500 randomly sam-

pled dimensionless time values between t = 10.0 to 20.0 and
187 randomly sampled hx field values between hx = 0.1 to
10.0. An example code to generate TACS dataset for 1DTFIM
is available in our github repository [65]. These 187 TACS
were the data points with which we performed unsupervised
learning by constructing the 187 × 187 kernel matrix using
the shadow kernel in Eq. (12) and then using diffusion maps
for dimensionality reduction.

A key element needed to obtain reasonable results from
the above calculation is an initial state that equilibrates within
the chosen time window for observables of interest that
are accurately captured by the chosen method of shadow
tomography. In the above case, we started from a GHZ state
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FIG. 5. Phase identification from dynamics data. The eigenvalue
spectrum (inset) obtained from diffusion maps shows the two largest
eigenvalues corresponding to the two dominant diffusion coordinates
dc1 and dc2 (the trivial point k = 0, is not shown). The TACS data
point largely fall on a two-stranded curve parameterized by hx in
this 2D reduced diffusion space. The quantum critical region [see
Appendix D 2] (in green) coincides with the inflection point neigh-
borhood of the curve, with points on the left strand belonging mostly
to the ordered phase while points on the right strand belong to the
disordered phase.

because it equilibrated efficiently for local observables, as
shown in Appendix C. Presumably, this equilibration would
occur even faster if we broke the integrability of the 1D TFIM
model by adding certain additional terms to the Hamiltonian.
Hence, up to possibly finite size effects, thermodynamic ob-
servables in our results should behave as expected.

Figure 5 shows our results. The first two eigenvectors were
chosen as our diffusion space basis vectors because as Fig. 5
(inset) shows, those are the two dominant nontrivial eigen-
values in the spectrum. The rest of the eigenvectors go to
zero as data points increase. Projecting the states onto this
two-dimensional diffusion space, we see that the states all
fall on a curve in this hyperplane along which the value of
hx increases monotonically, and the inflection point neighbor-
hood of the curve coincides with the quantum critical region
(see Appendix D 2). Therefore, as in the ground state study,
it is apparent that the unsupervised learning algorithm was
able to infer two phases from the data via a single cluster
with nontrivial geometry. Presumably, taking paths through
the phase diagram closer to the critical point, we would see
the inflection point sharpen, leading to a singular point in the
data manifold at the critical point. However, unlike the ground
state study, it is not obvious what the two diffusion coordinates
dc1 and dc2 correspond to. To identify these, we need to study
observables capable of capturing the phase-defining features
and see which correlate with these learned coordinates.

As a preliminary exploration of phase-defining observ-
ables, a straightforward first approach is to check whether
the diffusion coordinates obey power laws consistent with
the known quantum critical point. In Fig. 6(a), we plot dc2,
which diverges as it approaches the critical point with critical
exponents p− = 0.58 ± 0.05 and p+ = 0.7 ± 0.1. We have
shifted the diffusion coordinates by C = −0.0027 since the

(a)

(b)

FIG. 6. Interpretation of dc1 and dc2 for microcanonical dynam-
ics of 1DTFIM. The divergent behavior of dc2 qualitatively matches
the xx component of the susceptibility, computed using 100k shot
TACS data for a ten-site 1DTFIM, denoted by orange circles (b) dc1
matches the Bayesian inference estimate for the second Renyi en-
tropy per site (S2/n) in the thermodynamic limit (n = ∞). Bayesian
inference is performed on n-body entropies for n = 1–5, also com-
puted using the ten-site dataset.

diffusion distance is invariant under an overall shift of the
origin as mentioned in Sec. III B and this renders it positive.
Remarkably, this shift simultaneously renders both dc1 and
dc2 positive. However, our errors in the exponents are hard
to estimate. Suppose we view the unknown variable C as a
Gaussian distribution. In that case, the corresponding distri-
bution of p± from our predictions is highly non-Gaussian (see
Appendix D 4). The closest known critical exponent is ν = 1
[66] (see also Wikipedia [67]). However, we found that the
observable that qualitatively matches the diverging behavior
at hx = 1 is an xx component of the susceptibility, which we
define as

χab = 1

L2

∑
i j

〈
σ a

i σ b
j

〉
, (19)

where σ a ∈ {X,Y, Z} is a 2 × 2 Pauli matrix. This is differ-
ent than the usual definition obtained by summing over the
connected correlations. The resemblance between dc2 and
susceptibility here is only qualitative, so the critical exponents
do not match. Since there are a number of observables, such as
χxx, χyy, and χzz, that are equally likely candidates to define
the phases, we conjecture that dc2 could be some combination
of these.

This leaves the puzzle of determining dc1, which neither
diverges nor shows a power law behavior. When inverted,
it appears qualitatively similar to the ZZ component of
the susceptibility (see Sec. D 3) but we turn to calculate
the second Renyi entropy given the diagonal components
of the kernel function capture this quantity. Entropy is the
key thermodynamic potential of the microcanonical ensemble
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that certainly captures phase transitions and from which all
important phase-defining features could be extracted. It is
also known that the quantum critical region features the in-
terplay of equilibrium and quantum fluctuations leading to the
entropy being maximized [62,68]. Renyi entropy is a lower
bound for the von Neumann entropy and has the same limits—
it vanishes for pure states and reaches N for the maximally
mixed state. We do so by first computing the purity using
Eq. (10) as follows:

γ [ρ] = Tr[ρ2] (20)

≈ 1

N2

N∑
n �=n′=1

Tr
[
σ

(n)
1 σ

(n′ )
1

] × · · · × Tr
[
σ

(n)
L σ

(n′ )
L

]
,

(21)

then the Renyi entropy is S2 = − ln2 γ .
Figure 6(b) presents the Renyi entropy as calculated from

TACS shots on a L = 10 qubit system using exact diagonal-
ization. We use Bayesian inference, as detailed in Appendix E
(see also Ref. [69]) to extract the large-n, large-N predictions
with N = 100 000 shots per hx value and 35 hx values between
hx = 0.1 and 3.3. The range of time sampled for this particular
calculation was between t = 5 and 25. The results show clear
evidence that entropy is maximized in the quantum critical
region around hx = 1 as expected from Fig. 2 of Ref. [62].
Error estimates for these values were obtained in Ref. [70],
and given by

N � 4n+1γ

ε2δ
(22)

Where 1 − δ is the probability of obtaining a good TACS
dataset and ε is the additive error. For a δ = 0.33 (67
percentile), and N = 100 000 shots, we find an additive error
for the n = 5 entropy curve plotted in Fig. 6 at hx = 1.0
of S2/n ≈ 0.5 ± 0.24. This is larger than the observed error
shown via error bars in Fig. 6 but only within a factor of order
1. Hence, by using 3 300 000 shots, we have estimated the
thermodynamic entropy as a function of hx that reproduces
the expected maxima at the critical point.

Given an estimate of the entropy, we lastly turn to plotting
it alongside dc1 to discover that it is highly correlated with
this observable. Although dc1 was calculated using only 500
shots per hx value, orders of magnitude less than the number
of shots needed for accurate Bayesian inference estimation,
the diffusion process is able to combine information across
different hx values without any supervision.

In summary, the diffusion map was able to learn phase-
defining features from TACS and used these features to map
the data points as a function of the model parameter hx onto a
curve in the two-dimensional plane with geometry that reveals
the quantum phase transition.

VI. OUTLOOK

In this paper, we have identified an approach to studying
quantum thermodynamics on a quantum computer in a way
that is suitable for studying quantum materials, their phases,
and their phase transitions. This approach consists of

(1) preparing a low-depth initial state for which relevant
observables are observed to equilibrate within the coherence
time of the quantum computer,

(2) time evolving this state using a quantum algorithm to
a randomly chosen time point t within some time interval,

(3) extending shadow tomography methods to obtain a
physically useful representation of the von Neumann ensem-
ble such as TACS used in this paper, and

(4) employing an unsupervised machine learning method
to discover the phase diagram, with kernel methods such
as diffusion maps employing well-designed kernels showing
promise.

Our approach parallels statistical mechanics calculations
on classical Hamiltonians, where a random initial state is
prepared, a METROPOLIS Monte Carlo algorithm is run begin-
ning from this state, and data is collected and analyzed using
traditional observables and more recently machine learning
methods. Our results, demonstrating the existence of a quan-
tum phase transition and the ability to map out regions of the
phase diagram by a careful choice of initial conditions, show
promise.

There are several resources needed to carry out the mi-
crocanonical dynamics simulations. A key resource is a
low-energy state that equilibrates within the accessible time
scale and can also be prepared easily. For local Hamiltonians
on physical lattices, we can always find low-energy states that
can be prepared with constant-depth circuits [27]. Another re-
source to carry out dynamics simulations to a time T in which
the relevant local observables equilibrate (T = 25 in our sim-
ulations). It allows one to exploit advances in variational time
evolution algorithms [71–73], which are especially suitable
for the NISQ-ERA due to robustness to noise and ability to go
beyond the coherence time of quantum computers. Finally,
we need the ability to perform time averages by sampling
the state |ψ (t )〉〈ψ (t )| at least at the Nyquist rate determined
by the bandwidth, which is linear in the system size. We
produced a TACS dataset consisting of 500 shots from the
equilibrium dynamics starting from a GHZ state at each of
187 points in the phase diagram; these resources were all
that were required for diffusion maps to learn the phases and
identify the phase transition for a 20-qubit system. Somewhat
different resources, a system size of L = 10, and N = 100 000
shots at 33 points in the phase diagram were required for
Bayesian inference to obtain reasonable estimates for the ther-
modynamic entropy.

We believe these resources are significantly smaller than
those of other proposed methods for studying thermodynam-
ics on quantum computers. For example, the overhead from
using ancillas as a heat bath in the existing methods to study
thermodynamics on a quantum computer [74–76] is not an
issue with our approach. The resources required also open
up an exciting possibility of employing a new generation
of quantum simulators [77,78] to study quantum thermody-
namics as they too can simulate quantum dynamics and are
capable of performing randomized measurements. We are
currently working on the calculation of sample complexity
and establishing rigorous bounds for our predictions. Finally,
a possible direction for future research would be to identify
and benchmark a strongly interacting system with initial states
that will yield a quantum advantage in the near term.

235141-8



REVEALING MICROCANONICAL PHASES AND PHASE … PHYSICAL REVIEW B 108, 235141 (2023)

ACKNOWLEDGMENTS

We thank Mikhail Lukin, Katherine Van Kirk, Nishad
Maskara, Yanting Teng, Subir Sachdev, Daniel Parker, and
Anurag Anshu for useful discussions. This material is based
upon work supported by the National Science Foundation
under Grants No. OAC-1940243 and OAC-1940260.

APPENDIX A: DIAGRAMATIC UNDERSTANDING OF
CLASSICAL SHADOWS

In this section, we will develop a diagrammatic under-
standing of the classical shadows. We will work in the
superoperator formalism where the indices of the density ma-
trix ρi j are grouped together to make a vector |ρ〉〉 and the
product AρB translates to an operator A ⊗ BT acting on the
vector |ρ〉〉.

In general, we can view the outcomes obtained from many
classical shadows measurements on the same prepared state ρ

as defining an ensemble of states S[ρ], where

S[ρ] =
∑
b,x

P(b)Pb,xρPb,x =
[∑

b,x

P(b)Pb,x ⊗ PT
b,x

]
|ρ〉〉,

(A1)

and Pb,x is the projector in basis b onto qubit state |x〉. To
break this down into manageable parts, let’s start from the
one-qubit case and work our way up to N qubits.

One-qubit case. In the one-qubit case, we generate classical
shadows samples for bases b ∈ {X,Y, Z} with uniform prob-
abilities, i.e., P(b) = 1/3. We can thus express the one-qubit
version of (A1) with the following diagram:

(A2)

Using cap and cup notation, we can redraw this in the super-
operator form:

(A3)

The highlighted box can be viewed as a superoperator acting
on the space of linear operators ρ. Remarkably, this particular
superoperator consisting of a product of two projection oper-
ators simplifies substantially, i.e.,

(A4)

They amount to the sum of an identity and a cup-cap product.
Using this simplification we recognize the one-qubit case as
the depolarizing map

(A5)

where we further simplified using

(A6)

Inverting, we can extract the original density matrix (full
tomography) via

(A7)

Going from diagrammatic results to equations gives

S[ρ] = 1
3 (ρ + I ) ⇒ ρ = 3S[ρ] − I, (A8)

which is a single-qubit depolarizing channel.
Two-qubit case. In the two-qubit case, the CS map of

Eq. (A1) takes the form

(A9)

Again, we can add cups and caps to express it in superoperator
form:

(A10)

This diagram shows that the two-qubit projection operators
produce the same structure on each qubit as they did in the
one-qubit case. Applying the same simplification as before,
we arrive at

(A11)

where again we used Tr[ρ] = 1. This expression amounts to a
simple sum of all possible reduced density matrices. We can
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invert our diagram for the two qubit case by first tracing over
one of its qubits to get

(A12)

This allows us to rewrite the reduced density matrices in terms
of the partially summed S[ρ]. Using this relation, we then
arrive at the inverse of the two-qubit classical shadow

(A13)

As for the one-qubit case, we can convert our diagrams back
to algebraic expressions. The results of this two-qubit case
amount to the forward expression

S[ρ] = 1
9 (ρ + I ⊗ Tr1[ρ] + Tr2[ρ] ⊗ I + I ⊗ I ) (A14)

and the inverse expression

ρ = 9S[ρ] − 3I ⊗ Tr1S[ρ] − 3Tr2S[ρ] ⊗ I + I ⊗ I (A15)

N-qubit case. The formulas we have derived for the one- and
two-qubit cases readily extend to N-qubits. They are

S[ρ] = 1

3L

⎛
⎝ρ +

∑
l

Trlρ +
∑
l �=l ′

Trll ′ρ + . . . + I

⎞
⎠ (A16)

for the forward map and for the inverse map

ρ = 3LS[ρ] − 3L−1
∑

l

Trl S[ρ]

+ 3L−2
∑
l �=l ′

Trll ′S[ρ] + . . . + (−1)LI, (A17)

where we have suppressed the presence of identity operators
that replace traced out regions for ease of notation. These
expressions satisfy Tr[ρ] = 1 and S[ρ] � 0. The inverse map
is not non-negative in general, but should be for the density
matrices resulting from this map. Equation (A17) may also be
written as

ρ = 1

N

N∑
n=1

L⊗
l=0

(
3
∣∣b(n)

l ; σ (n)
l

〉 〈
b(n)

l ; σ (n)
l

∣∣ − 1
)
, (A18)

where l denotes the site-index and n denotes the shot index.

APPENDIX B: SYMMETRIES OF 1DTFIM

1. Z2 symmetry

The 1DTFIM is invariant under global flipping of the
z component of the spin, the Z2 symmetry. This unitary sym-
metry can be expressed as

S =
∏

i

Xi. (B1)

We can check that the symmetry operator S commutes with
the TFIM Hamiltonian i.e. [S, H1DTFIM] = 0. This allows us
to write H1DTFIM in block diagonal form with each block
corresponding to eigenvalues 1 (even parity) and −1 (odd
parity) of S . States in these sectors evolve independently of
each other. If we start in GHZ state

|GHZ〉 = |00 · · · 0〉 + |11 · · · 1〉√
2

, (B2)

a time reversal even state, we remain in the even sector under
time evolution. Since the magnetization of this state is 0, the
magnetization will stay at this value forever. Thus equilibra-
tion of the order parameter is not an issue. Since the 1DTFIM
Hamiltonian is purely real, it is symmetric under complex
conjugation K, and consequently, the eigenvalues are also
real. Hence, it is also symmetric under T = SK, i.e., time
reversal symmetry.

2. Chiral symmetry

The 1DTFIM is also symmetric under the following chiral
operator:

C = ZY ZY · · · ZY. (B3)

We can check that C anticommutes with H1DTFIM, i.e.,
{C, H1DTFIM} = 0, so for every energy eigenstate E , there
exists an eigenstate with −E , which makes the spectrum of
1DTFIM mirror symmetric about zero energy.

APPENDIX C: EQUILIBRATION FROM INITIAL STATES

An important resource for studying microcanonical phases
using quantum dynamics is an initial state that equilibrates
within the time scale T accessible to a quantum device.
The initial state sets the energy and the symmetry sector of
the microcanonical ensemble resulting from time-averaging
over [0, T ].

In Fig. 7, we present a numerical assessment of equili-
bration for some observables in the 1DTFIM. Specifically,
we plot the evolution of expectation values for operators
〈Z〉, 〈X 〉 and 〈ZZ〉 corresponding to two initial states: the
ferromagnetic (|00 . . .〉) and GHZ ( 1√

2
(|00 . . .〉 + |11 . . .〉))

states, respectively. We observe that the T -odd operators such
as Z do not equilibrate for the all-up state within the sampling
window whereas they are forced to be 0 for the GHZ state
by the T symmetry. Likewise, we find that T -even operators
such as X , ZZ equilibrate and are identical for both initial
states, also due to the T symmetry (the ferromagnetic state is a
superposition of T -even and T -odd states, and the expectation
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FIG. 7. Time evolution of 〈Z〉, 〈X 〉 and 〈ZZ〉 for ferromagnetic
(all up) and GHZ (all up plus all down) states for ten sites and
hx = 0.8. t ∈ [5, 25] (highlighted in orange) is the sampling window
used for generating the TACS data. The order parameter 〈Z〉 for the
ferromagnetic state doesn’t equilibrate in this window.

value of T -even operator for a T -odd state yields 0). Finally,
we observe all equilibrating observables equilibrate within a
time scale of 5. For this reason, all of the dynamics results pre-
sented in the main manuscript used this numerical evidence
time interval to [5,25] (shown in the highlighted region in
Fig. 7 for time averages. Hence, we find numerical evidence
for equilibration of local observables, evidence that formed
an important basis upon which we carried out our dynamics
simulations.

APPENDIX D: INTERPRETING DIFFUSION MAPS

1. Learning physical parameters from 1DTFIM ground
state data

The unsupervised learning method we implemented was
able to unveil the symmetry-breaking phase transition of
1DTFIM from ground state CS data [Fig. 3(d)]. It did so by
generating diffusion coordinates that are related to relevant
parameters, the order parameter Mz, and the model parameter
hx of 1DTFIM. Figure 8 shows the correlation between the
diffusion coordinates and these parameters.

2. Quantum criticality in TACS kernel matrix

The microcanonical phase diagram being studied here has
three characteristically distinct regions—namely, the ordered
phase, the quantum critical region, and the disordered phase.
The quantum critical region, although does not include the

(b)

FIG. 8. Learning 1DTFIM model parameter and order parameter
from ground state CS data. Correlation between (a) dc1 and order
parameter Mz and (b) dc2 and model parameter hx .

(c(c))

(a) (b)

FIG. 9. The three distinct regions of the microcanonical phase
diagram depicted via the kernel matrix K . (a) shows the diagonal
elements of K against their respective hx values. The quantum critical
region is inferred from this plot. (b) shows three different rows of K ,
each belonging to a different region in the microcanonical phase dia-
gram. (c) portrays the full matrix K itself, where the distinct regions
(ordered, quantum critical, and disordered) can be seen. [Diagonal
elements have been ignored in (b) and (c) for better visualization.]

phase transition point, exhibits critical behavior characterized
by a singularity in the order parameter and the response
functions. This behavior manifests itself in the feature space
accompanying the shadows kernel function [Eq. (12)] as it
contains the polynomial expansion of the reduced density
matrices [24] and can be analyzed from the kernel matrix.

Figure 9 displays how the microcanonical phases reveal
themselves in the kernel matrix. Figure 9(a) shows a max-
imum in the diagonal elements of the kernel matrix in the
quantum critical region due to increased correlation length.
In the figure, we delineate the quantum critical region in
the neighborhood of this peak. Likewise, Figs. 9(b) and 9(c)
demonstrate how the kernel function between states behaves
in different regions. The ordered states have low entropy;
hence, greater “similarity” among themselves makes the
kernel function take a higher value than the other regions,
dropping sharply as we go out of that region. The disordered
states have roughly uniform values for the kernel function
with all other states due to their high entropy, and a peak in
the critical region as discussed above. These character traits
of each of these regions help us identify them from the kernel
matrix. However, we don’t use the kernel matrix for phase
classification. We let the probabilities diffuse and use the
diffusion matrix and resulting diffusion coordinates.

3. Qualitative similarity between dc’s and susceptibility

Susceptibility is an important quantity of interest to us
because it diverges at the critical point. Although our micro-
canonical dynamics take place at an energy above-the-ground
state, we expect the signature of this divergence to be present
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FIG. 10. xx, yy, and zz components of the magnetic susceptibility
for a ten-site 1DTFIM, computed using 10 000 shot TACS dataset.

in the quantum critical region. With the experience that dif-
fusion coordinates correspond to phase-defining observables
in the case of ground states, we plotted the xx, yy, and zz
components of the susceptibility in Fig. 10 computed using
the 100k shot TACS dataset for the 1DTFIM to compare
against dc1 and dc2. Although χzz, a natural candidate for dc1,
looks qualitatively similar to dc1 when inverted, we find that
the second Renyi entropy is a better fit. Similarly, χxx behaves
qualitatively similar to dc2 in the sense that both are sharply
peaked at the critical value of hx = 1. However, they do not
share the same critical exponents, hence, we cannot make as
strong of a claim as for dc1.

4. Estimating the critical exponent from the TACS
diffusion coordinates

In Fig. 11(a) below, we see that the second diffusion coor-
dinate dc2 in TACS diffusion maps approximates a power law
in the quantum critical region. In order to estimate the critical
exponent, we modeled dc2 as

dc2(hx; a, p) = a|hx − 1|−p + C, (D1)

where a and p are fitting parameters and ν is the critical
exponent.

It is evident that our estimate of p depends on our choice of
C. Figure 11 shows that dependence on either side of the crit-
ical point (hx = 1). We can obtain a probability distribution
P(C) on C by modeling the Bayesian estimate of the second
Renyi entropy S2/n as a function of dc1:

S2/n(hx; α,C) = α(dc1
(
hx

) − C). (D2)

Here, α and C are fitting parameters. The ordinary least
squares fit gives us the optimum value for C (Copt) with the
least square error(ε). We then model P(C) as a normal distri-
bution, P(C) = N (Copt, σ = ε2) and plot it together with the
dependence of p on the shift C in Fig. 11 to visualize how an
error in C translates to an error in ν.

APPENDIX E: BAYESIAN INFERENCE EXTRAPOLATION
OF ENTROPY DATA

To infer the entropy in the limit of large N , the number
of shots, and large n, the number of qubits, we need to
extrapolate the estimates we obtain from CS data. At first
glance, this would seem hard to do because the error in our

FIG. 11. Modeling the power-law behavior of dc2 in the critical
region. (a) shows the dc2 value of each TACS plotted against their
respective hx values, as well as the power law fit on either side of the
critical point. (b) log-log plot of |hx − 1| vs (dc2 − C), along with
straight-line fits, the slopes give us the p values. Here C = −0.0027.
(c) and (d) show the dependence of the (c) p+ and (d) p−, estimated
power law exponents on the shift in the diffusion coordinates C dis-
cussed in Sec. III B (blue) [dashed line shows the optimum C-value,
which was chosen in (a) and (b)], along with the modeled normal
distribution on C obtained from error estimates on the shift needed
to render dc1 positive near hx = 0 (orange). Chosen range of C is
[Copt − 3σ,Copt + 3σ ].

estimates grows exponentially with the locality of the ob-
servables and entropy is not a local observable. However, the
dynamics data we have obtained represents a mixed state with
volume-law entanglement and, due to the finite energy—the
microcanonical stand-in for temperature—typically has expo-
nentially decaying correlations beyond a correlation length.
Hence, we expect the entropy of the reduced density matrix of
a region A with nA qubits will obey S ∝ nA even for small nA.
Our approach to extrapolate the entropy is therefore to build a
probability model p(X |θ ) with parameters θ that captures our
estimated entropy value data X .

To simplify the calculation of entropy, we will compute
the second Renyi entropy of a subregion A: SA = − ln2 γA,
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(b)

(c)

(d)

(e)

(a)

FIG. 12. Developing a model for purity γ = N (μγ , σγ ) from CS data on the maximally mixed state. (a) μγ is linear in 1
N , so it takes the

form: μγ = a0(n) + a1(n)
N . (b) The intercept a0(n) can be modeled as an inverse exponential function of n, a0(n) = ae−bn (c) The slope, a1(n),

can be modeled as an exponential in n, a1(n) = cedn. (d) and (e) show that the variance σ 2
γ can be closely approximated by an exponential

function in n and linear in 1
N2 , σ 2

γ = ee f n/N2.

γ = Trρ2
A. To obtain a model of this entropy as a function of

the number of CS shots N and qubits nA, a data set of values
Y given by the entropy SA and dependent variables X given by
(N, nA), we generated data from the maximally mixed state
ρ = (1/d )I , d = 2n

A the size of the Hilbert space. The results
fit a model of the form (see Fig. 12):

μγ (n, N ) = ae−bn + cedn/N, σγ = ee f n (E1)

with positive parameters a, b, c, d , e, f . Namely, we found the
purity γ is linear in 1/N but exponential in n.

Given the mean and variance as modeled above, we can
then model the probability distribution from which a given
data point (�x, y) ∈ (X,Y ) is a sample as a Gaussian:

P(y\θ, �x) = 1√
2πσ 2(�x; θ )

e−(y−μ(�x;θ ))2/2σ 2(�x;θ ). (E2)

Then by Bayes Law, we can learn the posterior

p(θ\Y, X ) =
∏

(�x,y)∈(X,Y ) P(y\θ, �x)P(θ )

P(Y \X )
, (E3)

where P(X,Y ) = ∫
dθ

∏
(X,Y ) P(�x, y\θ )P(θ ) is called the ev-

idence that provides a sense of how well the model is
performing.

The probability of observing a new data point (�x′, y′) is
then given by the posterior predictive

P(�x′, y\X,Y ) =
∫

dθ p(�x′, y′\θ )P(θ\X,Y ). (E4)

An estimate of which is obtainable from a set of samples �

drawn from P(θ\X,Y )

P(�x′, y\X,Y ) = 1

|�|
∑
θ∈�

p(�x′, y′\θ ). (E5)

We are then specifically interested in the mean and standard
deviation of P((∞,∞), y\X,Y ). Knowing this, we solve the
problem of extrapolating the entropy from a finite number of
shots and qubits for the entropy is the mean and our uncer-
tainty in obtaining it is the standard deviation.

It remains then to obtain samples from the posterior
P(θ\X,Y ). We could do so using a straightforward Monte
Carlo algorithm. For example, starting with an initial choice
for the parameters θ0, we pick a random direction in parameter
space and move an amount δ in that direction to obtain θtrial.
We then compute

ln(r) = ln
P(θtrial\X,Y )

P(θ0\X,Y )

=
∑

(�x,y)∈(X,Y )

(ln P(�x, y\θtrial ) − ln P(�x, y\θ0))

+ ln P(θtrial ) − ln P(θ0), (E6)

which simplifies if we choose a uniform distribution for P(θ ).
We keep the trial, setting θ1 = θtrial if a random number q
between 0 and 1 satisfies q < r and reject otherwise. Either
way, we repeat the process generating ultimately a list � of
correlated samples θi from which we can estimate the entropy
and uncertainty from P((∞,∞), y\X,Y ).

However, a better approach than the METROPOLIS algorithm
is to use the NUTS algorithm available in PyMC instead. This
algorithm automatically chooses parameters in Hamiltonian
Monte Carlo (HMC) and is more efficient than METROPOLIS

for Bayesian inference. See Ref. [79].
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