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Spin-valley entangled quantum Hall states in graphene
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We investigate interaction-driven integer quantum Hall states realized in Landau levels of monolayer graphene
when two out of its four nearly degenerate spin-valley flavors are filled. By employing a model that accounts for
interactions beyond pure δ-functions as well as Zeeman and substrate-induced valley potentials, we demonstrate
the existence of a delicate competition of several phases with spontaneous generation of spin-valley entangle-
ment, akin to the spontaneous appearance of spin-orbit coupling driven by interactions. We encounter a particular
phase that we term the entangled-Kekulé-antiferromagnet (E-KD-AF) which only becomes spin-valley entangled
under the simultaneous presence of Zeeman and substrate potentials, because it gains energy by simultaneously
canting in the spin and valley spaces, by combining features of a canted antiferromagnet and a canted Kekulé
state. We quantify the degree of spin-valley entanglement of the many competing phases by computing their
bipartite concurrence.

DOI: 10.1103/PhysRevB.108.235137

I. INTRODUCTION

The phase diagram of monolayer graphene in strong mag-
netic fields continues to present puzzles. At charge neutrality
in the N = 0 Landau level it is still debated whether graphene
is in a Canted Antiferromgnet (CAF), as proposed in transport
and magnon transmission experiments [1–5], or in a Kekulé
(KD) state as visualized in STM experiments [6–9]. In higher
Landau levels the nature of states remains much less clear and
the experimental evidence much more limited [10].

Reference [11] introduced an important model that sim-
plified the understanding of symmetry broken states relative
to earlier studies [12–16] by capturing the valley symmetry
breaking interactions in the N = 0 Landau level as pure δ

function interactions. Recent studies, however, have empha-
sized the need to consider interactions beyond δ functions in
higher Landau levels [10,17], and also in the N = 0 Landau
level arising from Landau level mixing [18,19]. Also, in bi-
layer graphene with four mini-Dirac points per spin/valley
induced by trigonal warping, lead to a rich quantum Hall
problem analogous to having effective flavor-dependent inter-
actions with finite range [20]. In this work we investigate the
interplay of such longer range interactions with the presence
of spin Zeeman and substrate-induced sub-lattice symmetry
breaking potentials, within a model that is applicable to in-
teger quantum Hall states of graphene in any of its Landau
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levels. We will demonstrate that the combination of these
ingredients leads to an interesting competition of phases with
spontaneous spin-valley entanglement. Interestingly we find a
state which becomes entangled only under the simultaneous
presence of spin and valley Zeeman terms and interactions
with longer range than pure δ functions, which we term
the Entangled-Kekulé-Antiferromagnet state (E-KD-AF) (see
Fig. 1).

II. MODEL, MEAN-FIELD THEORY,
AND ENTANGLEMENT MEASURE

A series of recent works have considered the following
continuum model of the projected interaction Hamiltonian
onto the nth Landau level of graphene [17–19,21]:

HN =
∑
i< j

{
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j
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where V N
z,⊥(ri j ) are interactions that depend only on distance

ri j between particles i, j, τ i
⊥τ

j
⊥ = τ i

xτ
j

x + τ i
yτ

j
y and sa, τa, a =

0, . . . , 3 are the Pauli matrices acting on the valleys and
spin, respectively. This model captures the symmetry break-
ing terms beyond the SU (4) invariant long-range part of the
Coulomb interaction. This model goes beyond the model of
Ref. [11] which can be viewed as a limit of Eq. (1) when the
interactions become δ functions, Vz,⊥(ri j ) = Vz,⊥δ(ri − r j ).
References [1,17] have demonstrated that even for models
of unprojected interactions that are short-ranged (see, e.g.,
Ref. [22]), effective interactions will naturally appear as a
result of the projection onto higher Landau levels (N �= 0).
It has been also recently emphasized that corrections to pure
delta functions appear naturally in higher Landau levels [17]
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FIG. 1. (a) Integer quantum Hall states of half-filled Landau
levels in graphene with Zeeman, εz = 1, and valley potential, εv =
0.1, and non-δ function interactions with �⊥ = 2, �z = 1 [see
Eq. (3)]. The spin-valley entangled state E-KD-AF appears between
the two SVE states from Ref. [19]. (b) The concurrence (C) mea-
sure of spin-valley entanglement is plotted for the cut shown in
(a) at uH

⊥ = 2.

by projecting the general model of short-distance interactions
of graphene of Ref. [22], but can also appear even in the N = 0
Landau level (LL) due to Landau level mixing effects [18,19].

When there is an integer-filling of Landau levels, the
Hartree-Fock variational energy functional of translationally
invariant quantum Hall ferromagnets for the above model can
be written as [17]

EHF[P] = 1

2

∑
i=x,y,z

(
uH

i (Tr{τiP})2 − uX
i Tr{(τiP)2})

− εzTr{szP} − εvTr{ηzP}. (2)

Here, P is the projector into the occupied spinors, which in
the case of half-filling (two filled components) equals P =
|F1〉 〈F1| + |F2〉 〈F2|, where |Fi〉 , i = 1, 2 are arbitrary or-
thonormal vectors within the four-dimensional Hilbert space
of spin and valley flavors. Notice that the energy functional
within Hartree-Fock theory does not depend on the detail form
of the microscopic interactions but only on four independent
interaction energy scales uH

z , uX
z , uH,X

x = uH,X
y = uH,X

⊥ , given
by

uH
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8π2
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8π2

∫∫
dqV N

a (q), a =⊥, z,

(3)

where V N
a (q) is the Fourier transform of the corresponding

interaction term in Eq. (1). In the limit of pure δ function
interactions, the difference between Hartree and exchange

energy constants, �z,⊥ = uH
z,⊥ − uX

z,⊥ would vanish, and we
would have only two interaction constants, as in the model
of Ref. [11]. We will consider general spin-valley entangled
variational states [17–19,21,23,24]:

|F 〉1 = cos
a1

2
|η〉 |s〉 + eiβ1 sin

a1

2
|−η〉 |−s〉,

|F 〉2 = cos
a2

2
|η〉 |−s〉 + eiβ2 sin

a2

2
|−η〉 |s〉. (4)

Here, |η〉 and |s〉 are states parametrized by unit vectors η and s
in the spin and valley Bloch spheres, respectively, and a1,2 and
β1,2 are real constants. Because the projector P is effectively
a mixed state, simple measures of bipartite entanglement ap-
plicable to pure states, such as the von Neumann entropy
of the reduced density matrix, are not suitable. Instead, the
degree of spin-valley bipartite entanglement associated with
the projector P onto the above two states, can be measured by
the concurrence C defined as [25,26]

C ≡ Max{λ1 − λ2 − λ3 − λ4, 0}, (5)

where λi are the eigenvalues of the matrix R =
P(τy

⊗
sy)PT (τy

⊗
sy)P, ordered according to λi � λ j , for

i > j. For projector onto the states in Eq. (4), the concurrence
is

C = |sin2 a1 − sin2 a2|. (6)

When the minima of HF energy are spin-valley disentangled
states, we have C = 0, and these states can be separated into
two classes, one of “valley-active” states with spinors given
by

|F 〉1 = |η1〉 |s〉, |F 〉2 = |η2〉 |−s〉, (7)

where η1, η2 are two arbitrary directions in the valley Bloch
sphere, and another class of “spin active” states, with spinors
given by

|F 〉1 = |η〉 |s1〉, |F 〉2 = |−η〉 |s2〉, (8)

where s1, s2 are two arbirtary directions in the valley Bloch
sphere.

In the limit of pure δ function interactions (�z,⊥ = 0),
Ref. [11] found a phase diagram with four spin-valley
disentangled states that we reproduce in Fig. 2(a): FM
(Ferromagnet), AF (Antiferromagnet), KD (Kekulé distor-
tion), and CDW (Charge density wave). When interactions are
not pure δ functions, and in the absence of Zeeman and valley
potentials (εz = εv = 0), we recently found in Ref. [17] that a
new phase termed the KD-AF (Kekulé- Antiferromagnet) can
appear, as shown in Fig. 1(a). However in the absence of Zee-
man and valley potentials (εz = εv = 0) all these five states
have no spin-valley quantum entanglement. In particular, the
KD-AF phase can be viewed as one of valley-active states
from Eq. (7) having one component occupying an equal am-
plitude superposition of both valleys (e.g., η1 = x̂) with one
spin and the other component occupying the opposite valley
coherent superposition (e.g., η2 = −x̂) with the opposite spin,
and therefore has a non-trivial spin-valley correlation, but no
spin-valley entanglement properly speaking.

In this work, we will show that these five states (FM, AF,
KD, CDW, KD-AF) can be viewed as parent states to sev-
eral spin-valley entangled phases. Some of them, such as the
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FIG. 2. Phase diagrams of integer quantum Hall states in graphene for half-filled Landau levels: (a) δ-function interactions and εz = εv = 0
from Ref. [11]. (b) For interactions with finite range, �z = 1, �⊥ = 2, and εz = εv = 0, showing that the KD-AF becomes favorable. (c) For
interactions with finite range, �z = 1, �⊥ = 2, and εz = 1, εv = 0, showing that the KD-AF cants and becomes the KD-CAF and the SVE
phase [19] becomes favorable. (d) For interactions with finite range, �z = 2, �⊥ = 1, and εv = 1, εz = 0 showing that the KD-AF cants in
the valleys space and becomes the CaKD-AF and the SVE phase of Ref. [19] appears in between the KD-AF and the FM states.

KD/AF coexistence and SVE states identified in Refs. [18,19],
arise near the phase boundaries between these parent states
after adding Zeeman and valley potentials. However, we will
also show that among these five parent states the KD-AF is
special because it is the only one that becomes spin-valley
entangled under the simultaneous presence of Zeeman and
valley sub-lattice potentials, and we will term the state that
evolves continuously from the KD-AF under these perturba-
tions the entangled-Kekulé-antiferromagnet (E-KD-AF) state
(see Appendix S-VI in [27] for details of comparison with
Ref. [19]).

A. Ground states with either Zeeman or valley potentials

We begin our analysis by studying the phase diagram
when only the Zeeman coupling, εz �= 0, εv = 0, is present
in Eq. (1). We find that both the AF and the KD-AF cant their
spins, which is a natural tendency of the anti-ferromagnetic
states in order to take advantage of the Zeeman energy, evolv-
ing into the CAF and KD-CAF states depicted in Fig. 1(c).
These two states remain, however, spin-valley disentangled.
The KD-CAF appears in between the FM and the CDW as
long as 0 < εz < 2�z.

However, as pointed out in Refs. [18,19], the CAF and the
KD become unstable over some region close to their boundary
leading to a mixed state of AFM-Kekulé phase coexistence
which occupies a thin sliver of the phase boundary between
these two phases. The analytic coordinates for this coexistence
state are discussed in Appendix S-III in [27]. This phase
coexistence occurs only when �⊥ > 0 and otherwise there is
a direct first order phase transition between the Kekulé and
CAF states. Additionally, a finite εz induces the formation
of another a new phase, the SVE of Ref. [19] growing from

the boundary of the CDW with the KD-CAF. For εz = εv = 0
the SVE phase is never the ground state over any finite re-
gion, but interestingly it is is degenerate with KD-AF only
at its boundaries with the FM and CDW. We note that the
degeneracy at the boundary with the FM persists for all values
of the Zeeman field, making this boundary presumably of
higher symmetry [28]. When εz > 0 and εv = 0, the SVE,
therefore, starts nucleating at the boundary of the CDW and
the KD-AF and grows with increasing εz until it occupies the
whole region between the CDW and the FM at a critical value
of the Zeeman field εc

z = 2�z. The transition of KD-CAF
with the FM is continuous, i.e., the spin of the KD-CAF
cants continuously until it reaches the fully polarized value
of sz = 2. The KD-CAF is therefore expected to have the
similar signatures as the standard CAF state in spin sensi-
tive probes, such as the magnon transmission experiments of
Ref. [1].

It is also useful to consider the limit when (εv �= 0) is
present but the Zeeman coupling vanishes (εz = 0). This
leads to the canting of the KD, similarly to the N = 0 Lan-
dau level, as discussed in Refs. [29] and also as shown in
Fig. 2(d). Interestingly, since the KD-AF is simultaneously
anti-ferromagnetic in the valley space and in the spin space,
it will undergo canting of the valley pseudo-spins towards the
z-axis driven by the finite εv . We also find that the εv also
induces an intermediate coexistence region at the boundary
between CaKD and AF analogous to the coexistence region of
Refs. [18,19] [see Fig. 2(d)]. On the other hand, for εv > 0 and
εz = 0, the SVE state now starts growing from the boundary
of the FM with the KD-AF whereas the SVE is always de-
generate with the KD-AF at its boundary with the CDW. The
CaKD-AF persists until a critical value of the valley Zeeman,
εc
v = 2�z.
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TABLE I. Competing states and their coordinates. The KD and KD-CAF are obtained by taking the limit of εv → 0 from the CaKD and
CaKD-CAF, respectively, while the AF and CaKD-AF by taking the limit of εz → 0 from the CAF and CaKD-CAF, respectively. In the a1,2

coordinates of E-KD-AF the + (−) sign corresponds to a1(a2).

States appearing for two filled Landau levels

States Coordinates Concurrence C

CDW (Charge density wave) a1 = a2 = θp = 0 0
CaKD (Canted Kekulé distortion) a1 = a2 = 0, θp = cos−1 ( εv

uH
z −uH

⊥+(�z−�⊥ )
) 0

FM (Ferromagnet) a1 = 0, a2 = π, θp = θs = 0 0
CAF (Canted Antiferromagnet) a1 = a, cos a = − εz

2uX
⊥,

a2 = π − a, 0

θp = π/2, θs = 0, β = 0
E-KD-AF (Entangled Kekulé distortion a1,2 = cos−1{± εz

�⊥+�z−uH
⊥−uH

z
+ εv

−�⊥+�z+uH
⊥+uH

z
}, | sin2 a1 − sin2 a2|

antiferromagnet) θp = 0, θs = 0, β = 0

SVE (Spin-valley entangled phase of Ref. [19]) a1 = 0, cos a2 = εz−εv+uH
z +uH

⊥−�⊥
−�z ,

θp = 0, θs = 0, β = 0 sin2 a2

B. Ground states with both Zeeman and valley potentials

We now turn to the general case where both the Zeeman
coupling and the hBN substrate are present. Our results are
illustrated in Fig. 1(a). We again find a coexistence of the
CaKD and the CAF along a sliver of the phase diagram. How-
ever, the main qualitative difference is that the KD-AF state
transforms into a new spin-valley entangled state that we call
the E-KD-AF when both spin and valley Zeeman fields are
simultaneously present, as depicted in Fig. 1(b). This tendency
originates from the fact that the KD-AF state gains energy
by canting either in the spin and valley direction under the
presence of spin or valley Zeeman terms, but it is impossible
to construct disentangled states that cant simultaneously in
this way (see Table I). We have found the exact coordinates of
the spin-valley entangled minima of the Hartree-Fock func-
tional in Eq. (2) and they satisfy β = θs = θp = 0, which is
shared by all the phases in the right two quadrants of the phase
diagrams. The E-KD-AF is now sandwiched between two
spin-valley entangled SVE phases of Ref. [19] in the region
between the FM and the CDW [see Fig. 1(a)], yet represents
a qualitative distinct phase.

We can distinguish the two competing spin-valley entan-
gled phases, namely the E-KD-AFM and the SVE of Ref. [19]
by their order parameters, Ôi j = Tr{Pτis j} (see Supplemental
Material for further details [27]). Both of them have a vanish-
ing total of valley and spin in the x − y plane, Ôa0 = Ô0a = 0,
with a = x, y. However, the SVE phase of Ref. [19], has the
order parameters Ôxx, Ôyy locked to be equal Ôxx = Ôyy =
sin a, while for the E-KD-AF these order parameters are
generally distinct and given by Ôxx = sin a1 + sin a2, Ôyy =
− sin a1 + sin a2 (see Table I for the values of a1,2). Moreover,
as illustrated in Fig. 1(b), the concurrence of the SVE is
different than that of the E-KD-AF (see also Table I). For
a more detailed comparison of similarities and differences
of our results with those of Ref. [19] see Sec. VI of the
Supplemental Material [27].

III. SUMMARY AND DISCUSSION

We have studied the integer quantum Hall ferromagnet
states of graphene within a model applicable to any of

its Landau levels, and focused on the case of half-filling
when two out of four of its nearly degenerate spin-valley
states are filled. Our model accounts for valley symmetry-
breaking interactions beyond pure δ functions, and includes
the simultaneous presence of the Zeeman coupling and a
substrate-induced valley symmetry breaking potential (e.g.,
from alignment with a hBN substrate). We have computed
the concurrence measure of entanglement which allows us
to quantify the degree of spin-valley entanglement of these
states.

Besides the known spin-valley disentangled states such as
the antiferromagnet and the Kekulé valence-bond solid, we
have found a delicate competition of states featuring spon-
taneous spin-valley entanglement, akin to that arising from
spin-orbit coupling, but whose origin stems purely from in-
teraction driven spontaneous symmetry breaking. Notably,
we have found a state which only becomes entangled un-
der the simultaneous presence of spin and valley Zeeman
terms and interactions with longer range than pure δ func-
tions, which we term the Entangled-Kekulé-Antiferromagnet
state (E-KD-AF). This tendency arises because this state
combines features of the antiferromagnet and the Kekulé
states, and the state tries to cant simultaneously in the spin
and valley Bloch sphere in order to gain energy from these
single particle terms, but it can only achieve this at the
expense of becoming spin-valley entangled. An experimen-
tal technique to detect the Kekule-Antiferromagnetic states
that we have discussed is spin-polarized STM [30], be-
cause in these states the Kekule bonds between between
neighboring carbon atoms are opposite for spin up and
spin down, and thus opposite Kekule bonding patterns be-
tween carbon atoms would appear in such spin-polarized
STM.
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