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Role of effective mass anisotropy in realizing a hybrid nodal-line fermion state
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Understanding the role of lattice geometry in shaping topological states and their properties is of fundamental
importance to condensed matter and device physics. Here, we demonstrate how an anisotropic crystal lattice
drives a topological hybrid nodal line in transition metal tetraphosphides MP4 (M = transition metal). MP4

constitutes a unique class of black phosphorus materials formed by intercalating transition metal ions between
the phosphorus layers without destroying the characteristic anisotropic band structure of the black phosphorous.
Based on the first-principles calculations and k · p theory, we show that MP4 harbors a single hybrid nodal line
formed between anisotropic M d and P states with oppositely oriented effective masses. The nodal line consists
of both type-I and type-II nodal band crossings whose nature and location are determined by the effective mass
anisotropies of the intersecting bands. We further discuss a possible topological phase transition to exemplify
the formation of the hybrid nodal-line state in MP4. Our results offer a comprehensive study for understanding
the interplay between structural motifs-driven mass anisotropies and topology in anisotropic lattice materials to
realize hybrid semimetal states.
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I. INTRODUCTION

Since the discovery of topological insulators, the topology
of electronic states and finding robust topological materials
have attracted broad interest [1–4]. The initial topologi-
cal state characterization based on free-fermion symmetries
such as time reversal was generalized later to include topo-
logical states protected by crystalline symmetries [5–8]. In
this way, many topological crystalline states such as mirror,
inversion, and rotational Chern insulators and topological
semimetals with Dirac, Weyl, nodal-line, nodal-chain, and
higher-fold chiral fermions, among other possibilities, were
proposed with their unique sets of nontrivial states and
electromagnetic properties [2–9]. The topological states in
materials are described uniquely by topological invariants
that depend only on the symmetries of their underlying
atomic positions [10–13]. Such topological state character-
ization has allowed unique symmetry-to-topology mapping
that facilitated the identification of topological states in
high-throughput materials searches, revealing many topolog-
ical materials with unique nontrivial states [14–16]. These
topological searches often neglect the effects of the spatial
arrangement of atoms and their wave function properties
even though they are essential for describing the numbers,
energy-momentum relations, and geometries of the nontrivial
states [17–19].

Among various topological states, topological nodal-line
semimetals are considered parent phases for realizing
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many exotic topological gapped or ungapped states through
systematic lowering of crystalline symmetries [20–24].
They form one-dimensional (1D) valence and conduction
band crossings in momentum space which realize new
quasiparticles beyond the well-known Dirac, Weyl, and
Majorana particles in high-energy physics. Analogous to
Dirac and Weyl point semimetals, topological nodal-line
semimetals can be classified as type-I, type-II, or hybrid
nodal-line semimetals depending on the fermiology of the
crossings bands [25–29]. In the type-I case, a nodal line is
formed between electronlike and holelike bands and respects
Lorentz symmetry. In type-II semimetals, the nodal line is
formed between two electronlike or holelike bands, strongly
breaking the Lorentz symmetry. In contrast, the hybrid nodal
line consists of both the type-I and type-II band degeneracies
that are naturally expected to occur if one of the crossing
bands has a saddlelike energy dispersion. Such band crossings
constitute a Fermi surface with electron and hole pockets that
touch along specific directions in k space. The hybrid nodal
line can realize amplified electron-correlation effects owing
to the saddlelike energy dispersion and directional-dependent
magnetotransport properties due to the Klein tunneling
between the electron and hole pockets, among other
phenomena [20,28–30].

Because the hybrid nodal lines constitute both the type-I
and type-II band crossings located along different momentum
space directions, their experimental realization remains a
daunting challenge. Here, we propose that effective masses
of the intersecting bands in anisotropic lattice materials
can determine the dispersion and location of the nodal band
crossings. Of importance is orthorhombic black phosphorus in
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FIG. 1. Crystal lattice and electronic structure of phosphorene
and MoP4. (a) Puckered honeycomb structure of a single phos-
phorene layer with distinct P-P bonding arrangements along the
armchair (x axis) and zigzag (y axis) directions. The in-plane bonding
anisotropy is the origin of the directional selective properties of
phosphorene. Band structure of a single phosphorene layer (b) along
the high-symmetry directions and (c) in the full two-dimensional
Brillouin zone. (d) Calculated electron (top) and hole (bottom) car-
rier effective masses (in units of the mass of electrons me) of a single
phosphorene layer in polar coordinates. θ = 0◦ and θ = 90◦ mark the
armchair and zigzag directions, as shown in (a). (e) Perspective view
of the bulk crystal lattice of MoP4 with C2/c (No. 15) symmetry.
The dashed horizontal line marks the glide mirror plane. (f) First-
principles semimetallic band structure of MoP4 without spin-orbit
coupling. Irreducible representations at the � point are marked. The
symmetry-protected band crossings near the Fermi level are high-
lighted by dashed red circles. (g) The primitive cell Brillouin zone of
MoP4 with high-symmetry points. The mirror plane is in highlighted
gray, and the projected (001) surface Brillouin zone is shown in blue.

which individual two-dimensional (2D) phosphorene layers
are stacked together by weak van der Waals interactions
[31–35]. Inside each phosphorene layer, the phosphorus
atoms form a puckered honeycomb arrangement along the
armchair direction and a bilayer configuration in the zigzag
direction [see Figs. 1(a)–1(d)]. This unique structural motif
drives the anisotropic electronic structure and physical
properties that facilitate the use of black phosphorus in
devices with directional selectivity [31–34]. The electronic
structure and physical properties of black phosphorus can be
engineered by pressure, doping, adsorption, and electric-field
controls to realize an insulator-to-metal transition, topological
semimetals with anisotropic Dirac bands, and superconduc-
tivity without destroying their anisotropic character [36–40].
Importantly, the intercalation of transition metal atoms in
black phosphorus generates various low-symmetry transition
metal tetraphosphides MP4 (M = transition metal) that
preserve the anisotropic electronic bands of black phosphorus,
but with a semimetallic ground state [41–47]. Here, we show
that MP4 realizes a single hybrid nodal line driven by mass
anisotropies of M d and P bands. By carefully exploring
the structure-property-topology mapping in MP4, our results
demonstrate how an anisotropic crystal structure shapes the
low-energy topological states in materials.

FIG. 2. Effective-mass anisotropy in MoP4. (a) Mo and (b) P
atoms’ resolved band structures of MoP4. The atomic weights are
encoded in the color scale. An electron-type Mo band (�−

2 ) intersects
the P resolved valence band (�+

1 ) near the � point. Calculated effec-
tive mass ellipsoid of (c) Mo and (d) P bands around the � point.
A highly anisotropic peanut-shaped variation of the effective mass
revealed the anisotropic character of P bands. (e)–(g) Calculated
effective masses at constant planes for the Mo band (blue) and P band
(red). The angular direction is given from the horizontal axis in each
panel. (h)–(j) Two-dimensional view of the MoP4 crystal structure in
the b−c, a−c, and a−b planes. The zigzag and armchair directions
are along the c and a directions, respectively. The P atomic layers
are stacked along the b direction. The effective mass of the P band
is much larger in the zigzag direction than in the armchair direction
and follows the characteristic anisotropic structure of phosphorene.

II. METHODS

Electronic structure calculations were performed within
the density functional theory framework with the projector
augmented wave [48,49] potentials as implemented in the
Vienna Ab initio Simulation Package (VASP) [50,51]. We used
the Perdew-Burke-Ernzerhof parameterized generalized gra-
dient approximation (GGA) [52] and hybrid Heyd-Scuseria-
Ernzerhof (HSE) functionals for the exchange-correlation
effects. The spin-orbit coupling (SOC) was included self-
consistently to incorporate relativistic effects in the calcula-
tions. An energy cutoff of 400 eV for the plane wave basis
set and an 8 × 8 × 10 �-centered k mesh for the Brillouin
zone sampling were used. Experimental lattice parameters
with fully relaxed atomic positions were adopted to calculate
the electronic structure and topological properties of MP4. We
constructed a material-specific tight-binding model Hamilto-
nian from the atom-centered Wannier functions [53]. M d and
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P s and p orbitals were used to construct the Wannier func-
tions. The topological property and surface state calculations
were performed using the WANNIERTOOLS package [54].

III. RESULTS

A. Crystal structure and anisotropic electronic properties

The anisotropic properties of black phosphorus stem in the
anisotropic lattice of phosphorene, which is a 2D building
block of black phosphorus [31–34]. The P atoms in phos-
phorene are covalently bonded with their three neighboring
P atoms to form two in-plane and one out-of-plane bond, gen-
erating a hexagonal puckered lattice [Fig. 1(a)]. This atomic
arrangement drives a highly anisotropic energy dispersion
such that the conduction and valence bands are nearly flat
along the zigzag direction (�−Y ) and significantly dispersive
along the armchair direction (�−X ) near the band extremum
point [see Figs. 1(b) and 1(c)]. Based on the energy disper-
sion, E = h̄2k2

2m∗ , where m∗ is the effective mass, we calculate
the direction-dependent m∗ and show the results in Fig 1(d).
The effective masses are higher along the zigzag direction
than the armchair direction for both the valence (hole) and
conduction (electron) bands. The hole-effective masses are
8.62me and 0.14me (me is the mass of an electron in vacuum)
along the zigzag and armchair directions, which yields a mass
anisotropy of ∼60. Band crossings in such anisotropic bands
can realize hybrid nodal dispersion under appropriate material
parameters and symmetries, as discussed below.

Using phosphorene anisotropic band structure as a
guideline, we searched among the black phosphorus materials
and identified the most robust and ideal hybrid nodal-line
candidate among the transition metal tetraphosphides MP4

[41,44,45]. We discuss the structural and electronic properties
of MP4 by taking MoP4 as an exemplary system. Single
crystals of MoP4 with a black-phosphorus-derived structure
have been grown, and transport experiments have reported it
as a semimetal with large positive magnetoresistance [44,45].
MoP4 crystallizes in the monoclinic Bravais lattice with
space group C2/c (No. 15), which has lower symmetry than
orthorhombic black phosphorus with Cmce (No. 64). The
experimental structural parameters are a = 5.3131 Å, b =
11.1588 Å, c = 5.8343 Å, and β = 110.638◦ [45]. The crystal
structure is derived by intercalation of the Mo atoms between
the phosphorene layers, which reorders the atomic stacking of
phosphorene layers from AB to AC in a way similar to alkali
metal intercalation in black phosphorus [42,43]. Figure 1(e)
depicts the unit cell of MoP4. It consists of two phosphorene
layers with Mo atoms sandwiched between them. The sand-
wiched Mo atoms form zigzag chains extending along [001]
with a uniform interatomic distance of 3.20 Å. There are 4 Mo
and 16 P atoms in the unit cell. All the P atoms can be divided
into two types. The first type of P atoms is covalently bonded
with three adjacent P atoms and forms a dipolar bond with
one Mo atom. The other type of P atoms is covalently bonded
with two neighboring P atoms and forms dipolar bonds with
two Mo atoms. This bonding arrangement distorts the P atoms
from their original in-plane positions of black phosphorus
and imposes three-dimensionality in MoP4. The crystal
lattice respects only the following symmetries: inversion

TABLE I. Calculated effective masses of the P (�+
1 ) and Mo

(�−
2 ) bands in the y−z, x−z, and x−y planes. The anisotropic ratio

δ{�+
1 ,�−

2 } = m∗
max

m∗
min

, where m∗
max and m∗

min are the maximum and min-

imum effective masses in each plane for P and Mo bands, is also
given. The angular location of m∗

max and m∗
min given in parentheses

is calculated with respect to the horizontal axis in each plane (see
Fig. 2). Effective masses are given in units of me.

Plane P band (�+
1 ) Mo band (�−

2 )

m∗
max m∗

min δ�+
1

m∗
max m∗

min δ�−
2

y−z 1.82 (90◦) 0.13 (0◦) 14 0.59 (0◦) 0.14 (90◦) 4.21
x−z 2.34 (105◦) 0.40 (15◦) 5.85 0.47 (165◦) 0.13 (75◦) 3.61
x−y 0.42 (0◦) 0.14 (90◦) 3 0.59 (90◦) 0.43 (0◦) 1.37

I, twofold rotation C̃2y : (x, y, z) �⇒ (−x, y,−z + 1
2 ), and

a single glide mirror M̃y : (x, y, z) �⇒ (x,−y, z + 1
2 ).

Figure 1(g) shows the primitive cell Brillouin zone (BZ) and
projected (001) surface BZ with a marked M̃y mirror plane
and high-symmetry points.

Figure 1(f) shows the calculated band structure of MoP4

without SOC. It is semimetallic where the �+
1 valence band

intersects the �−
2 conduction band with an inverted band

ordering at the � point. Particularly, the valence and conduc-
tion band crossings stay ungapped along the �−Y direction.
There are additional twofold band crossings along the Z−M
direction in the valence and conduction regions of the band
structure. Upon the inclusion of SOC, the band structure is
locally gapped at each k point, separating valence and con-
duction bands in the entire BZ (see the Supplemental Material
[55]). Nevertheless, the SOC-induced gap at the nodal points
is less than 15 meV, which is slightly increased to a value of
25 meV when SOC is artificially scaled to 500%. The small
band gap opening preserves the fermionology of the crossing
bands, and thus, the SOC effects can be ignored. Moreover,
the band crossings at the Z and M points in the valence and
conduction regions remain robust, realizing nonsymmorphic
symmetry-protected Dirac states in MoP4 [45].

To uncover lattice-driven anisotropic electronic properties
and their connection to black phosphorus, we present the
orbital-resolved band structure of MoP4 in Figs. 2(a) and 2(b).
The conduction band is derived from the Mo atoms, whereas
the valence band is composed of P atoms. These two bands
with distinct atomic character cross in the vicinity of the
Fermi level to generate a semimetallic state. The nature of the
valence and conduction bands is further probed by calculating
the orientation-dependent effective masses around the � point
(see Table I). In Figs. 2(c) and 2(d), we present these results
for the Mo and P bands, respectively, in the x−y−z space. The
effective mass associated with the Mo band is less anisotropic
and forms a spheroid shape in space, whereas the P band
effective mass is highly anisotropic, forming a peanutlike
shape and mimicking the anisotropic P lattice structure in
MoP4. The structure-to-mass-anisotropy relation is revealed
by the results shown on various plane cuts in Figs. 2(e)–2(g)
and their associated crystal directions in Figs. 2(h)–2(j). Par-
ticularly, the P band effective mass (red markers) along the
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FIG. 3. Hybrid nodal line in MoP4. (a) The location of the nodal
line in the reciprocal space. The color represents the nodal-line
energy. The arrow shows the transition from type-I to type-II points.
The upper and lower portions of the nodal line across � are related by
inversion symmetry. (b) Energy-dependent nodal-line configuration
on the kx−ky plane. An extended energy region below and above
the Fermi level (shown by the gray plane) is revealed. The color
represents the kz location of the nodal line. (c) and (e) Band structure
in the kx−ky plane at (c) kz = 0 Å−1 and (e) kz = 0.1 Å−1 with the
nodal line (red line). (d) and (f) Energy dispersion along the tangen-
tial, radial, and perpendicular directions around the shaded points
in (c) and (e). At any point on the nodal line, kR defines the radial
direction, kT lies perpendicular to kR in the nodal-line plane, and k⊥
lies normal to the nodal-line plane. From these energy dispersion cuts
a type-I character at kz = 0 Å−1 and a type-II character (that is, along
perpendicular directions both the crossings bands have the same sign
for velocity) at kz = 0.1 Å−1 are revealed.

zigzag direction is higher than that in the armchair direction,
similar to phosphorene bands. In contrast, the Mo bands (blue
markers) exhibit maximum and minimum effective masses
oriented perpendicular to the P bands. The Mo and P bands
with oppositely oriented effective masses cross in the vicinity
of the Fermi level to generate a semimetallic state.

B. Hybrid nodal-line structure

We now characterize the band crossings between Mo and
P bands in Fig. 3. The gapless valence and conduction band
crossing points in kx−ky−kz space are presented in Fig. 3(a).
These crossing points trace a line node that encloses the �

point. The line node is not hooked to the ky mirror plane
but forms an IT symmetric structure primarily located on
the kx−kz plane due to the presence of inversion symmetry.
The symmetry protection of the nodal line is determined
by calculating the Berry phase γ = ∮

dk · A(k), where

A(k) = i
∑

n〈un,k|∇un,k〉 is the Berry connection of the
occupied Bloch bands |un,k〉. For a generic closed k loop
encircling the line node, we obtain a Berry phase γ = +π .
This results in a nontrivial winding number γ

π
= +1, dictating

the topological protection of the line node. The energy and
momentum spread of the line node are shown in Figs. 3(a)
and 3(b). The line node spans an energy range from −0.17 to
0.08 eV that passes through the Fermi level. Such an extended
energy range can enable spectroscopic verifications of the
nodal line without fine-tuning the Fermi level in MoP4.

Figures 3(c) and 3(e) show the E -kx-ky band dispersion
in the kz = 0 and kz = 0.1 Å−1 planes, respectively, with the
line node shown in red. The isolated nodal points (shaded
white circle) lie on the ky axis in the kz = 0 plane and on
the kx axis in the kz = 0.1 plane. We further plot the energy
dispersion away from these nodal points in Figs. 3(d) and 3(f).
Dispersing away from the nodal points, the two bands form a
nearly quadratic band crossing along the tangential direction
and conical band crossings along the other two momentum
directions on the kz = 0 plane. In contrast, the two bands have
the same sign for velocity along one momentum direction (in
this case, the direction perpendicular to the nodal-line plane)
on the kz = 0.1 Å−1 plane. These results clearly show that the
line node is hybrid in character, having both type-I and type-II
band crossings. Exploring the full momentum space location
of type-I and type-II band crossings, we find that the type of
band crossings is related to their lattice directions. In particu-
lar, the type-I nodal points lie along the armchair directions,
whereas the type-II band touchings lie along the zigzag direc-
tion of the P atoms. The nodal-line dispersion continuously
evolves from type I to type II in intermediate directions, as
shown by an arrow in Fig. 3(a) (see the Supplemental Material
[55] for details). Such a hybrid nodal structure arises due
to crossings of anisotropic Mo and P bands with oppositely
oriented effective masses, which generates a dispersive nodal
line by displacing the crossing bands in opposite momen-
tum directions. The large opposite displacement between the
crossing bands drives type-II dispersion along certain momen-
tum directions (see Sec. III D).

C. Topological surface states

The existence of drumhead electron states inside or outside
nodal-line projections on the crystal surface is the hallmark of
topological nodal-line semimetals. To showcase these states,
we present the calculated (001) surface band structure of
MoP4 in Fig. 4. In Figs. 4(a) and 4(b), we illustrate the
constant-energy contours at E = −0.169 eV and E = 0.08 eV
as the representative cases of type-I and type-II bulk nodal
energies, respectively. These plots show a rich electronic
structure with surface states located inside and outside the
projected nodal line. The surface states connect two nodal
points at a particular energy cut, forming a double Fermi-arc-
type connectivity. These Fermi-arc-type states are part of the
highly dispersive drumhead surface states, as seen in the sur-
face band structure along the Y -�-Y and X -�-X directions in
Figs. 4(c) and 4(d). Such drumhead electronic states and their
Fermi-arc-type constant-energy connectivity are unique to the
dispersive hybrid line node and may serve as spectroscopic
fingerprints for experimental verification.
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FIG. 4. Topological surface states in MoP4. Surface energy spec-
trum for the (001) surface of MoP4 at constant energies (a) E =
−0.169 eV and (b) E = 0.08 eV obtained with a surface poten-
tial energy of −50 meV. The green dots in (a) and (b) mark the
type-I and type-II projected band crossings along the high-symmetry
axes, respectively. A Fermi-arc-type connectivity is revealed in the
drumhead surface states at these isoenergy contours. Surface band
structure of the (001) surface along the (c) Ȳ −�̄−Ȳ and (d) X̄−�̄−X̄
directions. The left panel shows a close-up of the band structure
highlighted in the dashed box. The drumhead surface states lie inside
the projected bulk band crossings.

D. Effective Hamiltonian

To better understand the underlying mechanism of a mass-
anisotropy-driven hybrid nodal line, we drive the low-energy
effective Hamiltonian using the theory of invariants [19,56].
The first-principles results indicate that anisotropic �−

2 and
�+

1 bands cross to generate the hybrid nodal line. A k · p
Hamiltonian around � is constrained by time-reversal sym-
metry � : H∗(k) = H (−k), glide mirror symmetry M̃y :
H (k) = H (Myk), and inversion symmetry I : σzH (k)σz =
H (−k), where σz is a Pauli matrix. Based on these symmetry
constraints, the spinless two-band k · p Hamiltonian takes the
form

H (k) =
(

ε(u)(k) �(k)
�∗(k) ε(l)(k)

)
, (1)

where ε(u) and ε(l) are associated with �−
2 and �+

1 bands with

ε(u,l)(k) = ±
⎧⎨
⎩

∑
i=x,y,z

(
1

2
α

(u,l)
i k2

i

)
+ α(u,l)

xz kxkz + 1

2
ε0

⎫⎬
⎭,

(2)

�(k) = −iV (vxkx − vzkz ). (3)

Here, all the parameters are considered to be real. To have
concave upward and downward curves for ε(u) and ε(l), the in-
verse of absolute effective masses α

(u)
i , α

(l)
i > 0 for i = x, y, z

(here, h̄ = 1). The α(u,l)
xz term is introduced to break the mir-

ror symmetry in the kx and kz planes, giving tilted effective
mass eclipses, as found in our calculations. ε0 < 0 gives the

FIG. 5. Nodal-ring configuration and energy dispersion.
(a) Nodal-ring configuration in the global coordinate system
(kx, ky, kz). A new coordinate system (k1, k2, k3) is defined in which
k2 is along ky, k1 is perpendicular to the nodal-ring plane, and k3 is
perpendicular to k1 and k2 and lies in the nodal-ring plane. The nodal
ring is parametrized by β ∈ [−π, π ]. (b) Variation of nodal-ring
energy dispersion as a function of β in the first quadrant. The energy
dispersion evolves from type I to type II for β = 0 to β = π/2.

band inversion between the two bands at �. �(k) describes
the interband coupling with strength |V k|. The dimensionless
parameters vx and vz with the constraint v2

x + v2
z = 1 describe

the anisotropy due to interband coupling. The eigenenergies
associated with the Hamiltonian [Eq. (1)] are

E±(k) = ξ (+)(k) ±
√

ξ (−)(k)2 + |�(k)|2, (4)

where ξ (±)(k) = 1
2 [ε(u)(k) ± ε(l)(k)]. For later use, we

define α
(u,l)
X = v2

z α
(u,l)
x + v2

x α
(u,l)
z + 2vxvzα

(u,l)
xz , and α

(u,l)
Z =

vxvz(α(u,l)
x − α(u,l)

z ) + (v2
x − v2

z )α(u,l)
xz .

Since the two crossing bands have equal mirror eigenval-
ues, their nodal crossings are not protected by M̃y. Instead,
the inversion symmetry I can protect a line nodal, which is
determined by the conditions ξ (−)(k) = 0 and �(k) = 0. The
nodal ring for β ∈ (−π, π ] [see Fig. 5(b)] is positioned at

knode(β ) = (vzKX sin(β ),±Ky cos(β ), vxKX sin(β )), (5)

where KX =
√

|ε0|
αX

and Ky =
√

|ε0|
αy

.

To describe the local energy dispersion associated with
nodal crossings for different β, we define a new coordinate
system (k1, k2, k3), as shown in Fig. 5(a). The transformation
of (k1, k2, k3) → (kx, ky, kz ) is kx = vxk1 + vzk3, ky = k2, and
kz = −vzk1 + vxk3. Here, k1 is perpendicular to the nodal-ring
plane [�(k) = 0]. Taking k2 = Ky cos(β ) and k3 = KX sin(β )
on the nodal ring, the dispersions of ε(u) and ε(l) along k1 take
the form

ε(u,l)(k1) = ±{
1
2 A(u,l)k2

1 + α
(u,l)
Z KX sin(β )k1

} + Enode(β ),

(6)

where A(u,l) = α(u,l)
x + α(u,l)

z − α
(u,l)
X . Enode(β ) = 1

2 K2
X δαX

sin2(β ) + 1
2 K2

y δαy cos2(β ) is the energy of the nodal ring,
which agrees with our first-principles results [Fig. 3(b)] for
K2

X δαX > K2
y δαy. The energy dispersions ε(u,l)(k1) shows

shifted parabolic bands that cross at k1 = 0 with shifts
proportional to α(u,l)

z sin(β ). Notably, the band shifts increase
with β. When the band shifts are opposite, α

(u)
Z α

(l)
Z < 0, a
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type-II feature emerges [Fig. 5(b)]. Below we show that this is
the necessary condition for realizing a type-II band crossing.

Including the interband coupling, �(k) = −iV k1, the
slopes of E±(k) along k1 are

∂

∂k1
E±(k) = KX δαZ sin(β ) ±

√
[KX αZ sin(β )]2 + V 2,

(7)

where αZ = 1
2 (α(u)

z + α(l)
z ) and δαZ = 1

2 (α(u)
z − α(l)

z ). The
condition for a type-II nodal dispersion is

|δαZKX sin(β )| >

√
[αZKX sin(β )]2 + V 2, (8)

which reduces to

(−α
(u)
Z α

(l)
Z

)
sin2(β ) >

(
V

KX

)2

. (9)

Notably, α
(u,l)
Z characterizes the dressed mass anisotropy

in the kx−kz plane for the two bands. The necessary con-
dition for realizing a type-II band dispersion is that the
mass anisotropies of the crossing bands should be opposite,
α

(u)
Z α

(l)
Z < 0. For small β and finite V , Eq. (9) cannot be

satisfied. This can be understood because for β = 0, there is
no k shift in Eq. (6), and the band crossing should be type I.
However, when β approaches ±π/2, a type-II band crossing
can be realized [Fig. 5(b)] in the k1 direction provided bands
have large mass anisotropy: |β| > arcsin(|V |/KX

√
−α

(u)
Z α

(l)
Z ).

The dispersion along k2 always remains type I, as found in our
first-principles results.

We emphasize that Eq. (9) is the main result of our work.
Taking sin2(β ) = 1 describes the condition for a hybrid nodal
ring. A large opposite mass anisotropy of the crossing bands
is an ingredient for realizing a hybrid nodal line in materials.
More precisely, the anisotropy includes the effect of particle-
hole asymmetry between the bands. When the conduction and
valence bands have opposite mass anisotropies like in MP4,
the crossing bands form a hybrid nodal line.

E. Material tunability and phase transition

We now consider the robustness of the hybrid node line
and demonstrate a semimetal-to-insulator transition in MP4.
Owing to the presence of M d bands, the electronic corre-
lations may play an important role in dictating the nature
of the nodal line in MP4 since they could shape the energy
dispersion and effective masses of the crossings bands. In
Fig. 6(a), we present the band structure of MoP4 obtained with
the HSE06 hybrid functional that incorporates part of the ex-
act Fock exchange [57]. The calculated energy dispersions of
the valence and conduction bands remain preserved, although
their band overlap is reduced compared to the GGA results.
On exploring the mass anisotropies and nodal-line energy
dispersion, we find that the hybrid nodal line is quite robust
to the changes in the exchange-correlation functionals (see
the Supplemental Material [55]). However, due to reduced
overlap between the valence and conduction bands, MoP4 lies
close to a semimetal-to-insulator transition point.

In order to discuss the semimetal-to-insulator transition
and the tunability of the hybrid nodal line, it is useful to

FIG. 6. Hybrid nodal-line-to-insulator transition and phase tun-
ability. Band structures of (a) MoP4, (b) CrP4, and (c) WP4 obtained
using the HSE hybrid exchange-correlation functional. (d) Calcu-
lated band structure of CrxW1−xP4 along the Y −�−Y direction for
different x values. (e) Variation of the energy gap at � for CrxW1−xP4

as a function of x. The related topological state is highlighted. The
red line is a guide to the eye. (f) Schematic representation of the
calculated hybrid-functional band structure of representative com-
pounds in the MP4 family. Band inversion strength increases in WP4,
whereas CrP4 realizes a fully gapped state.

calculate the HSE06 band structures of CrP4 and WP4

[Figs. 6(b) and 6(c)]. Since CrP4 and WP4 are isostructural
to MoP4, they show similar mass anisotropies in the valence
and conduction bands, as seen in MoP4 [44–46]. However,
the magnitude of effective masses and anisotropy are material
dependent owing to distinct interband coupling effects (see the
Supplemental Material [55] for details). This can be further
understood based on the different structural parameters of
MP4. Due to the different effective radii of the M atoms,
the lattice constant is decreased in CrP4 (a = 5.19 Å, b =
10.16 Å, and c = 5.77 Å) and increased in WP4 (a = 5.34
Å, b = 11.19 Å, and c = 5.87 Å) compared to MoP4. The
change in lattice parameters results in different crystal-field
effects and electronic states in CrP4 and WP4. Particularly,
CrP4 realizes an insulator state with a band gap of 0.54 eV
at the � point, whereas WP4 forms a hybrid nodal line with
increased band inversion strength. These results demonstrate
that CrP4 and WP4 lie electronically on opposite sides of
MoP4. Alternatively, Cr doping in MoP4 will be expected to
reduce the valence and conduction band overlap and push
the material toward the trivial insulator state. In contrast, W
doping in MoP4 will increase the band overlap and realize a
hybrid nodal line with increased band inversion strength.

Figure 6(d) shows energy dispersion of CrxW1−xP4 alloys
for various Cr concentrations x calculated along the ky axis.
The virtual crystal approximation is adopted to model the
band structure using the Wannier Hamiltonian obtained
with the HSE06 functional. When x = 0, a clear overlap

235136-6



ROLE OF EFFECTIVE MASS ANISOTROPY IN … PHYSICAL REVIEW B 108, 235136 (2023)

between M d and P p states is seen, so the system realizes
a nodal-line semimetal state. As x is increased, the M d
and P p states move in opposite energy directions and touch
at the � point for xc = 0.32. With a further increase in x,
the overlap between these states vanishes, and the system
transitions to an insulator state. Notably, we calculate the
orientation-dependent effective masses of the valence and
conduction bands and the nodal-line dispersion of CrxW1−xP4

for x = 0.2. The mass anisotropy of bands and the hybrid
nature of the nodal-line dispersion remain preserved, showing
that these features are robust in MP4 materials. The evolution
of the band gap of CrxW1−xP4 as a function of x at � is
shown in Fig. 6(e). A hybrid semimetal-to-insulator transition
can thus be achieved by varying the Cr concentration. A
similar tunable system can be achieved by doping MoP4 with
Cr atoms [see Fig. 6(f)]. Since Cr, W, and Mo atoms are
isovalent and form isostructural materials with similar mass
anisotropies, one can create a Crx(Mo, W)1−xP4 material that
can be tuned among various topological states.

IV. DISCUSSION

Understanding the structure-to-property relationship lies
at the heart of physics research and provides concepts for
engineering new device design [35]. It remains largely un-
explored in topological materials, even though the numbers
and energy dispersions of nontrivial states depend on the
structural and positional motifs of materials. Based on the
first-principles calculations and k · p theory, we have sys-
tematically demonstrated how the lattice-geometry-driven
effective mass anisotropies result in unique hybrid nodal-line
states in black phosphorus materials MP4. Taking MoP4 as
an explicit example, we showed that it retains characteristic
anisotropic energy dispersion of the phosphorene and harbors
a single hybrid nodal line between Mo d and P p states. The
nodal line constitutes both type-I and type-II band crossings
and spreads across the Fermi level around the � point. We
revealed that the P bands have a peanut-type effective mass

variation such that the large and small effective masses orient
along the zigzag and armchair directions of the P atoms,
respectively. The anisotropic P band crosses with the Mo
d band to form the hybrid nodal line where the type-I and
type-II nodal points are hooked to the armchair and zigzag
lattice directions. Through in-depth symmetry and Hamilto-
nian analysis, we showed that strong mass anisotropy in the
crossing bands is a necessary condition to form the hybrid
nodal line in MP4. We further proposed the realization of the
hybrid nodal-line state with increased inversion strength and
a metal-to-insulator transition through isoelectronic chemical
substitutions such as Crx(W, Mo)1−xP4. MP4 materials have
been synthesized in experiments and explored in connection
with high diffusion anisotropy of sodium and other metal ions
in the phosphorous layers [41–47]. More recent work dis-
cussed the high-pressure synthesis of MoP4 and revealed its
semimetallic nature with high-mobility electrons [45]. Since
the single-crystalline samples have been grown and the hybrid
nodal line runs across the Fermi level, experimental validation
of the nodal line could be done, for example, in photoemis-
sion experiments without any Fermi level tuning. Moreover,
orientation-dependent effective masses could be determined
from transport experiments. Their anisotropic behavior could
serve as experimental fingerprints to determine the nodal-line
dispersion in topological semimetals. These facts highlight
that MP4 materials constitute an ideal platform to explore
mass-anisotropy-driven hybrid nodal states and advance our
understanding of the role of lattice geometry in shaping topo-
logical state dispersion in materials.
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