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Correlated insulator in two Coulomb-coupled quantum wires
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Motivated by the recently discovered incompressible insulating phase in the bilayer graphene exciton exper-
iment [Zeng et al., arXiv:2306.16995], we study using bosonization two Coulomb-coupled spinless quantum
wires and examine the possibility of realizing the similar phenomenology in one dimension. We explore the
possible phases as functions of kF ’s and interactions. We show that an incompressible insulating phase can arise
for two lightly doped electron-hole quantum wires (i.e., kF1 = −kF2 and small |kF1|) due to strong interwire
interactions. Such an insulating phase forms a parity-even wire-antisymmetric charge density wave without
interwire phase coherence, which melts to a phase allowing for a perfect negative drag upon heating. The
finite-temperature response is qualitatively consistent with the “exciton solid” phenomenology in the bilayer
graphene exciton experiment.
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I. INTRODUCTION

Low-dimensional quantum many-body systems have been
an active research area because of the unconventional phases
and the high tunability in the experimental setups. An exciting
direction is to create quantum phases with intersubsystem
correlation and coherence, such as Coulomb drag [1–5] and
electron-hole bilayer phenomena [6–18]. For example, two
layers with opposite charge carriers (one with electrons, one
with holes) can form exciton condensates due to the interlayer
Coulomb interaction, building up strong interlayer phase co-
herence and allowing for intriguing observable consequences.
A recent bilayer graphene exciton experiment [14] observes
a correlated insulating state, a putative “exciton solid.” Upon
heating, such a state melts into an exciton condensate phase,
characterized by a perfect negative drag response. It is specu-
lated that this insulating state is distinct from a bilayer Wigner
crystal that arises independently in each layer. However, the
nature of the putative exciton solid is not well understood.

Motivated by the correlated insulating state discovered in
Ref. [14], we study the interacting two-subsystem problem in
a corresponding one-dimensional (1D) biwire analog, where
controlled analytical tools are available. In this work, we
consider two isolated clean spinless quantum wires that are
coupled through Coulomb interaction. The goal is to examine
possible phases akin to the formation of interwire excitons,
and the complete single-wire quantum phase diagram [19] is
not emphasized in this work. With bosonization, the problem
is mapped to two decoupled sine-Gordon models (correspond-
ing to wire-symmetric and wire-antisymmetric sectors), and
the resulting phase diagram can be obtained analytically. In
particular, we find a correlated insulating state when the two
wires are in the dilute carrier limit (i.e., very small kF ).
This insulating state corresponds to a wire-antisymmetric
charge density wave (CDW) with even parity, yielding zero
counterflow conductivity. With increasing temperature, the
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antisymmetric gap becomes inactive, allowing for a perfect
negative drag and a finite counterflow conductivity. This
finite-temperature biwire phenomenology is consistent with
the results of the recent bilayer graphene exciton experiment
[14]. Notably, the insulating phase in the Coulomb-coupled
wires has no interlayer phase coherence, i.e., excitons are
absent here. It is an interwire correlated incoherent incom-
pressible insulator phase, and it is not an excitonic supersolid.
The prediction of the interwire incoherent insulating state is
not specific to 1D systems and should apply to higher di-
mensions. Thus our results provide a potential explanation for
the correlated insulating state discovered in the recent bilayer
graphene exciton experiment [14].

II. MODEL

We are interested in two isolated clean spinless quantum
wires that are coupled through Coulomb interaction but do not

FIG. 1. Setup and current correlation diagrams. (a) Two quantum
wires are spatially separated with a distance d (i.e., ignoring electron
tunneling). Two wires interact through Coulomb interaction. (b) Cur-
rent correlation diagram of two Coulomb-coupled quantum wires as
functions of kF1 and kF2. We focus only on K± < 1. There are four
distinct regions: (i) the cyan regions indicate a positive drag (I1 = I2),
(ii) the magenta regions indicate a negative drag (I1 = −I2), (iii) the
yellow region indicates an interaction-driven insulator (I1 = I2 = 0),
and (iv) the white regions indicate two decoupled Luttinger liquids,
in which I1 and I2 are completely independent. The widths of the
regions (i) and (ii) are determined by the δQc discussed in the main
text. (c) Current correlation diagram with K+ < 1, K− > 1, and in-
finitesimal |V−|. The wire-antisymmetric sector is always gapless in
this case.
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allow any interwire electron tunneling. The setup is related to
1D Coulomb drag [1,20–25], fermion ladders (in the absence
of interchain tunneling) [19,26], and 1D excitonic insulators
[27–30] except that we consider general doping densities with
arbitrary kF . After linearizing the bands, the physical fermion
(ψn) of the nth wire can be decomposed into chiral right
(Rn) and left mover (Ln), described by ψn(x) ≈ eikFnxRn(x) +
e−ikFnxLn(x), where kFn is the Fermi wave vector of the nth
wire. Positive (negative) kFn corresponds to electron (hole)
doping [31]. We aim to construct a quantum phase diagram
with tuning parameters kF1, kF2, and interaction strength.

The Coulomb coupled wires can be described by Ĥ =
Ĥ0 + ĤLL + ĤI , where

Ĥ0 =
∑

n=1,2

vF

∫
dx[R†

n(−i∂xRn)− L†
n (−i∂xLn)], (1a)

ĤI = V+
∫

dx[ei2Q+xL†
1R1L†

2R2 + H.c.]

+ V−
∫

dx[ei2Q−xL†
1R1R†

2L2 + H.c.], (1b)

and ĤLL encodes the Luttinger liquid interactions (both
intrawire and interwire processes). In Eq. (1), vF is the
Fermi velocity, V+ > 0 and V− > 0 correspond to the inter-
wire Coulomb-induced backscattering interaction, and Q± ≡
kF1 ± kF2. The model obeys the spinless time-reversal sym-
metry and parity symmetry. The time-reversal operation T
corresponds to Rn → Ln, Ln → Rn, and i → −i; the parity
operation P corresponds to Rn → Ln, Ln → Rn, and x → −x.
For simplicity, we have assumed that two wires have the
same Fermi velocity and the same intrawire interaction, but
the values of kF1 and kF2 are not constrained. We also ig-
nore the intrawire umklapp backscattering interactions as it
is typically preempted by the interwire backscattering interac-
tions. Our qualitative results do not rely on these nonessential
simplifications.

Now, we discuss the interaction effects. The Luttinger
liquid interactions renormalize Ĥ0 and turn the system into
(gapless) Luttinger liquids, allowing for bosonic excitations
[19]. The interwire backscattering interactions can induce
correlation gaps. To examine the interaction effects system-
atically, we employ bosonization [19,32]. The interacting
fermionic Hamiltonian Ĥ is then mapped to a bosonic Hamil-
tonian, given by

Ĥb =
∑

n=1,2

∫
dx

v

2π

[
K (∂xφn)2 + 1

K
(∂xθn)2

]

− V+
2π2α2

∫
dx cos [2(θ1 + θ2) + 2Q+x]

+ V−
2π2α2

∫
dx cos [2(θ1 − θ2) + 2Q−x]

+ V ′

π2

∫
dx(∂xθ1)(∂xθ2), (2)

where φn and θn are the phase and density bosons respectively,
v is the velocity, K is the Luttinger parameter (K < 1 for
repulsive interaction), V ′ > 0 is the strength of the interwire
Luttinger liquid interaction. Note that the Luttinger parameter

K = 1/
√

1 + U ′
πvF

, where U ′ encodes the intrawire Luttinger

liquid interaction strength. Again, we have assumed the same
Fermi velocity and intrawire interaction among the two wires.
In this convention, the long-wavelength density operator and
the current operator are expressed by ρn = 1

π
∂xθn and In =

− 1
π
∂tθn, respectively. Note that the minus sign in the V+ term

is due to the bosonization convention used in this work. See
Appendix B for a discussion.

The bosonic Hamiltonian [Eq. (2)] can be simplified with
a change of basis. We introduce collective bosonic fields,

± = 1√

2
[φ1 ± φ2] and �± = 1√

2
[θ1 ± θ2]. The subscript +

(−) indicates the wire-symmetric (wire-antisymmetric) de-
grees of freedom. With these new variables, equation (2)
becomes Ĥb → Ĥb+ + Ĥb−, where

Ĥb,+ =
∫

dx
v+
2π

[
K+(∂x
+)2 + 1

K+
(∂x�+)2

]

− V+
2π2α2

∫
dx cos[2

√
2�+ + 2Q+x], (3a)

Ĥb,− =
∫

dx
v−
2π

[
K−(∂x
−)2 + 1

K−
(∂x�−)2

]

+ V−
2π2α2

∫
dx cos[2

√
2�− + 2Q−x]. (3b)

In the above expression, v+ and v− are the velocities, and K+
and K− are the Luttinger parameters. One can show that

v± = vF

√
1 + U ′ ± V ′

πvF
, K± = 1

/√
1 + U ′ ± V ′

πvF
. (4)

Thus K+ < K− generally holds because the V ′ term in
Eq. (2) contributes to a repulsive interaction in the symmet-
ric sector and an attractive interaction in the antisymmetric
sector [21]. If the intrawire Luttinger liquid interaction (U ′)
is stronger than the interwire Luttinger interaction (V ′), one
should expect K+ < K− < 1 [21,33]. We also consider the
case K+ < 1 < K−, corresponding to U ′ < V ′ [34]. Ĥb+ and
Ĥb− are completely decoupled, and each of them corresponds
to the sine-Gordon model which is mathematically equiva-
lent to the commensurate-incommensurate transition problem
[19,33,35]. In addition, the bosonic Hamiltonian Ĥb,± can
be mapped to noninteracting massive Dirac fermion at the
Luther-Emery point [19,33] (K± = 1/2 in this case), provid-
ing an intuitive way to analyze the results through gapped
fermionic insulators. Note that the qualitative results obtained
from Luther-Emery analysis also apply for general cases with
K± < 1. See Appendix C for a detailed discussion about
Luther-Emery refermionization. Our goal is to construct the
quantum phase diagram arising from the interplay between
interaction and doping (i.e., kF1 and kF2).

III. POSSIBLE PHASES AND INSTABILITIES IN
GENERAL COULOMB-COUPLED TWO-WIRE PROBLEM

With bosonization and the collective variables, the two
Coulomb-coupled quantum wires can be mapped to decou-
pled Ĥb,+ and Ĥb,−, which are related to the sine-Gordon
model. In the following, we summarize the main results and
construct the quantum phase diagram of the two Coulomb-
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coupled quantum wires. See Appendix E for a discussion on
technical details.

The bosonized Hamiltonian Ĥb,± [Eq. (3)] can be mapped
to the commensurate-incommensurate transition problem
[35]. The V± term in Ĥb,± can be ignored (i.e., a Lut-
tinger liquid phase, incommensurate) if |2Q±| > δQc, where
δQc indicates the threshold value for the commensurate-
incommensurate transition [35] depending on the interaction
parameters. When |2Q±| < δQc, Ĥb,± can be viewed as
the commensurate sine-Gordon model (with Q± = 0), which
admits the same renormalization group (RG) flow as the
Berezinskii–Kosterlitz–Thouless transition [19]. For K± < 1,
the V± term in Ĥb,± becomes relevant (in the RG sense),
and the system develops a gap. For K± > 1, the system can
develop a gap only when |V±| is larger than the critical value
(corresponding to the separatrix of the transition). Otherwise,
the system is described by a gapless Luttinger liquid.

For K± < 1, there are four distinct regions as illustrated
in Fig. 1(b): (i) a gapless phase with a positive current drag
I1 = I2 (the cyan regions, kF1 ≈ kF2), (ii) a gapless phase with
a negative current drag I1 = −I2 (the magenta regions, kF1 ≈
−kF2), (iii) a correlation-induced incompressible insulator
(the yellow region, kF1, kF2 ≈ 0) [33], and (iv) decoupled
quantum wires (the white region, generic kF1, kF2). For K+ <

1 but K− > 1, the value of |V−| is important in determining the
phases. Thus the existence of regions (i) and (iii) depends on
whether |V−| is above the critical threshold. For infinitesimal
|V−|, the region (i) is absent, and the region (iii) is replaced by
region (ii) with I1 = −I2 as shown in Fig. 1(c).

We introduce several order parameters to examine the
possible phases in Fig. 1(b). The interwire correlation can
be described by the interwire exciton pair (e.g., ψ

†
1 ψ2) and

interwire Cooper pair (e.g., ψ1ψ2) operators. In addition,
we consider charge density wave (CDW) operators, OCDW,±
and DCDW,±. OCDW,+ and OCDW,− (DCDW,+ and DCDW,−)
correspond to wire-symmetric and wire-antisymmetric CDW.
OCDW,± is parity-even, while DCDW,± is parity-odd. All the
CDW operators obey spinless time-reversal symmetry. Due
to the Mermin-Wagner theorem, the continuous symmetry
breaking is absent in infinite 1D systems. We thus examine
the nonlocal correlation functions of the order parameters,
and the slowest decaying correlation function determines the
dominant instability [19]. The detailed analysis is discussed in
Appendix E. We summarize the main results in the following
(also in Table I).

In the region (i) (I1 = I2), the OCDW,− and DCDW,− are the
leading coexisting order parameters, the system tends to form
an interlocked CDW instability [1,21,36,37]. In the region (ii)
(I1 = −I2) with K± < 1 and small |Q−|, the leading order
parameters are coexisting OCDW,− and DCDW,+, correspond-
ing to an interlayer electron-hole CDW instability [37]. When
K− > 1 or |Q−| is sufficiently large, the exciton pair opera-
tor becomes dominant [38], implying a formation of exciton
(quasi)condensate. Note that the CDW and exciton operators
are not compatible, i.e., they cannot acquire finite expectation
values simultaneously. Thus one should expect a phase transi-
tion within the region (ii). Note that the instabilities discussed
in regions (i) and (ii) exhibit power-law correlations, implying
the absence of true long-range orders. In region (iii), the order
parameter OCDW,− is the only nontrivial order parameter and

TABLE I. Order parameters in various cases based on the power-
law exponents. indicates the dominant order parameter based on the
nonlocal correlation function. � indicates the subleading order pa-
rameter. x indicates vanishingly small expectation value. For region
(ii), we separate case (iia) (K− < 1 and small |Q−|) and case (iib)
(K− > 1 or large |Q−|) as the results are different. For region (iii),
OCDW,− is a constant, suggesting a true long-range order due to
discrete symmetry breaking of the minima in V+ and V− terms in
Eq. (3).

(i) (iia) (iib) (iii)

ψ†
1 ψ2 + H.c. x � � x

ψ1ψ2 + H.c. � x x x

OCDW,+ x x x x
OCDW,− � � � �
DCDW,+ x � � x
DCDW,− � x x x

is constant (corresponding to a discrete symmetry breaking
due to V+ and V− interaction). The ground state is described
by a wire-antisymmetric parity-even CDW order. The results
discussed above are summarized in Table I.

IV. PHASE DIAGRAM OF ELECTRON-HOLE
BIWIRE SYSTEM

The main goal of this work is to investigate the possible
connection to the exciton systems. Thus we consider kF1 =
−kF2 = kF > 0 (corresponding to an electron-hole biwire
system). A schematic phase diagram is sketched in Fig. 2,
where we incorporate the long-range Coulomb potential for
the interwire interactions. In the following, we discuss the
qualitative results in Fig. 2. Technical details can be found
in Appendix F.

First, the Luttinger parameters K+ and K− depend on the
interwire interaction, which is controlled by d . The interwire
interaction V ′(d ) ≈ 2e2

κ
K0(2πd/L), where κ is the dielectric

constant, K0 is the zeroth order modified Bessel function of
the second kind, L is the wire length. With Eq. (4) and the

FIG. 2. Phase diagram of the electron-hole two-wire system. We
sketch the phase diagram as functions of wire separation d and kF . CI
indicates the correlated insulator phase with I1 = I2 = 0; EC denotes
the exciton (quasi)condensate phase (I1 = −I2); fluctuating CDW
denotes the negative drag phase (I1 = −I2) with leading (power-
law decaying) CDW instability. dc separates K− > 1 (d < dc) and
K− < 1 regimes. See main text for detailed discussion.
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expression of V ′, the Luttinger parameter in the antisymmetric
sector is given by

K− =
[

1 + U ′

πvF
− 2e2

πvF κ
K0(2πd/L)

]−1/2

. (5)

One can show that K+ (K−) decreases as d decreases (in-
creases). We define a critical value dc such that U ′ = V ′(dc)
corresponding to K− = 1. In the biwire systems with kF1 =
−kF2 = kF > 0, the symmetric sector is always gapped as
K+ < 1. Thus the phase diagram is primarily controlled by
K− (which depends on d) and kF .

For an infinitesimal kF , the exciton condensate phase is
realized for K− > 1. For K− < 1, the exciton condensate can
become the leading instability if kF is sufficiently large. As
shown in Eq. (E14), the exciton pair correlation is nonoscil-
lating (carrying zero wave vector), while the CDW correlation
functions oscillate with a wave vector |Q−| = 2kF . The rapid
oscillation in CDW correlation suppresses the susceptibility,
which is the Fourier transform of the space-time correlation
function. Therefore the exciton condensate phase is favored
for large kF . The correlated insulator phase is realized when
both symmetric and antisymmetric sectors are gapped and can
be viewed as a stable electron-hole CDW state. This corre-
lated insulator phase only exists for a sufficiently small kF

(doping) and intermediate d . The commensuration condition
requires that 4v−kF < 

(0)
− , where 

(0)
− is the antisymmetric

correlation gap with kF = 0. The nonmonotonic behavior in
d can be understood through the d-dependence of K− and V−.
Using the Gaussian variational method [19] for K− < 1, the
correlation gap (with kF = 0) is given by


(0)
− = v−�

(
4K−V−

πv−�2α2

) 1
2−2K−

, (6)

where α is the ultraviolet length scale and � is the energy
cutoff. To achieve K− < 1, d must be larger than dc. However,
V− ≈ 2e2

κ
K0(4kF d ) decays as d increases. As a result, the

correlated insulating phase is the strongest for an intermediate
d . See Appendix F for an extended discussion.

V. FINITE-TEMPERATURE PHENOMENOLOGY
OF CORRELATED INSULATING PHASE

In this section, we focus on the correlated insulating phase
and study the finite-temperature response (negative drag ratio
and counterflow conductivity). There are two distinct energy
scales + and − corresponding to the correlation gap in
the symmetric and antisymmetric sectors respectively, and
− < + generally.

First, we inspect the negative drag. To understand the
temperature dependence, we discuss the response in three
asymptotic regimes: T � −, − � T � +, and T �
+. At low temperatures (T � −), currents in both wires
vanish, and the drag ratio is not well defined. A perfect
negative current drag (i.e., Idrive = Idrag) is developed when
− � T � +. As the temperature increases, we expect that
+ correlation weakens, and the drag ratio decreases mono-
tonically in the high temperature limit. In reality, + might
not be much larger than −, but we can still infer the finite-

FIG. 3. Finite-temperature drag and counterflow conductivity of
correlated insulators. (a) The sketched drag ratio, Idrag/Idrive. Idrive

denotes the current in the active wire with a current injected; Idrag

denotes the current in the passive wire and is due to Coulomb inter-
action from the active wire. This quantity is ill-defined for T < −
as I1 and I2 are essentially zero. (b) The sketched counterflow con-
ductivity (σCF). See main text for a detailed discussion.

temperature behavior by extrapolating the three asymptotic
limits.

The counterflow conductivity is a direct probe of the anti-
symmetric sector as the applied voltage is opposite between
the two subsystems. Thus the counterflow conductivity here
is mathematically similar to the conductivity of a bosonized
sine-Gordon model, corresponding to a fermionic gapped in-
sulator with a chemical potential inside the gap. For T �
−, we expect an exponentially small activated conductivity,
which can be obtained by performing the dilute-instanton cal-
culations [39] or through mapping to Luther-Emery fermions
(see Appendix C). We also expect a high-temperature sup-
pression of conductivity due to inelastic scatterings [24] (e.g.,
intrawire umklapp interaction, which is an irrelevant pertur-
bation and ignored in our zero-temperature analysis). Then,
we interpolate the two asymptotic limits and construct the
nonmonotonic finite-temperature conductivity as shown in
Fig. 3(b).

With the results mentioned above, we sketch the finite-
temperature negative drag ratio and counterflow conductivity
in Fig. 3. Remarkably, the results are qualitatively similar to
the experimentally observed correlated insulated state [14].

VI. DISCUSSION

We study two Coulomb-coupled quantum wires and ana-
lyze the possible quantum phases. Strikingly, we show that
the finite-temperature behavior of the incoherent correlated
insulating interwire CDW is qualitatively consistent with the
phenomenology of the putative “exciton solid” phase in the
bilayer graphene exciton experiment [14]. Based on our the-
ory, the insulating state is a stable electron-hole CDW state,
mimicking an interwire excitonic state. However, the interwire
phase coherence (defined by the exciton pair correlation) is
absent in this interwire CDW state. The correlated insulating
state here is not specific to 1D systems, and we expect in-
terlayer Coulomb interactions can generate similar correlated
insulating states in higher-dimensional electron-hole bilayer
systems. Our results suggest a possible nonexciton inter-
pretation of the correlated insulating phase observed in the
experiment [14].

Other incompressible insulating ground states have been
proposed in literature [40–42]. In particular, closely bound
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excitons can form an interlayer electron-hole Wigner crystal
state [41], which is adiabatic to two independently formed
intralayer Wigner crystals being locked by interlayer in-
teraction. Note that our predicted electron-hole CDW state
becomes two decoupled Luttinger liquids when the interwire
interactions are completely suppressed, indicating a very dif-
ferent mechanism from the Wigner crystal picture. Another
difference is that disorder-pinning is not required for realizing
insulating states in our theory as the effective band structure
is fully gapped. These distinct features suggest that the corre-
lated insulating state emphasized in this work is qualitatively
different from the electron-hole Wigner crystal [41].

In this work, the existence of the correlated insulating
state is due to the gapping out of symmetric and antisymmet-
ric sectors of the biwire problem based on Luttinger liquid
analysis. It is possible to generalize our work to a higher
dimension. For example, one can build the two-dimensional
electron and hole layers by coupling an array of 1D quantum
wires [43] and then consider the Coulomb interaction between
these two layers. When each layer realizes a sliding Luttinger
liquid [43], the analysis of our work can straightforwardly
apply, and the correlated insulating state can be realized with
a similar condition. Note that the two-dimensional coupled-
wire model is highly anisotropic and stems from 1D systems.
Constructing an isotropic two-dimensional model that allows
for the correlated insulating state is an interesting future
direction.

One potential issue about the correlated insulating state is
the requirement of small kF . Particularly, the standard Lut-
tinger liquid theory, which is built on linearized dispersion, is
not strictly valid in the presence of strong nonlinear dispersion
corrections (e.g., near the bottom of a k2 dispersing band). We
note that this is a quantitative issue. First, the commensura-
tion condition requires kF < kc = 

(0)
− /(4v−), and enhancing

interwire interaction can increase the value of kc. Note that
kc depends on energy cutoff � which also decreases as kF

decreases in a k2 dispersing band. In addition, there exist
1D systems with approximately linear-in-k dispersion, such
as topological edge states. The predicted correlated insulating
state is more likely to be found in quantum wires with linear-
in-k dispersion and strong interwire interaction.

Now, we discuss the stability of the results in the presence
of disorder. If the disorder potential is smooth and merely
induces long-wavelength fluctuation, the situation is math-
ematically equivalent to two disordered helical edge states
studied in Ref. [33]. The main difference is that the critical
value of Luttinger parameter is reduced to 3/4 from 1, and the
fully gapped states are replaced by localized insulating states.
For generic disorder (including backscattering processes), we
expect Anderson localization for long wires (wire length L
longer than the localization length lloc). For short wires with
strong Coulomb interactions (vF τc � L � lloc, where τc is
the correlation time due to interwire Coulomb interaction), the
predictions of this work should apply.
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APPENDIX A: MICROSCOPIC MODEL

In this Appendix, we introduce a concrete microscopic
model that corresponds to the long-wavelength model dis-
cussed in Eq. (1). We consider two spatially separated
quantum wires that are interacting through the Coulomb force.
The Hamiltonian can be described as follows:

Ĥ2-wire =
∑

n=1,2

∑
k

[εn(k) − μn]ψ†
n (k)ψn(k)

+ 1

2

∑
n=1,2

∫
dxdx′Un(x − x′)ρn(x)ρn(x′)

+
∫

dxdx′V (x − x′)ρ1(x)ρ2(x′), (A1)

where n is the wire index, ψn denotes the annihilation oper-
ator for fermion, εn(k) is the dispersion, μn is the chemical
potential, Un is the intrawire interaction potential, V is the in-
terwire Coulomb potential, ρn(x) = ψ†

n (x)ψn(x) is the density
operator. The intrawire interaction contains long-range and
short-range component of the Coulomb interaction, while the
interwire interaction is dictated by the long-range Coulomb
interaction.

In the low-energy limit, we approximate the bands by lin-
ear dispersions with constant Fermi velocity. In addition, we
decompose the fermion field by ψn ≈ eikFn Rn + e−ikFn Ln. The
Hamiltonian becomes Ĥ = Ĥ0 + Ĥint, where

Ĥ0 =
∑

n=1,2

vFn

∫
dx[R†

n(−i∂xRn) − L†
n (−i∂xLn)], (A2)

Ĥint ≈
∑

n=1,2

{
Ĥ (intra)

LL,n +Un

∫
dx[ei4kFnx : (L†

nRn)2 : +H.c.]

}

+ V ′
∫

dx[R†
1R1 + L†

1L1][R†
2R2 + L†

2L2]

+ V+
∫

dx[ei2Q+xL†
1R1L†

2R2 + H.c.]

+ V−
∫

dx[ei2Q−xL†
1R1R†

2L2 + H.c.]. (A3)

In the above expression, Q± = kF1 ± kF2, Ĥ (intra)
LL,n denotes the

intrawire Luttinger liquid interaction of the nth wire, V ′ terms
is the interwire Luttinger liquid interaction, Un and V± are
the intrawire and interwire backscattering interactions. We
consider phenomenological Luttinger liquid (short-range) in-
teractions instead of the long-range Coulomb interaction in
Ĥintra LL,n. This is a standard approximation. Inclusion of the
long-range Coulomb interaction does not alter our qualitative
results. In the main text, we ignore the intrawire backscat-
tering Un term because it is generally preempted by the
interwire backscattering terms. We also assume vF1 = vF2 for
simplicity.

APPENDIX B: BOSONIZATION CONVENTION

Now, we introduce the bosonization convention used in this
work. The chiral fermions can be expressed by

Rn = ηn√
2πα

ei(φn+θn ), Ln = ηn√
2πα

ei(φn−θn ), (B1)
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where ηn is the Klein factor for the nth wire, φn is the phase
boson, θn is the density boson, and α is the ultraviolet length
scale in our theory. The bosons obey the following commu-
tation relation [φn(x), θn′ (y)] = −iδn,n′πu(y − x), where u(z)
is the Heaviside function. This particular choice enables anti-
commutation relation of fermions within the same wire. The
long-wavelength component of the density in the nth wire is
expressed by ρn = 1

π
∂xθn.

Fermion bilinears can be computed using the following
identities:

eAeB =: eA+B : e
1
2 〈A2+B2+2AB〉, (B2)

eAeB = eA+Be
1
2 [A,B] = eBeAe[A,B]. (B3)

Particularly,

R†
n(−i∂xRn) → 1

4π
(∂xφn + ∂xθn)2, (B4)

−L†
n (−i∂xLn) → 1

4π
(∂xφn − ∂xθn)2, (B5)

L†
nRn → −i

2πα
ei2θn , (B6)

R†
nLn → i

2πα
e−i2θn . (B7)

With bosonization, the two Coulomb-coupled quantum
wires can be expressed by

Ĥb =
∑

n=1,2

∫
dx

vn

2π

[
Kn(∂xφn)2 + 1

Kn
(∂xθn)2

]

−
∑

n=1,2

Un

2π2α2

∫
dx cos [4θn + 4kFnx]

− V+
2π2α2

∫
dx cos [2(θ1 + θ2) + (2kF1 + 2kF2)x]

+ V−
2π2α2

∫
dx cos [2(θ1 − θ2) + (2kF1 − 2kF2)x]

+ V ′

π2

∫
dx(∂xθ1)(∂xθ2). (B8)

Note that the minus sign in front of Un and V+ terms are due to
the bosonization convention used here. The velocity (vn) and
Luttinger parameter (Kn) are given by

vn = vFn

√
1 + U ′

n

πvF
, Kn = 1/

√
1 + U ′

n

πvF
, (B9)

where U ′
n is the phenomenological interaction parameter from

Ĥintra LL,n. Since U ′
n > 0, we obtain Kn < 1.

For simplicity, we assume v1 = v2 = v and K1 = K2 = K .
With these approximations, the model can be further simpli-
fied by introducing the collective variables as follows:


± = 1√
2

[φ1 ± φ2], �± = 1√
2

[θ1 ± θ2], (B10)

where the subscript + means the wire-symmetric modes and
the subscript − means the wire-antisymmetric modes.

We ignore the Un term as it is generally preempted by
V+ and/or V−. The bosonic Hamiltonian can be expressed by

Ĥb = Ĥb,+ + Ĥb,−, where

Ĥb,+ =
∫

dx
v+
2π

[
K+(∂x
+)2 + 1

K+
(∂x�+)2

]

− V+
2π2α2

∫
dx cos[2

√
2�+ + 2Q+x], (B11a)

Ĥb,− =
∫

dx
v−
2π

[
K−(∂x
−)2 + 1

K−
(∂x�−)2

]

+ V−
2π2α2

∫
dx cos[2

√
2�− + 2Q−x]. (B11b)

In the above expression, the V ′ term in Eq. (B8) has been in-
corporated. Using (∂xθ1)(∂xθ2) = 1

2 [(∂x�+)2 − (∂x�−)2], we
obtain

v± = vF

√
1 + U ′ ± V ′

πvF
, K± = 1

/√
1 + U ′ ± V ′

πvF
.

(B12)

Thus K+ < K− holds as long as V ′ > 0. K− can become
larger than 1 if V ′ > U ′. The results here suggest a complete
factorization of the symmetric and antisymmetric degrees of
freedom. Thus the two Coulomb-coupled wires can be viewed
as two decoupled sine-Gordon models.

APPENDIX C: REFERMIONIZATION AT
LUTHER-EMERY POINT

At K± = 1/2, equation (3) can be mapped to massive Dirac
fermions. To see this, we first introduce 
̃±/

√
2 = 
± and

�̃± = √
2�± + Q±x. Equation (3) with K± = 1/2 becomes

Ĥb,+ =
∫

dx
v+
2π

[(∂x
̃+)2 + (∂x�̃+)2]

− v+Q+
π

∫
dx(∂x�̃+) − V+

2π2α2

∫
dx cos[2�̃+],

(C1)

Ĥb,− =
∫

dx
v−
2π

[(∂x
̃−)2 + (∂x�̃−)2]

− v−Q−
π

∫
dx(∂x�̃−) + V−

2π2α2

∫
dx cos[2�̃−].

(C2)

Now, we introduce Luther-Emery fermions given by


R,± = 1√
2πα

ei(
̃±+�̃± ), 
L,± = 1√
2πα

ei(
̃±−�̃± ).

(C3)

Note that Klein factors are not needed here as symmetric and
antisymmetric sectors are complete decoupled in our case.
Finally, we map the bosonic Hamiltonian to the massive Dirac
fermions.

Ĥb,± → v±
∫

dx[�†
R,±(−i∂x�R,±) − �

†
L,±(−i∂x�L,±)]

− μ+
∫

dx[�†
R,±�R,± + �

†
L,±�L,±]

∓ M±
∫

dx[i�†
L,±�R,± − i�†

R,±�L,±], (C4)
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where μ± = v±Q± and M± = V±/(2πα). While the Luther-
Emery fermions are not simply related to the physical
fermions, the density and current operators are related upto
a factor of 2. Thus we can use this noninteracting fermion
theory to compute conductivity of the original problem.

Using the fermionic Hamiltonian in Eq. (C4), we can infer
several results in the main text. We focus on |μ±| < M±,
where a zero-temperature state is gapped with semiconductor-
like dispersion. For 0 < T � M±, several physical quantities
(such as conductivity) can be understood by the thermal ac-
tivated exponential behavior. For T > M±, the conductivity
increases as temperature increases. However, the conductivity
should not grow without bound. At sufficiently high tem-
peratures, interactions (e.g., intrawire umklapp interaction)
that are not included in the Hamiltonian can contribute to
inelastic scattering and suppress conductivity. Thus we ex-
pect a monotonic decreasing finite-temperature conductivity
in the high-temperature regime. Combining the low and high
temperature limits, we can construct a nonmonotonic finite-
temperature conductivity as shown in Fig. 3(b).

APPENDIX D: RENORMALIZATION GROUP FLOWS

Here we briefly review the famous renormalization group
(RG) flows of Ĥb,+ and Ĥb,− given by Eq. (B11). The Q±x
factor in the cosine term is crucial for the V± interaction.
This is related to the commensurate-incommensurate transi-
tion studied by Pokrovsky and Talapov [35]. There exists a
critical threshold δQc separating the commensurate (|Q±| <

δQc) and incommensurate (|Q±| > δQc) phases. When the
system is commensurate, the qualitative result is similar to
Q± = 0. In the incommensurate phase, V± is irrelevant, and
the low-energy theory is described by gapless Luttinger liquid.

Now, we review the RG flows for the Q± = 0 case. The
RG flows is the same as the Berezinskii–Kosterlitz–Thouless
transition given by [19]

dK±
dl

= − y2
±K2

±
2

, (D1)

dy±
dl

=(2 − 2K±)y±, (D2)

FIG. 4. Renormalization group flows for sine-Gordon model.
The subscript a = +, − indicates the symmetric and antisymmetric
sectors. The red arrows indicate the separatrix which divides two
distinct regimes. The brown arrows indicate flows to the fixed line
of Luttinger liquid with Ka � 1. The blue arrows indicate flows to
strong coupling limit in which |ya| diverges.

where y± = V±/(πv±). In Fig. 4, we plot the above RG flow
equations. For K± < 1, dy±/dl is always positive, implying a
relevant RG flow for V±. For K± > 1, V± is irrelevant for an
infinitesimal |y±|, but V± can become relevant for a |y±| ex-
ceeding some threshold value (≈2(K± − 1) for K − 1 → 0+,
marked by the red arrows in Fig. 4). When V± becomes rel-
evant, the low-energy theory is described by a gapped phase.
Otherwise, one should expect a gapless Luttinger liquid phase.

APPENDIX E: ORDER PARAMETERS

In this section, we introduce the order parameters and
compute the nonlocal correlation. The goal is to find the
most singular (i.e., less decaying) correlation corresponding
to the dominant instability of the system. We consider inter-
wire exciton pair (ψ†

1 ψ2 + H.c.), interwire Cooper (ψ1ψ2 +
H.c.), wire-symmetric CDW (OCDW,+ and DCDW,+), and
wire-antisymmetric CDW (OCDW,− and DCDW,−). OCDW,+
and OCDW,− are parity-even, while DCDW,+ and DCDW,− are
parity-odd. The order parameters are expressed by

ψ
†
1 ψ2 + H.c. ≈ ei(−kF1+kF2 )xR†

1R2 + ei(−kF1−kF2 )xR†
1L2 + ei(kF1+kF2 )xL†

1R2 + ei(kF1−kF2 )xL†
1L2 + H.c., (E1)

ψ1ψ2 + H.c. ≈ ei(kF1+kF2 )xR1R2 + ei(kF1−kF2 )xR1L2 + ei(−kF1+kF2 )xL1R2 + ei(−kF1−kF2 )xL1L2 + H.c., (E2)

OCDW,+ = ei2kF1xL†
1R1 + e−i2kF1xR†

1L1 + ei2kF2xL†
2R2 + e−i2kF2xR†

2L2, (E3)

OCDW,− = ei2kF1xL†
1R1 + e−i2kF1xR†

1L1 − ei2kF2xL†
2R2 − e−i2kF2xR†

2L2, (E4)

DCDW,+ = iei2kF1xL†
1R1 − ie−i2kF1xR†

1L1 + iei2kF2xL†
2R2 − ie−i2kF2xR†

2L2, (E5)

DCDW,− = iei2kF1xL†
1R1 − ie−i2kF1xR†

1L1 − iei2kF2xL†
2R2 + ie−i2kF2xR†

2L2. (E6)

Using bosoniztion, the order parameters become

ψ
†
1 ψ2 + H.c. → η1η2

πα
e−i

√
2
− [cos(

√
2�− + Q−x) + cos(

√
2�+ + Q+x)] + H.c., (E7)

ψ1ψ2 + H.c. → η1η2

πα
ei

√
2
+ [cos(

√
2�− + Q−x) + cos(

√
2�+ + Q+x)] + H.c., (E8)

235135-7



YANG-ZHI CHOU AND SANKAR DAS SARMA PHYSICAL REVIEW B 108, 235135 (2023)

OCDW,+ → 2

πα
sin(

√
2�+ + Q+x) cos(

√
2�− + Q−x), (E9)

OCDW,− → 2

πα
cos(

√
2�+ + Q+x) sin(

√
2�− + Q−x), (E10)

DCDW,+ → 2

πα
cos(

√
2�+ + Q+x) cos(

√
2�− + Q−x), (E11)

DCDW,− → − 2

πα
sin(

√
2�+ + Q+x) sin(

√
2�− + Q−x), (E12)

Now, we are in the position to examine the correlation function. We consider four different cases, corresponding to the regions
(i), (ii), and (iii) discussed in the main text.

1. Region (i)

For region (i) (I1 = I2), the symmetric sector is gapless,
and the antisymmetric sector is gapped. The ground state
configuration must minimize the V−, i.e., cos(2

√
2�−) = −1.

Thus we obtain �− = 2m+1
2
√

2
π , where m is an integer. Note that

a constant value of �− implies that any operator involving 
−
is strongly disordered. The value of �+ also eliminate some of
the order parameters. We summarize the nontrivial power-law
correlation as follows:

〈ψ†
2 (x, t )ψ†

1 (x, t )ψ1(0, t )ψ2(0, t )〉 ∝ cos (Q+x)

|x|K++K−1
+

, (E13a)

〈OCDW,−(x, t )OCDW,−(0, t )〉 ∝ cos (Q+x)

|x|K+
, (E13b)

〈DCDW,−(x, t )DCDW,−(0, t )〉 ∝ cos (Q+x)

|x|K+
. (E13c)

The correlation functions of other order parameters are de-
caying faster than power law, so we ignore. We conclude that
OCDW,- and DCDW,- are the leading instabilities.

2. Region (ii)

For region (ii) (I1 = −I2), the symmetric sector is gapped,
and the antisymmetric sector is gapless. The ground state con-
figuration must minimize the V+ term, i.e., cos(2

√
2�+) = 1.

(Note the minus sign in the expression of the V+ term.) Thus
we obtain �+ = m√

2
π , where m is an integer. Since �+ ac-

quires a finite expectation value, the operators involving 
+
are strongly disordered. We obtain the leading contributions
as follows:

〈ψ†
2 (x, t )ψ1(x, t )ψ†

1 (0, t )ψ2(0, t )〉 ∝ 1

|x|K−1
−

, (E14a)

〈OCDW,−(x, t )OCDW,−(0, t )〉 ∝ cos (Q−x)

|x|K−
, (E14b)

〈DCDW,+(x, t )DCDW,−(0, t )〉 ∝ cos (Q−x)

|x|K−
. (E14c)

The correlation functions of other order parameters are de-
caying faster than power law, so we ignore. For K− < 1,
OCDW,- and DCDW,- are the leading instabilities. For K− > 1,
the interwire exciton pair, ψ

†
1 ψ2, is the leading instability.

3. Region (iii)

For region (iii) (I1 = I2 = 0), both symmetric and anti-
symmetric sectors are gapped. The ground state configura-
tion must simultaneously minimize V+ and V− terms, i.e.,
cos(2

√
2�+) = 1 and cos(2

√
2�−) = −1. Therefore we ob-

tain �+ = m√
2
π and �− = 2m′+1

2
√

2
π , where m and m′ are

integers. Most of the order parameters we considered are
strongly disordered. The only exception is OCDW,−, which is a
constant in this region. Note that this corresponds to a discrete
spontaneous symmetry breaking, and a true long-range order
is formed.

APPENDIX F: PHASE DIAGRAM AS FUNCTIONS OF d
AND kF FOR TWO ELECTRON-HOLE WIRES

In this work, we use U ′ and V ′ to represent the intrawire
and interwire Luttinger liquid interactions. Microscopically,
the interwire interaction V ′ corresponds to Ṽ (q → 2π/L),
where L is the length of wire. We will keep the d-dependence
in the following discussion as we are interested in the phase
diagram controlled by the wire separation d . The intrawire
interaction U ′ contains both the regularized 1/r Coulomb in-
teraction and short-range interaction, but we are not interested
in the explicit functional dependence. For a model with only
long-range Coulomb interaction, we should expect U ′ > V ′.
In this work, we consider a more general situation including
U ′ < V ′. Since K+ < 1 holds regardless of the value of V ′, we
focus only on the value K−, which is now expressed by

K− =
[

1 + U ′

πvF
− 2e2

πvF κ
K0(2πd/L)

]−1/2

, (F1)

where κ is the dielectric constant and K0 is the zeroth order
modified Bessel function of the second kind.

We focus on two electron-hole Coulomb-Coupled wires,
corresponding to kF1 = −kF2 = kF > 0. According to
Eq. (F1), a larger d corresponds to a smaller K−. If the system
contains significant short-range intrawire attraction (e.g., due
to phonons), K− can become less than 1 for a sufficiently
small d . Thus we can define a critical value dc such that
K− < 1 for d > dc and K− > 1 for d < dc. Note that the
K− > 1 regime might not be accessible if U ′ is sufficiently
large (strong intrawire repulsion).

Now, we discuss the phase boundary between the exciton
condensate and the fluctuating CDW phases. As we can see in
Eq. (E14), the exciton pair correlation is not oscillating, while
the CDW correlation functions oscillate with a wave vector
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Q− = 2kF . The susceptibility corresponds to integration of
the space-time correlation function, and a rapid oscillation
(i.e., large kF ) in the correlation function suppresses the cor-
responding susceptibility. Thus much of the K− < 1 region is
taken over by the exciton condensate phase as long as kF is
sufficiently large.

The existence of correlated insulating state depends on
whether the antisymmetric sector is gapped. In the two
electron-hole wires, the antisymmetric sector corresponds to
a commensurate-incommensurate problem. If K− < 1 and
2Q− = 4kF is smaller than the critical threshold δQ, the
antisymmetric sector becomes gapped. Otherwise, the an-
tisymmetric sector remains gapless. The value of δQ is
associated with the size of gapped for a commensurate cosine
term. Thus we can estimate the gap 

(0)
− (with kF = 0) using

the Gaussian variational approach [19]:


(0)
− = v−�

(
4K−y−
�2α2

) 1
2−2K−

, (F2)

where � is the energy cutoff. In the above expression, the
quantity inside the parentheses is less than one. Thus, for a
fixed value of V−, a smaller K− < 1 results in a larger 

(0)
− .

In our case, both V− and K− depend on d . A larger d results
in a smaller K− (enhancing 

(0)
− ) and a small V− (suppressing


(0)
− ). As a result, we find that the − is maximized at an inter-

mediate value of d . Based on the results discussed above, we
sketch the possible phase diagrams as functions of kF and d .

For kF = 0, it is possible to develop a finite − for K− > 1
provided that V− is sufficiently large. The threshold value of
y− = V−/(πv−) is approximately 2(K− − 1) (estimated in the
vicinity of K− = 1). We find that this can be satisfied quite
generally as long as U ′ � 0. Thus we conclude that correlated
insulating state can exist for d < dc and very small kF , which
is a very narrow regime in the phase diagram. In fact, kF = 0
case realizes a correlated insulator as long as U ′ > 0, but the
value of − may be exponentially small for a very large d
(small V−) or a very small d (large K−). In the main text, we
focus on small but nonzero kF . The complication of kF is most
likely not relevant to any experimental situation. Therefore we
do not emphasize this subtle situation in main text.

APPENDIX G: COUPLED-WIRE MODEL

We discuss a coupled-wire model that allows for a corre-
lated insulating state due to inter-system Coulomb interaction.
This model should provide ideas about generalizing our bi-
wire system in main text to higher dimension.
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