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Employing a largely unbiased variational exact diagonalization technique, we analyze the consequences of
longer-ranged electron hopping and electron-phonon interaction on polaron formation in one dimension. Having
at our disposal the accurate ground-state energy and wave function, we calculate and discuss various physical
quantities, such as the renormalized band structure, effective mass, wave-function renormalization factor, phonon
dressing, and Drude weight, characterizing the properties of the polaronic quasiparticle. We demonstrate that the
electron-phonon coupling affects the relative strength of the nearest neighbor (NN) and next nearest neighbor
(NNN) hopping processes in a dynamic way. Most notably we observe that the minimum of the polaron band,
occurring at a finite momentum for large negative ratio between NN and NNN transfer, jumps to zero momentum
as the electron-phonon coupling exceeds a critical one, thereby causing a rather sharp polaron transition in the
one-dimensional extended Holstein model. The signatures of this transition are seen in the effective mass and
polaron mobility, and therefore should be easily detectable by transport measurements.
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I. INTRODUCTION

Electron-phonon (EP) coupling causes many fascinating
phenomena in solid state systems. In particular, a strong
mutual interaction between the charge carriers and lattice
deformations can ensure that new quasiparticles, electrons
dressed by phonon clouds, form. These entities, referred to
as polarons, are characterized by a substantially increased
effective mass, as well as spectral, optical, and transport prop-
erties that notably differ from those of normal band carriers
[1–6]. The microscopic structure of polarons is very diverse.
Here the form of the particle-phonon coupling, the lattice and
band structures, and the spatial dimension come into play.
Depending on the system and thus physical conditions po-
larons can be small (Holstein type [7,8]) or large (Fröhlich
type [9,10]). Extended Holstein [11,12], Edwards [13,14],
Rashba-Pekar [15], or pseudo-Jahn-Teller [16,17] polarons
are other species. The polaron problem addressed as early as
1933 has received renewed attention due to the observation
of polaronic effects in new material classes exhibiting ex-
ceptional properties [18–22]. Examples are high-temperature
superconducting cuprates [23,24], charge-ordered nickelates
[25,26], or colossal magnetoresistive manganites [27–29].

From a theoretical point of view the problem of
“self-trapping,” which means the transition from rather mo-
bile (weakly mass renormalized) polarons to quasi-immobile
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(heavily mass renormalized) polarons, has been discussed
with much controversy over decades [15,30,31]. We note that
“self-trapping” does not imply a breaking of translational
invariance, at least at any finite phonon frequency. Since
the lattice potential that tends to trap the carrier depends on
the the carrier’s state itself, self-trapping is a complicated,
highly nonlinear feedback phenomenon and most analytical
approaches fail to describe the physically most interesting
transition regime in the quantum phonon limit. In recent years
elaborate numerical approaches, such as quantum and dia-
grammatic Monte Carlo [32–39], exact diagonalization [6,
40–48], density matrix renormalization group [49–51], and
kernel polynomial method [52] based techniques, have been
able to close this gap. According to their findings, the polaron
transition is basically a continuous crossover in the Holstein,
extended Holstein, Edwards, and Fröhlich models; i.e., there
no strict self-trapping exists. The mass renormalization is
especially large in systems, more specifically Holstein-type
models, exhibiting a short-ranged EP interaction with optical
phonons. Thereby, in dimensions two and three, the crossover
regime from light electrons to heavy polarons is relatively
narrow. It appears at finite EP coupling strength, and the heavy
(Holstein) polarons formed are small. The one-dimensional
case is specific. Here large (heavy) polarons with a size of
many lattice constants as well as small Holstein polarons may
exist in the adiabatic regime of small phonon frequencies [45].
In the antiadiabatic limit of large phonon frequencies, polaron
properties do not depend on dimension and the crossover is
smoothened in general.

With regard to the central question of whether a sharp
polaron transition may exist, a thorough analytical and
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numerical examination of the one-dimensional, single-particle
Su-Schrieffer-Heeger (SSH) model [53] has brought to light
that an EP coupling depending on both phonon and electron
momenta can lead to a nonanalyticity, as a function of the
EP coupling parameter, in the polaronic properties [54]. Most
notably, at the critical coupling, the ground state changes
suddenly from a state with zero momentum to one with finite
momentum and the polaron mobility vanishes. We note that
the main difference of the SSH model when compared to
the standard Holstein- or Fröhlich -type models is that the
phonons in the former directly cause bandwidth fluctuations
and thereby generate longer-ranged electron hopping in a
dynamical way [54].

Against this background, we must ask ourselves whether
the standard polaron lattice models with not only nearest
neighbor (NN) hopping but direct longer-ranged electron
transfer might also show a sharp polaron transition in a cer-
tain parameter regime, and whether such a transition will
persist at finite phonon frequencies. For this purpose, in the
present paper, we consider besides the Holstein model (HM)
the extended Holstein model (EHM) with additional next
nearest neighbor (NNN) transfer for one particle in one di-
mension. The importance of the NNN hopping in the HM was
pointed out recently [55,56]. The EHM takes also into account
density-displacement-type long-range EP coupling to optical
phonons and can be viewed as an extension of the Fröhlich
model to a discrete lattice. As compared to the HM, the EHM
polaron is a large polaron in the whole EP coupling region. In
addition, the polaron band is relatively weakly renormalized
and the effective mass of the large EHM polaron is much
smaller than that of the small HM polaron with the same
polaron binding energy [12]. Physically the EHM can be
used, e.g., in order to model the interaction of doped holes
with apical oxygens in the YBa2Cu3O6+x high Tc’s where the
EP is not very screened [11]. These findings have renewed our
interest in the one-dimensional EHM [57,58].

The paper is organized as follows. In Sec. II we introduce
the models under consideration and briefly review the exact
numerical approach for their solution. In Sec. III we present
and discuss the numerical results. Section IV contains a short
summary and our conclusions.

II. THEORETICAL MODEL AND
NUMERICAL APPROACH

With our focus on polaron formation in systems with a non-
polar density-displacement-type (long-range) EP interaction,
we consider the (extended) Holstein molecular crystal model

H = T + Hph + He−ph (1)

for a one-dimensional lattice with lattice constant a = 1.
The first purely electron part of H,

T = −t1
∑

i

(c†
i ci+1 + H.c.) − t2

∑
i

(c†
i ci+2 + H.c.), (2)

describes the direct hopping of electrons between NN and
NNN sites with amplitude t1 and t2, respectively. The rele-
vance of the NNN hopping in the HM has been demonstrated
previously [55,56].

The second purely phononic part,

Hph = ω
∑

i

b†
i bi, (3)

models a dispersionless (optical) Einstein mode of frequency
ω (we set h̄ = 1 throughout the paper). In Eq. (2) [Eq. (3)],
the fermionic [bosonic] operators c†

i [b†
i ] create an electron

[phonon] at lattice site i, and ci [bi] are the corresponding
annihilation operators.

Finally, the EP coupling is assumed to be [11,12]

He−ph = −gω
∑

i j

f j (i)c
†
i ci(b

†
i+ j + bi+ j ) (4)

with

f j (i) = 1

[(i − j)2 + 1]
3
2

, (5)

where the dimensionless EP coupling constant g is related to
the polaron binding energy:

εp = g2ω
∑

j

f 2
j . (6)

Recall that for the pure Holstein model, where f j (i) ≡ 1, we
have g2 = εp/ω.

∑
j f 2

j = 1.25 for the EHM-3, where the EP
interaction is spread over three sites, the site of the electron
and its two NN sites. For the EHM-5, on the other hand, we
have

∑
j f 2

j = 1.266; here the EP interaction spans over five
sites. In the EHM-7 the range of the EP coupling comprises
seven sites and

∑
j f 2

j = 1.268. Adding up
∑

j f 2
j for the

infinite lattice an approximate value of 1.27 will be obtained.
Thus the density-displacement-type long-range EP coupling
included in the EHM-7 fairly accounts for the polaronic en-
ergy of a fully extended Holstein model.

Measuring in what follows the energy in units of t1, the
physics of the EHM with NNN transfer is governed by four
ratios. The first ratio η = t2/t1 characterizes the bare band
structure and, in particular, determines the location of the min-
imum of the band dispersion. Note that η can be negative. The
second so-called adiabaticity parameter α = 2Dω/W speci-
fies which of the two subsystems, electrons or phonons, is the
fast or slow one, respectively. Accordingly α � 1 (α � 1)
classifies the adiabatic (antiadiabatic) regime. Here D is the
spatial dimension and W is the half-width of the bare electron
band. From this we can deduce a third parameter λ = εp/W
which represents the ratio between polaron “localization”
(∝ εp) and electron “itinerancy” (∝ W ). In the adiabatic
regime, λ serves as a parameter for the EP coupling strength;
here the strong (weak) EP interaction regime is realized for
λ � 1 (λ � 1). The fourth parameter g2, which in a sense de-
termines the relative deformation of the lattice that surrounds
the particle (phonons dressing), can also be taken as a measure
for the EP coupling strength. Obviously, g2 is the relevant EP
coupling parameter in the non-to-antiadiabatic regime; i.e.,
g2 � 1 corresponds to the strong-coupling case. We will work
with g2 mainly because W and therefore λ noticeably depends
on η in the t1-t2 EHM.

The numerical treatment of the EHM is performed with
optimized exact diagonalization (ED) techniques based on
the Lanczos algorithm [59]. Thereby the challenge is the
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construction of an appropriate subspace of the infinite Hilbert
space of the electron and the phonons in the Hamiltonian
(1). In this respect a very efficient approach is the variational
ED (VED) [6,42,45] method based on an increasing sequence
of subspaces of the complete Hilbert space. It achieves an
extreme accuracy for fermion-boson models with a finite num-
ber of particles with different types of couplings [13,60] on
an infinite lattice in any dimension. That means the method
works for general polaron and bipolaron problems.

Here our starting state is a one-electron zero-phonon Bloch
state with momentum k in the first Brillouin zone of an infinite
chain, |k〉 ∝ ∑

j eikR j c†
j |0〉, |k| � π . Further basis states are

generated by repeated action of the off-diagonal pieces of
the Hamiltonian on this initial state. Taking advantage of the
translational symmetry of H, for any new state generated
(describing a new configuration of phonons relative to the
electron) only one copy is retained. One sees that VED gives
the polaron properties as a continuous function of k; i.e., data
are not only obtained at multiples of 2π/N as for finite N-site
chains treated by standard ED.

When we generate the basis set for the HM by applying
the Hamiltonian Ngen times on the initial (zero phonon) state,
we obtain a “triangle” of phonon-containing states, consisting
of a state with Ngen phonons at the electron site up to a state
with a single phonon (Ngen − 1) lattice sites away from the
electron, and no phonon excitations elsewhere. For the EHM-
3, where j in f j (i) is limited to the electron site and the both
NN sites, after Ngen applications of H, will have three states,
one with Ngen phonons at the electron’s initial site and two
states with Ngen phonons on NN sites. There will be also two
states with one phonon at a distance Ngen away from the
electron, and no phonons elsewhere. In that case this is the
maximum distance from the electron site that a phonon exci-
tation can be found.

At very strong EP coupling, where small polarons are
formed, almost the entire lattice distortion is confined to the
electron’s site, and the Lang-Firsov (LF) transformed wave
packet will be an appropriate starting state [46,61]:

|ψ (k)〉 = e−g2/2
∑

j

eikR j e−ga†
j |0〉. (7)

The corresponding LF-VED technique was described and
tested in great detail in Refs. [47,48,62]. In a nutshell, within
the LF-VED we start from (n + 1) initial states, instead of just
one zero-phonon state within standard VED. In these (n + 1)
states, we have up to n phonon excitations at the electron site,
starting from 0. In the numerical work, we have been used
n = 40 for the HM and n = 30 for EHM. For this we observed
excellent convergence in the strong EP coupling limit, where
the normal VED usually fails.

The largest variational basis used in this study takes Ngen =
16 for the LF-VED basis in the HM with NN hopping,
which means 10 857 225 configurations. For the HM with
NN and NNN hopping we include 8 683 122 configurations
within VED (Ngen = 17) and 9 398 171 configurations within
LF-VED using Ngen = 12 and n = 40. For the EHM-3 with
NN and NNN hopping the VED basis has 9 592 713 states
using Ngen = 15, whereas the LF-VED basis has dimension
4 963 511 for Ngen = 10 (n = 30). For EHM-5 with both kinds
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FIG. 1. Momentum of the band minimum kmin of the bare
electronic band dispersion (2) (red dashed line, left ordinate) and
effective band mass in units of m0 = 1/2t1 (black solid line, right
ordinate) as a function of the NNN hopping parameter t2. The inset
shows the limiting behavior of the bare band dispersion for t1 = 1,
t2 = 0 (black solid line), t1 = 0, t2 = 1 (red dashed line), and t1 = 0,
t2 = −1 (blue dot-dashed line).

of hopping the VED basis size for Nh = 14 is 9 592 713; for
the corresponding EHM-7 the dimension is 8 637 123 when
Ngen = 13. With this, for intermediate values of g, we get
excellent convergence of the ground-state energies up to 11
digits. Using the LF-VED in the strong EP coupling regime,
we can maintain an accuracy of at least 6 digits.

III. NUMERICAL RESULTS AND DISCUSSION

To set the stage for a discussion of the EP coupling effects
in the full (E)HM Hamiltonian H, let us first consider the
free electron transfer T given by (2). The corresponding band
dispersion in momentum space is E (k) = −2t1 cos(ka) −
2t2 cos(2ka). If t2 = 0, of course, we end up with the usual
tight-binding (hypercubic) band structure, having its mini-
mum at k = 0 in the first Brillouin zone, provided that t1 > 0.
The situation changes including the NNN hopping term (∝
t2). Now for t2/t1 < −0.25 the band minimum will be at a
finite momentum kmin > 0 (let us consider positive momenta
only). Interestingly at t2/t1 = −0.25 the band curvature van-
ishes; i.e., the particle mass

m∗ =
[

∂2E (�k)

∂�k2

](−1)

k=kmin

(8)

diverges. This is illustrated by Fig. 1, where m∗ has been mea-
sured in units of the bare NN hopping band mass m0 = 1/2t1.
We wish to stress that this mass enhancement is of purely
electronic (band structure) origin.

Quite naturally the particle’s interaction with the lattice
degrees of freedom leads to a renormalization of the band
structure [12,41,55,56,63–65]. Figure 2 displays the polaron
band dispersion of the HM and EHM for different t2/t1 ra-
tios in the intermediate EP coupling and phonon frequency
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FIG. 2. Polaron band dispersion of the model (1) for different values of NNN hopping t2. Shown are data for the HM (top left), EHM-3
(top right), EHM-5 (bottom left), and EHM-7 (bottom right). In all panels the EP coupling g = 1 and bare phonon frequency ω = 1. E0 denotes
the homogeneous band lowering caused by the EP interaction.

regime (g = ω = 1), which is most difficult to address by
analytical approaches. Results for EHM are given for different
ranges of the EP coupling (involving 3, 5, and 7 neighboring
sites). Thereby, E (k) denotes the so-called “coherent” band
dispersion obtained, within (V)ED approaches, by the lowest
energy value in each k sector. As a rule, E (k) conforms with
the first peak in the single-particle spectral function [12].
For t2 � 0, the band minimum is always at the band center
(k = 0) and, because g is not that big, the dispersion is only
slightly renormalized at small momentum k. The situation is
quite different at larger momenta: Here a band “flattening”
is observed when the dispersionless phonon branch intersects
the electronic band structure. We would expressly like to
emphasize that this effect appears at weak-to-intermediate EP
coupling and for small-to-moderate phonon frequencies only,
and is most pronounced near the zone boundary [12,63,64].
In the very strong EP coupling regime, the bandwidth of the
polaron band substantially reduces to values much less than
the bare phonon frequency, which means that this kind of
“flattening” is negligible. For t2 < 0, the bandwidth becomes
smaller. For the HM it reaches its minimal value in the range
of t2 = −0.25, where the band curvature at k = 0 almost
disappears; afterward the bandwidth increases again when t2

is getting smaller. As stated above, in this region the band
structure develops a minimum at finite momentum kmin. The
influence of the range of the EP interaction on this general
behavior is very minor, as can be seen by comparing the
EHM-3, EHM-5, and EHM-7 data.

Interestingly, we can induce a sharp transition from a pola-
ronic state with finite momentum to one with zero momentum
by increasing the EP coupling strength at otherwise fixed
parameters. To demonstrate this striking feature, we show in
Fig. 3 how kmin varies when g is raised. Obviously, a critical
EP coupling gc exists for the (E)HM with large negative t2/t1
ratios. Note that the value of gc increases when decreasing
t2 and including longer-ranged EP interactions. The inset of
Fig. 3 gives kmin as a function of g for the HM. Again we
find a sharp transition, but at too high g to be of any physical
relevance.

Figure 4 gives a kind of ground-state phase diagram of
the EHM with NNN transfer in the t2-gc plane, where the
lines separate ground states with kmin = 0 and finite kmin.
The inset demonstrates for the EHM-3 that (i) the kmin-finite
region is bounded by t2/t1 = −0.25 (at g = 0) and (ii) the
sharp polaron transition to the kmin = 0 ground state ap-
pears at smaller values of the EP coupling when going from
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FIG. 3. Location of the band minimum kmin in the EHM with
ω = 1 as a function of g for different ranges of the EP interaction
in EHM-3, EHM-5, and EHM-7. The inset gives the variation of kmin

in the HM with t2 = −1 as a function of the EP coupling strength g.

the rather adiabatic (ω = 0.5) to the nonadiabatic (ω = 2)
phonon-frequency regime; i.e., in the adiabatic case, where
more energetically less costly phonons are involved, stronger
EP coupling is necessary to renormalize the band structure for
t2/t1 � −0.25. Most notably, however, the general quantum
phase transition behavior of the EHM with NNN hopping
does not depend on the value of the phonon frequency. This
is underlined by the main panel comparing the ground-state
momentum regions of EHM-3, EHM-5, and EHM-7. Here,
a longer-ranged EP coupling clearly leads to a larger critical
coupling gc.

In order to analyze more thoroughly the impact of the EP
coupling on the shape of the polaron band as a whole and the
just discussed abrupt transition in particular, we have fitted the
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FIG. 4. Ground-state regions of the EHM with NN and NNN
transfer having kmin = 0 and a finite kmin. The main panel compares
the phase boundaries of EHM-3, EHM-5, and EHM-7 at ω = 1.0.
The inset shows the phase diagram of the EHM-3 for three different
phonon frequencies.

TABLE I. Effective transfer integrals t̃1, t̃2, t̃3, and t̃4 for the
EHM-3 with t2 = −1 and ω = 1 at various g.

g t̃1 t̃2 t̃3 t̃4

0.0 1.0 −1.0 0.00 0.000
0.25 0.0662707 −0.17598 −0.129112 0.0591186
0.5 0.0810571 −0.177426 −0.12489 0.0507156
1.0 0.129658 −0.150741 −0.0769285 0.0307539
1.5 0.121126 −0.0751145 −0.0237463 0.0093872
2.0 0.071929 −0.0172384 −0.0033003 0.00095433

polaron band dispersion to the following functional form,

E (k) = −
nmax∑
n=0

2t̃n cos(nk), (9)

including direct effective hopping between lattice sites that are
up to nmax places away from each other [66].

Table I gives the fitting parameters t̃n for different EP
couplings g at ω = 1, where we have considered the most
extreme negative t2 = −1 band case. The numbers yield the
following trends. First, the EP coupling induces longer-ranged
particle hopping processes (beyond those appearing in the
Hamiltonian), especially in the intermediate coupling and fre-
quency regime. For example, in order to get a satisfactory fit
at g = 0.25 and g = 0.5 an nmax of the order of 20 was neces-
sary (note that Table I give the first four hopping parameters
only). Second, in the very strong EP coupling limit, where the
band minimum always occurs at k = 0 and the bandwidth is
reduced dramatically, de facto only the very small effective
NN transfer matters, irrespective of the range of both the bare
direct electron hopping and of the EP interaction. Third, the
magnitudes of the different effective transfer integrals sig-
nificantly change when passing the critical EP coupling gc,
signaling the finite to zero momentum transition.

To demonstrate the accuracy of our band-dispersion fitting
procedure, we compare E (k) with the exact VED results for
t2/t1 = −1 in Fig. 5. Note that we obtain already an excellent
fit for nmax = 9, provided that g � 1, whereas an nmax = 20 is
necessary to get sufficiently accurate results at a smaller value
g 	 0.25.

Figure 6 presents the development of the EHM-3 polaron
band with increasing EP coupling at t2 = −1 (again ω = 1).
Starting from the noninteracting band structure with kmin 	
0.4 for g (black dotted line), we first can observe a stronger
band narrowing by raising g from 0.25 to 1 (dashed dotted
line) together with a pronounced band flattening away from
momentum kmin by virtue of the intersecting phonon branch
(cf. also the inset). Then, in the range between g = 1.5 to 2.0,
the transition to a strongly renormalized polaron band takes
place, which is accompanied by the shift of the momentum of
the ground state to k = 0. We note that this scenario is just
opposite to what happens in the SSH model, where, if the EP
coupling becomes larger, a noticeable effective NNN hopping
of negative sign is created that finally shifts the momentum of
the ground state from zero to finite momentum.

In the discussion of polaron formation the perhaps most
noteworthy quantity is the effective mass. Increasing the
EP coupling the polaron mass usually grows; i.e., the mass
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renormalization m∗/m0 becomes larger than unity. Because
the (LF-)VED method works on the infinite lattice with con-
tinuous momentum k we can directly determine the second
k derivative needed in Eq. (8). We should point out, how-
ever, that although the calculated energies E (k) are variational
bounds for the corresponding exact energies, there is no such
bound for the effective mass that might be either above or
below the exact value. Figure 7 gives the values of the ef-
fective mass as a function of the EP coupling strength g for
the (E)HM with different NNN hopping t2. Considering the
HM data first, we observe the general increase of m∗/m0
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FIG. 6. Polaron band dispersion for the EHM-3 with NN and
NNN hopping with t2/t1 = −1 for different EP couplings g at
phonon frequency ω = 1. The inset shows the bare electronic band
for t2/t1 = −1 (blue dashed curve) intersected by the bare phonon
[horizontal green line located at E (k)min + ω]. The black solid line
shows the resulting polaronic band E (k) at g = 0.25.

FIG. 7. Effective mass for the HM and EHM with ω = 1 as a
function of g at various NNN hoppings t2 = 1 (dashed red line),
t2 = 0.5 (red squares), t2 = 0 (black solid line), t2 = −0.25 (blue
diamonds), t2 = −0.5 (blue crosses), t2 = −1 (blue dot-dashed line).

with g mentioned above, provided that the ratio t2/t1 is away
from the critical one t2/t1 = −0.25. In the latter case, a huge
mass enhancement appears even at g = 0, which is a purely
electronic band-structure effect. Consequently, increasing the
EP coupling, m∗/m0 decreases first before it increases again
at larger values of g. Furthermore, we see that the direct NNN
transfer tends to decrease the effective mass, in particular if
the ratio t2/t1 is positive. Compared to the HM, the mass
enhancement in the EHM is weaker [11,12]. Obviously, the
larger spatial extension of the phonon cloud surrounding the
particle supports its mobility. Most notably, we observe a
pronounced cusp in m∗/m0 when passing the band-structure
transition from finite to zero momentum by increasing the EP
coupling at negative t2/t1.

In order to gain deeper insight into the nature of polaronic
band states we take a look at the wave-function renormaliza-
tion factor,

Z (k) = |〈ψk|c†
k |0〉|2, (10)

where |ψk〉 denotes the polaron state with momentum k being
lowest in energy and |0〉 represents the vacuum state. Hence,
Z (k) gives the electronic spectral weight of the first peak
in the wave-vector-resolved single-particle spectral function
with momentum k, and Z (kmin) is referred to as “quasiparticle
weight.” Figure 8 shows the variation of Z (kmin) when in-
creasing the EP coupling in the different model Hamiltonians.
Clearly we have Z (kmin) = 1 at g = 0 (free electron case).
For g > 0, Z (kmin) < 1 can be taken as a measure of how
much the polaron deviates from the free electron. Here any
significant reduction of Z (kmin) signals a strong dressing of
the electron by a phonon cloud. Z (kmin) � 1 in the very strong
EP regime where heavy polarons emerge. At a given value of
the EP coupling, the quasiparticle weight is smallest (largest)
for t2/t1 = −0.25 (t2/t1 = 1) where the electronic mobility
is smallest (largest), making the EP interaction that tends to
“trap” the charge carrier by forming a polaron more effec-
tive (ineffective). A longer-ranged EP coupling enhances the
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in Fig. 7.

extent of the phonon cloud and thereby reduces the electronic
component of the quasiparticle [see the reduction of Z (kmin)
when comparing the HM and EHM data]. Lastly we would
like to point out that electronic wave-function renormalization
factor Z (k) for momenta in the flat-band regions is also con-
siderably suppressed, simply because these states are rather
phononic than electronic in nature.

This scenario is corroborated when tracking the average
phonon number in the ground state for the same model pa-
rameters (see Fig. 9). As expected the number of phonons is
small (large) for weak (strong) EP coupling, and the tendency
with respect to a variation of the range of the coupling and the
sign and the magnitude NNN hopping is consistent with what
has been discussed for Z (kmin) above.
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The VED scheme can also be used to investigate the trans-
port and optical response of polaronic systems [6]. Here we
will focus on the so-called Drude weight only (see Fig. 10),
which is a measure of “coherent” free-particle-like transport
with zero energy transfer. For the (E)HM the Drude weight
can be calculated from Kohn’s formula [67],

D = ∂2E0(φ)

∂φ2

∣∣∣∣
φ=0

(11)

(in units of πe2), where E0(φ) is the ground-state energy of
our system in the presence of a nonvanishing phase factor φ,
which is introduced in both the t1 and t2 transfer amplitudes.
This breaks the time-reversal symmetry of H. Not surpris-
ingly, the Drude weight is getting suppressed enhancing the
EP interaction and again this effect is more pronounced in
the HM in comparison to the EHM. Most notable is the kink
appearing in the t2 = −1 and t2 = −0.5 curves at the critical
EP coupling for the finite-to-zero momentum transition. This
behavior is in accordance with the change in the relative
strength of the different effective hopping integrals listed in
Table I and should be detectable in transport measurements.

IV. CONCLUSIONS

Lattice polaron formation strongly depends on the kind,
range, and strength of the EP interaction, the (different)
timescales of electron and phonon dynamics, as well as on
the (bare) electronic band structure and the spatial dimension
of the system. As a result of this interplay very complex and
nontrivial quantum correlations develop. These determine not
only the properties of the polaronic quasiparticle itself, but
also the nature of the polaron transition. The (single) polaron
transition is a continuous crossover; at least the ground state
is an analytic function of the EP coupling at finite phonon
frequency in any dimension [30,45]. This is believed to be
the case for standard Holstein- and Fröhlich-type models.
If the EP coupling is nondiagonal in the site index, as in
the SSH model, a critical EP coupling exists, at which a
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sharp transition between states with zero and finite momentum
takes place, albeit the process is put in reverse compared to
the SSH model [54]. The reason is the well-known effective
long-ranged particle hopping processes induced by the EP
coupling dynamically. Such processes will be also induced in
the (extended) Holstein models [41,63] and might interfere
with longer-ranged electronic hopping terms in the (bare)
band structure if present. In this context, we have studied
the extended Holstein model with nearest and next nearest
neighbor transfer and proved numerically, by means of an un-
biased variational exact diagonalization method, that a sharp
transition related to a polaron ground-state momentum change
might also exist, even at finite phonon frequencies. This tran-
sition, appearing for t2/t1 < −0.25, is mainly triggered by the
ratio between the effective NN and NNN transfer integrals
(which are renormalized by the EP coupling of course) and ac-
companied by a dramatic mass (mobility) increase (decrease),
whereas the particle’s phonon dressing, wave-function

renormalization factor, and Drude weight are less affected.
Away from this transition, compared to the HM polaron, the
EHM polaron has a larger extent and the polaron band is less
renormalized. At the same time, the number of phonons the
(EHM) charge carrier has to drag through the lattice when
coherently moving is larger than those for the HM polaron.
We further note that while the inverse polaron effective mass
is directly given by the wave-function renormalization factor
for the HM with NN hopping, this relation is much more
complicated for the (E)HM with NNN transfer. This shows the
complex interplay between band structure and EP coupling
effects in these types of models.
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