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Counting interacting electrons in one dimension

O. Kashuba ,1,* T. L. Schmidt ,2,3 F. Hassler ,4 A. Haller ,2 and R.-P. Riwar 1

1Peter Grünberg Institute, Theoretical Nanoelectronics, Forschungszentrum Jülich, D-52425 Jülich, Germany
2Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg

3School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
4Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany

(Received 24 May 2023; accepted 21 November 2023; published 11 December 2023)

The calculation of the full counting statistics of the charge within a finite interval of an interacting one-
dimensional system of electrons is a fundamental, yet as of now, unresolved problem. Even in the noninteracting
case, charge counting turns out to be more difficult than anticipated because it necessitates the calculation of
a nontrivial determinant and requires regularization. Moreover, interactions in a one-dimensional system are
best described using bosonization. However, this technique rests on a long-wavelength approximation and is a
priori inapplicable for charge counting due to the sharp boundaries of the counting interval. To mitigate these
problems, we investigate the counting statistics using several complementary approaches. To treat interactions,
we develop a diagrammatic approach in the fermionic basis, which makes it possible to obtain the cumulant
generating function up to arbitrary order in the interaction strength. Importantly, our formalism preserves charge
quantization in every perturbative order. We derive an exact expression for the noise and analyze its interaction-
dependent logarithmic cutoff. We compare our fermionic formalism with the results obtained by other methods,
such as the Wigner crystal approach and numerical calculations using the density-matrix renormalization group.
Surprisingly, we show good qualitative agreement with the Wigner crystal for weak interactions, where the latter
is in principle not expected to apply.
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I. INTRODUCTION

The full counting statistics (FCS) of an observable collects
the information about its quantum measurement in a single
function [1]. It is particularly useful for charge counting in
one-dimensional (1D) systems, where it provides a compact
representation of transport properties [2,3]. Furthermore, it
is closely related to the entanglement entropy, which can be
written in terms of the even cumulants in systems that can
be mapped onto noninteracting fermions [4]. Importantly, the
FCS can reveal intricate properties of observables which may
remain hidden in low cumulants. For instance, the moment
generating function m(λ) ≡ 〈eiλQ〉 of the number of particles
Q in a given interval l contains information about charge
quantization, which manifests itself in the global symmetry
m(λ + 2π ) = m(λ) and Im[m(π )] = 0. Here iλ plays the role
of a purely imaginary counting field. In contrast, charge quan-
tization is not evident in the average particle number 〈Q〉 or
its fluctuations 〈Q2〉 alone. The moment generating function
also plays an important role for the spin correlations in spin- 1

2
Heisenberg chains because at λ = π it has the same form as a
Wigner-Jordan string factor contained in, e.g., the form of the
spin-raising operator σ+

j = eiπ
∑ j−1

k=1 c†
k ck c†

j [5–7].
Charge quantization is a particularly interesting issue in

interacting systems. In low-dimensional electronic systems
with strong correlations, effective low-energy field-theoretical
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treatments have demonstrated a remarkable success by in-
voking emergent excitations carrying only a fraction of the
elementary charge. First pioneered by Jackiw and Rebbi for
a relativistic fermion-soliton model [8], this peculiar notion
also appeared subsequently in solid-state systems, be it for
the Su-Schrieffer-Heeger model [9], the fractional quantum
Hall effect [10–15], or in the Tomonaga-Luttinger liquid
[3,16]. For condensed-matter systems with a well-defined
vacuum state, however, the notion of fractional charges is
only meaningful on sufficiently large length scales, implying
a certain “fuzziness” of the charge observable [17–21]. It is
therefore an interesting question to understand the interplay
between effective fractional charges in correlated systems and
the fundamental elementary charge, observed in the FCS, by
increasing the spatial resolution of a given charge detector.
However, as it turns out, already for the generic model of inter-
acting electrons in 1D, this is a very hard problem because the
standard bosonization technique requires an artificial removal
of the lower bound in the spectrum [22], and is thus simply
not capable of answering questions of this type [17]. In this
work, we provide a first step towards this goal by developing
an extended diagrammatic technique to compute the moment
and cumulant generating functions of the charge in a finite
interval up to arbitrary order in the interaction strength which,
importantly, is capable of respecting charge quantization.

Moreover, the absence of a lower bound already creates
issues in the second cumulant (that is, the local charge noise),
as it gives rise to a logarithmic divergence. The required cutoff
has only been identified in noninteracting systems [23,24],
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while the generalization to nonzero interactions is still an
unresolved fundamental problem. As for the manifestation
of charge quantization in the FCS, some recent works have
explored a connection to topological phase transitions in the
limited setting of transport through quantum dots [25,26]. Fur-
thermore, questions related to charge quantization are being
discussed in circuit quantum electron dynamics (cQED) to
this day in various contexts [27–39]. But, apart from ad hoc
recipes to “requantize” charge [3,23], such questions have
barely been addressed for 1D interacting electron systems. We
therefore believe that it is time to work towards solid-state
quantum field theories capable of describing charge measure-
ments of arbitrary spatial resolution.

Apart from the fact that the standard bosonization tech-
nique is ill equipped to compute the charge statistics, another
factor likely delayed progress. Namely, the calculation of
the generating function is a nontrivial and highly technical
task already for the noninteracting case. Starting from the
well-defined formulation of the problem on the discrete 1D
chain, one can map the problem to the calculation of the
determinant of a large Toeplitz matrix [1,22,40]. Then, the
infinite-size limit of this matrix can be taken by invoking
the Szegő theorem [41]. However, already within the frame-
work of the strong-limit Szegő theorem, it turns out that
its proof requires the convergence of a certain series, which
is guaranteed only for |λ| < π/3 [22,42]. The next prob-
lem arises when considering the infinite system in the limit
of zero temperature. The issue is related to the orders of
these two limits and leads to the Fisher-Hartwig conjecture,
which generalizes the classical strong-limit Szegő theorem.
As is exhaustively discussed in the mathematical literature
[24,41,43–46], the two limits do not commute so the order
of limits is essential. This discrepancy can be best illustrated
by calculating the second cumulant, i.e., the zero-frequency
noise [46].

In this paper, we first reiterate the precise conditions under
which charge must be regarded as quantized (Sec. II), then we
introduce an accurate calculation of the interaction corrections
to the noninteracting cumulants generating function, and test
our results against the aforementioned criteria [2π periodicity
of m(λ) and real value at λ = π ] in Sec. III. We compare our
results with the ones obtained by different approaches, such
as Wigner crystal approximation and DMRG technique (see
Secs. IV and V, respectively).

II. CONDITIONS FOR CHARGE QUANTIZATION

To set the stage, let us briefly outline a set of assumptions
which allows us to argue that the charge in any given interval
must be integer quantized. These arguments have been out-
lined already in various different formulations [17,18,21], and
are reiterated here to make our work self-contained.

Take a generic fermion field ψ (x), with anticommutation
relations {ψ (x), ψ†(y)} = δ(x − y). We now define the charge
on a given interval of length l as

Q =
∫ l

0
dx ψ†(x)ψ (x). (1)

For simplicity, we consider a translation-invariant system, so
that we can choose without loss of generality the lower bound

of the integral to be at x = 0. In the following, we focus on
electron fields and set the electron charge to 1. Hence, the
charge operator Q is dimensionless. Note that the following
argument can be easily generalized to bosons.

The only relevant assumption we need to make is that there
exists a true vacuum state |0〉, defined such that ψ (x)|0〉 = 0
for all x. We stress that by vacuum state we do not mean
the Fermi sea ground state containing a finite number of
electrons, but really the state containing no electrons. Given
the existence of such a true vacuum state, we can construct a
complete set of many-body states with N electrons, |{x j}N 〉 =
ψ†(x1)ψ†(x2) . . . ψ†(xq)|0〉. By means of the anticommuta-
tion relations and the definition of the vacuum state, these
states can be easily shown to be eigenstates of Q with eigen-
values

Q =
N∑

j=1

[θ (x j ) − θ (x j − l )], (2)

where θ (x) denotes the Heaviside theta function. Due to the
sharpness of the θ function, these eigenvalues are integers
between 0 and N depending on whether or not the electron at
position x j is inside the interval [0, l] of the charge measure-
ment. Importantly, this proof did not require any details on the
Hamiltonian, and is therefore independent of interactions and
strong correlations. It is furthermore valid in arbitrary dimen-
sions. Hence, while the introduction of fractionally charged
excitations was without doubt a milestone in understanding
the physics of certain low-dimensional systems, it should be
considered an effective picture valid only when some of the
above assumptions can be relaxed.

Indeed, given the above proof, we can easily identify two
causes for breaking charge quantization. One possibility is
that a given charge detector fails to measure the charge so pre-
cisely as to locate it with perfect certainty inside the interval
x ∈ [0, l]. Such a fuzzy detector can be modeled by a more
general support function S(x). In this case, the charge operator
becomes Q = ∫

dx S(x)ψ†(x)ψ (x) and it can have noninteger
eigenvalues. This is in agreement with the arguments put
forward in Refs. [18,21].

The other possibility for the above proof to fail is that
there exists no true vacuum state |0〉. The standard bosoniza-
tion procedure requires removing the lower bound in the
Hilbert space and continues the filled electron levels to infinite
negative energies. In the Luttinger liquid context, the two
conditions are therefore related: as remarked by Haldane [17],
the bosonized charge density is an approximation, neglecting
charge fluctuations on the length scale of λF (see also the
remark about backscattering in Sec. V). In fact, the gene-
sis of Luttinger liquid theory was initially plagued exactly
by these field-theoretical subtleties arising from the removal
of said lower bound [22,42]. However, at least if we start
our field-theoretic considerations from a nonrelativistic stand-
point, there must always exist a lower bound in the Hilbert
space, and its removal is an approximation. We can think of
this procedure as a more strict version of a low-energy approx-
imation: it is not only important that the state of the system
prior to the measurement is at low energy, but also that a
given charge detection event does not give rise to high-energy
excitations.
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Therefore, in order to answer the questions outlined in the
Introduction, a field-theoretic treatment including the lower
bound and capable of dealing with many-body correlations
would be necessary. For a generic interaction potential, the
most straightforward choice is a perturbation theory in the
interaction strength. As we show in the following, when
attempting to compute the moment (or cumulant) generat-
ing function, even the perturbative approach becomes rather
involved. While we can formally derive a perturbative ex-
pansion up to arbitrary order, we are nonetheless limited to
the lowest orders for explicit calculations. Moreover, in order
to make progress towards the strongly interacting regime, we
resort to the Wigner crystal approach, which conserves charge
quantization and likewise provides a cutoff for the charge
noise. Curiously, we find that the Wigner crystal is in good
qualitative agreement with the perturbative approach even for
weak interactions, where it is commonly not expected to work.

III. DIAGRAMMATIC APPROACH
TO CHARGE COUNTING

Let us begin by describing the perturbative approach. For
convenience, we consider a discrete model. The Hamiltonian
then consists of the single-particle part and the interaction
H = H(0) + V , where

H(0) =
∑
nm

H (0)
nm c†

ncm, V = 1

2

∑
nm

Vnm : c†
nc†

mcmcn :, (3)

where the indices m, n ∈ Z run over all sites of the 1D chain,
while the colon denotes normal ordering with respect to the
Fermi sea. The single-particle Hamiltonian describes the hop-
ping and chemical potential H (0)

nm = −(δn,m+1 + δn,m−1)/2 −
δn,m sin(kF ), where kF is the Fermi momentum and we chose
the energy units such that the hopping matrix element between
nearest neighbors is one. Hence, the dimensionless parameter
kF is related to the Fermi momentum of the continuum model
by pF = kF δx, where δx is the distance between neighbor
sites. As outlined above, our challenge is to study the counting
statistics of the charge operator on an interval with L sites,
where l = Lδx. The charge operator for the discrete model is

Q =
∑
nm

Qnmc†
ncm, Qnm =

{
δnm for 1 � n � L,

0 otherwise. (4)

The moment generating function we want to calculate can be
disassembled as (see Appendix A for details)

m(λ) = 〈eiλQ〉 ≡ 〈eiλQ〉(0) 〈S (β )〉(λ) eβ(	−	(0) ), (5)

where

S (τ ) ≡ eτH(0)
e−τ (H(0)+V ) = Tτ e− ∫ τ

0 V (τ ′ )dτ ′
(6)

denotes the (Matsubara) imaginary-time evolution opera-
tor and the operators are in the interaction picture, i.e.,
V (τ ) ≡ eH

(0)τVe−H(0)τ . Moreover, 	(0) is the grand-canonical
potential for the noninteracting case, such that e−β(	−	(0) ) =
〈S (β )〉(0) [47,48]. Different brackets are used to distinguish
the averaging over the full Hamiltonian H [see Eq. (3)] from
the averaging over the bare Hamiltonian with a counting

(a)

(b)

FIG. 1. Dependence of Hartree-Fock correction of the cumulant
generating function on λ and the occupancy for an interval of length
L = 10. Solid and dashed lines correspond to real and imaginary
components. (a) The interaction correction to the generating function
for low electron densities. The insets demonstrate the dependence
of correction to the first (right) and second (left) cumulants (i.e.,
noise and charge) on occupancy and show the increase of their abso-
lute values at increase of interval length L = 10, 20, 30, 40, 50. The
equidistance of the first cumulant lines shows us an expected linear
dependence on L. (b) The interaction correction to the generating
function for densities close to the first critical density kC,1/π ≈ 0.054
for L = 10. The inset demonstrates the sign change (or potential
discontinuities) around kC,n of the generating function at λ = π .

operator as a weight function:

〈. . .〉 ≡ Tr[e−βH . . .]

Tr[e−βH]
, 〈. . .〉(λ) ≡ Tr[e−βH(0)

. . . eiλQ]

Tr[e−βH(0) eiλQ]
.

(7)

Note that 〈. . .〉(0) means a conventional averaging over the
bare Hamiltonian as, e.g., in Ref. [47].

The central point of this generalized perturbation approach
is that Wick’s theorem is applicable for the generalized av-
erage 〈. . .〉(λ) as well (see Appendix B). While this approach
works well in general, it breaks down for certain values of
the Fermi momentum at λ = π . The reason for that is that
the denominator Tr[e−βH(0)

(−1)Q] can vanish at kF = kC,n ≡
(n − 1

2 )π/L if L � 1 [see the discussion at the end of this
section, the inset in Fig. 1(b), and Appendix G]. We note that
this behavior is somewhat reminiscent of the different but re-
lated context of out-of-equilibrium quantum transport, where
nonanalytic behavior of the FCS at λ = π is routinely found
when the system undergoes dissipative dynamic phase transi-
tions (see Refs. [25,26,49–53]). We, however, believe that in
this particular case, this is a spurious result, as a comparison
to DMRG computations reveals that in these particular points
kC,n, the m(π ) vanishes, i.e., the total correction 〈S (β )〉(λ) is
finite (see Appendix G).
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The expression 〈S (β )〉(λ) is identical to the expression
for the thermodynamic potential up to a replacement of all
Green’s functions by dressed Green’s functions. Since the
Wick theorem works for both expressions, the graphical rep-
resentation of the diagrammatic expansion will be the same,
only the expressions of the basic graphical elements will dif-
fer. Thus, expanding order by order in the interaction strength,
the moment and cumulant generating functions [m(λ) and
c(λ) = lnm(λ), correspondingly] can be formally connected
as follows:

〈eiλQ〉 = ec0+c1+c2+···, (8)

where c0 is a noninteracting result and all other terms can be
described by means of Feynman diagrams

cM = (−1)M

M

∑
unique

diagrams

(〈VM〉(λ) − 〈VMrangle(0) ). (9)

As we outline in Appendix C, the connected bubble unique di-
agrams 〈VM〉(λ) are graphically identical to the diagrammatic
expansion terms 〈VM〉(0) of the thermodynamic potential, the
first- and second-order diagrams of which are given in Eqs.
(10a) and (10b), correspondingly

(10a)

(10b)

Our main result is that the nontrivial second term in Eq. (5)
corresponds merely to interpreting the standard diagrams of a
known perturbation series in terms of dressed Green’s func-
tions G(λ), which are merely conventional Matsubara Green’s
functions G(0) dressed with the counting operators:

G(λ)
nm (τ1, τ2) ≡ −〈Tτ cn(τ1)c†

m(τ2)〉(λ). (11)

Note that with this definition the zero Green’s function
G(0)(τ1, τ2) = G(0)(τ1 − τ2) is the conventional Matsubara
Green’s function

G(0)(τ ) = e−H (0)τ [(eβH (0) + 1)−1 − θ (τ )]. (12)

The generalized and conventional Green’s functions can be
easily related using the parameter ζ = eiλ − 1, which thus
becomes the only way in which the λ dependence enters the
equation. This also makes it clear that all dressed Green’s
functions are 2π periodic in λ and have zero imaginary part
at λ = π , as required by charge quantization. The explicit
relation is

G(λ)(τ1, τ2) = G(0)(τ1 − τ2) + G̃(λ)(τ1, τ2), (13)

where

G̃(λ)(τ1, τ2) = −ζG(0)(τ1)QD−1QG(0)(−τ2),

D = 1 + ζQG(0)(−0)Q.
(14)

One can account for the projection operator Q by a re-
duced summation over the interval i, j ∈ [1, L] where the
charge is measured [see Eq. (4)]. Thus, in Eq. (14) we
obtain G̃(λ)

nm (τ1, τ2) = −ζ
∑

i j G(0)
ni (τ1)(D−1)i jG

(0)
jm (τ2), where

the matrix D can be treated as a matrix of size L × L with
elements Di j = δi j + ζG(0)

i j (−0). In both cases the nonin-
teracting part of the generating function can be written in
the form of a Fredholm determinant c0 = ln det D = Tr ln D
[1,40].

The first-order correction due to interactions, c1, is de-
scribed by the Hartree-Fock terms illustrated in Eq. (10a).
Splitting the dressed Green’s functions as shown in Eq. (13)
we obtain from Eq. (9)

c1 = −1

2

∑
i j

Vi j

∫ β

0
dτ

{
2G(0)

ii G̃(λ)
j j − 2G(0)

i j G̃(λ)
ji

+ G̃(λ)
ii G̃(λ)

j j − G̃(λ)
i j G̃(λ)

ji

}
, (15)

where all Green’s functions depend on τ as G = G(τ, τ ). The
explicit expression can be found in Appendix D. Assuming a
translation-invariant interaction potential Vi j = V|i− j|, the only
nonzero elements for the case of nearest-neighbor interactions
are V0 and V1. Note that V0 is irrelevant because we consider
spinless fermions for which the Pauli principle rules out dou-
ble occupation of a given site. For low filling we present in
Fig. 1(a) the numerical result demonstrating a 2π -periodic
λ dependence of the cumulant generating function. One can
observe that the value of c1 first increases with occupation.
Moreover, the first and second cumulants, i.e., the charge
and noise, keep doing so practically at all filling factors (see
insets). One can also see that the charge expectation value is
linear with the interval length L (the lines are equidistant,
see caption). The analysis of the noise dependence on the
occupation [shown in left inset of Fig. 1(a)] and other system
parameters is more sophisticated and is done in Sec. V, which
is devoted to this problem. The above-mentioned growth with
the occupation, which is always correct for the low cumu-
lants and valid for small occupancies of generating function,
however, is not true for finite λ, especially close to λ = π .
The generating function is indeed real at this point for low
occupations, as well as close to the first critical densities kC,n

[see Fig. 1(b)]. We can claim that the value c1(λ = π ) indeed
changes sign when passing these critical occupations, but the
lowest order of perturbation theory is not sufficient to find out
the exact behavior around kC,n points, so it remains unclear
whether it is a smooth crossover or a discontinuity. Neverthe-
less, the DMRG studies demonstrate that the total interaction
correction to the cumulant generating function c − c0 remains
finite, so the behavior of the m(π ) is governed by ec0 keeping
the zeros at kC,n unchanged (see Appendix G for details).

IV. WIGNER CRYSTAL

While we have succeeded in formulating the FCS of in-
teracting electrons in terms of a diagrammatic approach up
to, in principle, arbitrary order, this approach is for practical
purposes obviously limited to lowest-order contributions, and
thus does not allow us to venture into the regime of strong
correlations. For this purpose, we have to find some other
means. As it turns out, another viable strategy is to compute
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the FCS for the situation where the electrons form a Wigner
crystal. Of course, it can be expected that this picture provides
reliable results for strong repulsive interactions. But, with
the previous method, we have the unique opportunity to test
whether this picture might work also for weak interactions.

The Wigner crystal can be seen as a discretized version
of the Luttinger liquid [54,55] in a semiclassical regime: the
spatial variation of the bosonic field is dominantly realized
by kinks (see Appendix E), such that the kink position can
be directly related to the localization of an electron charge.
The dynamics of these kinks can be described in terms of a
chain of N serially connected harmonic oscillators. Despite
the bosonic nature of such a system, its validity is not as
far fetched as it may initially seem: strong repulsive inter-
action prevents the violation of the Pauli exclusion expected
from the electrons. In the subsequent section, we demon-
strate qualitative agreement with perturbative results for the
fermionic system, indicative of the fact that repulsion by the
Pauli principle itself (in the absence of strong interactions)
is well approximated by the oscillator chain, too. In order to
control the electron density and prevent the collapsing of the
electrons, it is convenient to place the oscillator chain on a
ring to ensure the stability of the system,

H =
N∑

n=1

[
p2

n

2m
+ mω2

2
(xn − xn+1)2

]
(16)

with the canonically conjugate oscillator positions and mo-
menta [xk, pk′ ] = iδkk′ . The periodic boundaries are imposed
such that xN+1 ≡ x1 + N/, where N/ is a circumference of
a ring, and  is the density of oscillators corresponding to
the density of original electronic excitations  = pF /π . We
keep using the notation  to distinguish the oscillator chain
from the actual fermionic model. The oscillator parameters
are given such that mω = π2/K . We see immediately that
the oscillator parameters on the one hand connect seamlessly
to the Luttinger liquid interaction parameter K and, at the
same time, the system knows about the total electron density
. Consequently, the average charge (number of oscillators)
on the interval of the length l is equal to 〈Q〉 = l .

The charge inside the interval [0, l] is computed by testing
whether a given oscillator is in it. Thus, the expectation value
of QM for the Wigner crystal can be written as

〈QM〉 =
∫

dx1 . . .

∫
dxN QM |ψ0(x1, . . . , xN )|2, (17)

where Q is given by Eq. (2) and ψ0(x1, . . . , xN ) is the wave
function of the ground state of Eq. (16). As a consequence, the
moment generating function is here likewise by construction
2π periodic in λ. In addition, the theory has a natural cutoff for
the second cumulant, due to the granular nature of the charge
density. In particular, the prediction for the second moment
in such Wigner crystal is (for details on the calculation, see
Appendix E).

〈Q2〉 = l +
∞∑
j=1

b j

[
erfi

l − j

b j
+ erfi

l + j

b j
− 2erfi

j

b j

]
,

(18)

where erfi x = π−1/2(e−x2 + 2x
∫ x

0 e−y2
dy) and b j = 2

π√
K (1 + 1

2 ln j). The noise, i.e., the fluctuation of the number
of oscillators in the interval, can be obtained through
〈Q2〉 − 〈Q〉2.

V. COMPARISON

In order to compare the outcome of the above approaches
we choose as a reference object the second cumulant, i.e.,
the zero-frequency charge noise, described by the well-known
formula π−2 ln(κL) for the noninteracting case [4,23]. This
comparison will also help us to resolve the discrepancy in
the exact expression for the logarithmic dependence cutoff
κ that one can find in literature. In the noninteracting case,
the value of the cutoff for the interval size L was calculated
by means of the so-called strong Szegő theorem [23,42,43]:
2eγE sin kF , where γ = γE ≈ 0.5772 is Euler’s constant [the
digest of the calculation is given in Eqs. (21)–(25) in Ref. [23]
and also in Appendix F]. This result rests on a calculation at
finite temperature and the limit T → 0 taken afterwards. The
accurate calculation in the case of setting T = 0 from the start
with subsequent limit L � 1 requires taking Fisher-Hartwig
singularities into account [24,44–46]. This gives a slightly
different answer 2eγE+1 sin kF (see detailed calculation in Ap-
pendix B.2 of Ref. [46]), which is also proved by direct noise
calculations [4].

As already pointed out in the Introduction, the situation
is even more sophisticated if interactions are added. While
bosonization proved to be an extremely powerful tool for
describing the interacting fermion systems, due to the lack of
a lower bound, it is unable to correctly account for the cutoff
in the logarithm. Moreover, within the bosonic representation,
the result for the generating function contains only first and
second cumulants [23], which immediately breaks 2π period-
icity. The requirement to be real at λ = π is broken as well,
and there are arguments that the missing 2pF backscattering
processes are responsible for this discrepancy [6,23]. How-
ever, there is an open question as to why these processes are
less relevant for other values of λ.

We compare the results for the noise obtained by all three
approaches. All three results are illustrated in Fig. 2. (i) Us-
ing bosonization methods as in Ref. [23], one may merely
estimate

〈Q2〉 − 〈Q〉2 = K

π2
ln(κL), (19)

where the cutoff κ is added by hand, and usually chosen to
be of order of Fermi momentum ∼kF . (ii) The expansion
of Eq. (15) in orders of λ and estimation for kF  1 of the
integrals give

∂2
λ=0c1 ≈ 2V1 sin kF

π3
ln(2kF L). (20)

(iii) The result of the Wigner crystal model was already given
by Eq. (18).

Let us first discuss the relationship between (i) and (ii).
If we choose the cutoff κ = 2kF in Eq. (19), the two re-
sults agree since the Luttinger parameter for weak interaction
is K = 1 − 2

π
V1 sin kF . We further note that we can in-

crease the precision, and compute the integrals in Eq. (15)
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FIG. 2. The noise lowest-order interaction correction and its de-
pendence on occupancy kF and the length of the measuring interval
L. The main logarithmic plot demonstrates the dependence on L
at kF = π/20. Dots correspond to our perturbative approach, solid
curve is Wigner crystal result, and dashed lines are interaction cor-
rections obtained from the formulas given in the plot’s legend. The
offset of the data in the main plot is governed by the cutoff parameter
κ [see Eqs. (19) and (20)] pictured in the inset, with color scheme
labeling corresponding to the legend of the main plot.

numerically. We thus uncover a refined value for the cutoff of
the asymptotic logarithmic behavior (see the inset of Fig. 2).
One may see that the numerical calculation of the cutoff
parameter in the interacting part (red dots) agrees extremely
well with the noninteracting formula from Ref. [42], with γE

only (blue dashes) multiplied by 1 − K . The accuracy for the
zero-temperature case noninteracting cutoff from Ref. [46],
with γE + 1 (green dashes), meanwhile, does not fit that well.
Combining the noninteracting result [42] with ours for the
limit of small 1 − K , we get a formula for the noise (contrary
to already existing results in the literature where the cutoff is
only estimated)

〈Q2〉 − 〈Q〉2 = 1

π2
{K[ln(2L sin kF ) + γE] + 1}. (21)

Our result allows to interpolate from the noninteracting case
into the interacting regime. In order to further corrobo-
rate the logarithmic cutoff result (including the γE versus
γE + 1 issue), we resorted to a density-matrix renormaliza-
tion group (DMRG) approach, which allows to analyze the
system at wide range of interaction strength (from K = 0
to K = 1

2 in our case). The numerical DMRG results for
the periodic boundary conditions are illustrated in Fig. 3,
demonstrating the substantially better fit of the numerical
data with Eq. (21) in a very broad interval of the interaction
strength.

Finally, let us discuss the Wigner crystal result (iii) in the
regime of weak interactions. We note that while it does not
reproduce the cutoff with the same numerical accuracy as
Eq. (21), it nonetheless correctly captures quite a number of

FIG. 3. Interaction dependence of the offset. Dots are obtained
by DMRG simulation, while lines illustrate the formulas in the leg-
end at the occupancy of the kF = π/2.

qualitative features, such as the correct decrease of charge
noise with the onset of repulsive interactions (i.e., all results
in Fig. 2 are negative). Moreover, it neatly reproduces the
oscillations of the noise as a function of L, which can also
be seen in the perturbative results. Note, in particular, that the
period of the oscillations, going with ∼κ−1, matches perfectly
between the perturbative and Wigner crystal approaches. Such
oscillations cannot possibly be reproduced by (i), which is
rooted in the very nature of standard bosonization. These
observations speak in favor of a high validity of the Wigner
crystal approximation even for weak interactions being able
to mimic Pauli’s exclusion principle by means of a primitive
oscillator chain.

VI. CONCLUSIONS

This work contains several important results regarding the
full counting statistics in one-dimensional systems of inter-
acting fermions. First, we developed a universal perturbative
approach that allows us to calculate the interaction corrections
to the cumulant generating function for any value (with an
exception of value π at particular electron densities only)
of the counting field λ, preserving the real value of gen-
erating function at λ = π and its 2π periodicity. Second,
using this approach, we calculated the accurate expression for
the noise for the interacting case and determined an exact
value for the logarithmic cutoff at zero and finite interac-
tions. By means of these accomplishments, we showed that
the Wigner crystal approach may be used for good qualita-
tive predictions of charge counting even in the case of weak
interactions.
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APPENDIX A: GENERATING FUNCTION
DISASSEMBLING

The moment generating function we need to calculate is
defined and can be rewritten in the following way:

〈eiλQ〉 ≡ Tr[e−β(H(0)+V )eiλQ]

Tr[e−β(H(0)+V )]

= Tr[e−β(H(0)+V )eiλQ]

Tr[e−βH(0) eiλQ]

× Tre−βH(0)
eiλQ]

Tr[e−βH(0) ]

[
Tr[e−β(H(0)+V )]

Tr[e−βH(0) ]

]−1

. (A1)

The individual terms in this expression have the following
interpretations:

(i) The third term is a correction to the thermodynamical
potential, which can be expressed in a conventional series of
Feynman diagrams [see Eq. (C4)], consisting of conventional
Matsubara Green’s functions G(0) given in Eq. (12).

(ii) The second term is the counting operator of the non-
interacting system 〈eiλQ〉(0) = ec0 since the trace is taken with
respect to the single-particle Hamiltonian H(0) only.

(iii) The first term can be expanded in the interaction
Hamiltonian V in the same way as the thermodynamic poten-
tial in Eq. (C4), forming averages 〈VMeiλQ〉(0). These averages
are nothing but the expressions in Eq. (B5), which can be split
into the pairwise averages according to the generalized Wick
theorem in Appendix B and, in particular, Eq. (B6).

Thus, the first term can be calculated by building a dia-
grammatic expansion using Green’s functions dressed with
a counting operator eiλQ. This dressed Matsubara Green’s
function is defined in Eq. (11). Taking the expression for the

thermodynamic potential and using it in Eq. (A1), we obtain
the diagrammatic expansion

ln〈eiλQ〉 − ln〈eiλQ〉(0)

=
∞∑

M=1

(−1)M

M

∑
all topologically

unique expressions

(
unique

〈VM〉(λ) −
unique

〈VM〉(0) ), (A2)

where in the diagrams of the second term 〈VM〉(0)
unique, all lines

correspond to bare Green’s function G(0) while in the first term
〈VM〉(λ)

unique all lines are dressed Green’s function G(λ).

APPENDIX B: WICK’S THEOREM FOR DRESSED
GREEN’S FUNCTIONS

The conventional Wick theorem states that an average of a
product of ladder operators can be written as a sum over all
possible pairings of operator averages. In this Appendix, we
will show that the theorem remains true also for the dressed
Green’s functions. Then, we can express Wick’s theorem as

〈c1c†
2 . . . c2n−1c†

2n〉(0) ≡ Tr[e−βH0 c1c†
2 . . . c2n−1c†

2n]

Tr[e−βH0 ]

=
∑
{ik}

±〈
ci1 c†

i2

〉(0)
. . .

〈
ci2n−1 c†

i2n

〉(0)
, (B1)

where the sum is over all possible pairings and the ± sign
depends on the parity of the chosen pairing.

To demonstrate Wick’s theorem for dressed Green’s func-
tions, we use their definition and expand the exponent as
follows:

〈c1c†
2 . . . c2n−1c†

2neiλQ〉(0) =
∞∑

m=0

(iλ)m

m!
〈c1c†

2 . . . c2n−1c†
2nQm〉(0)

= the total expression is split (with corresponding combinatorial weights Cn
m) into the open

lines of Q’s connecting external ladder operators, and closed circles containing only Q’s

=
∞∑

m=0

(iλ)m

m!

∑
{ik}

∑
mk=m∑
{mk}

±Cm1
m

〈
ci1 c†

i2
Qm1

〉(0)

c Cm2
m−m1

〈
ci3 c†

i4
Qm2

〉(0)

c . . .

one open line︷ ︸︸ ︷
Cmn

mn+mn+1

〈
ci2n−1 c†

i2n
Qmn

〉(0)

c 〈Qmn+1〉(0)︸ ︷︷ ︸
all circles

= expanding the expressions for the binomial coefficients Cn
m

=
∞∑

m=0

(iλ)m
∑
{ik}

∑
mk=m∑
{mk}

± 1

m1!

〈
ci1 c†

i2
Qm1

〉(0)

c

1

m2!

〈
ci3 c†

i4
Qm2

〉(0)

c . . .
1

mn!mn+1!

〈
ci2n−1 c†

i2n
Qmn

〉(0)

c 〈Qmn+1〉(0), (B2)

where m1 + . . . mn + mn+1 = m, such that 0 � mk � m and Cm
n = n!

m!(n−m)! . The sign is chosen in the same way as in Eq. (B1),
according to the number of permutations of fermion operators. The subscript c is used to indicate “connected” diagrams. Now we
apply the conventional Wick theorem to the obtained expressions. This procedure is valid if L � m. The above can be rewritten
with the sums over mk taken from zero to infinity:∑

{ik}

∞∑
{mk}=0

± (iλ)m1

m1!

〈
ci1 c†

i2
Qm1

〉(0)

c

(iλ)m2

m2!

〈
ci3 c†

i4
Qm2

〉(0)

c . . .
(iλ)mn

mn!

〈
ci2n−1 c†

i2n
Qmn

〉(0)

c

(iλ)mn+1

mn+1!
〈Qmn+1〉(0)

=
∑
{ik}

±〈
ci1 c†

i2
eiλQ

〉(0)

c

〈
ci3 c†

i4
eiλQ

〉(0)

c . . .
〈
ci2n−1 c†

i2n
eiλQ

〉(0)

c 〈eiλQ〉(0). (B3)
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For the particular case of two operators this formula can be
written as

〈c1c†
2eiλQ〉(0) = 〈c1c†

2eiλQ〉(0)
c 〈eiλQ〉(0). (B4)

Introducing a generalized λ average, which so far we used in
the sense “connected,”

〈c1c†
2 . . . c2n−1c†

2n〉(λ) ≡ 〈c1c†
2 . . . c2n−1c†

2neiλQ〉(0)

〈eiλQ〉(0)

= Tr[e−βH0 c1c†
2 . . . c2n−1c†

2neiλQ]

Tr[e−βH0 eiλQ]
(B5)

so that for the particular two-operators case we get 〈c1c†
2〉(λ) ≡

〈c1c†
2eiλQ〉c, and one can formulate Wick theorem for the

generalized λ average:

〈c1c†
2 . . . c2n−1c†

2n〉(λ) =
∑
{ik}

±〈
ci1 c†

i2

〉(λ)
. . .

〈
ci2n−1 c†

i2n

〉(λ)
. (B6)

This equation constitutes the generalized Wick theorem.

APPENDIX C: THERMODYNAMIC POTENTIAL
AND BUBBLE DIAGRAMS

In this Appendix we briefly repeat the known results for
the perturbative expansion of the thermodynamic potential,
which can be found in classical textbooks, e.g., Refs. [47,48].
Feynman diagrams are usually drawn as connected
graphs with one or several incoming and outgoing lines,
while the disconnected parts of the diagrams are canceled out.
In the diagrammatic expansion of the thermodynamic poten-
tial, the situation is different because one needs to calculate
these disconnected diagrams themselves. The definition of the
thermodynamic potential is 	 = −T ln Tre−β(H(0)+V ) while
in the absence of interactions it is 	(0) = −T ln Tre−βH(0)

.
Repeating the standard steps of the diagrammatic calculation,
namely, expanding in V in the interaction representation and
applying Wick’s theorem, we get

exp[−β(	 − 	(0) )] = 1 +
∞∑

M=1

(−1)M

M!
〈VM〉(0), (C1)

where the average on the right is defined in Eq. (B1) and
the integrations over the internal Matsubara time variables
are implied. Summing up all disconnected diagrams, one can
show that Eq. (C1) can be rewritten as [48]

	 − 	(0) = −T
∞∑

M=1

(−1)M

M!

connected

〈VM〉(0)
c , (C2)

where the sum is only over connected diagrams. However,
a permutation of the interaction vertices of a given diagram
results in equal terms for each diagram. As a result, the cor-
rection to the thermodynamic potential due to the interaction
is equal to

	 − 	(0) =
∞∑

M=1

(−1)M

M

∑
all topologically
unique diagrams

unique

〈VM〉(0), (C3)

where the average on the right denotes a single term of the
Wick expansion corresponding to a particular diagram. Using
the symmetrized form of the two-particle interaction, these
bubble diagrams are [we provide only the first three orders,
Eqs. (C4a), (C4b), and (C4c), correspondingly]

(C4a)

(C4b)

(C4c)

In our paper is is more convenient to use the initial, not the
symmetrized, form of the interaction, as we demonstrated for
the first two lines in Eq. (10).

APPENDIX D: HARTREE-FOCK CONTRIBUTION

The formula for the Hartree-Fock contribution pictured in
Fig. 1 can be obtained by substituting Eqs. (12) and (13) into
Eq. (15). Rearranging the terms in order to explicitly cancel
out the onsite interaction terms, we get

c1 = β

∫
d p d p′

(2π )2
(V̄p′−p − V̄0)np′

∑
kl

(1 − np)npeip(l−k)(D−1)kl

+
∫

d p d p′dq

(2π )3
(V̄p′−p−q − V̄q)Wpp′q

∑
mnkl

× e−ip′m(D−1)mnei(p′−q)ne−ipk (D−1)kl e
i(p+q)l , (D1)

where V̄q = ∑∞
n=−∞ Vleiql is simply a Fourier coefficient and

Wpp′q = np(1 − np+q)np′ (1 − np′−q)

−ξp′ + ξp′−q − ξp + ξp+q
. (D2)

For the case of the nearest-neighbor interaction the Fourier
series for the interaction potential takes the simple form V̄q =
V0 + 2V1 cos q, where V0 is an irrelevant onsite interaction that
cancels out in the above formula for c1.

APPENDIX E: APPROXIMATING SINE-GORDON MODEL
VIA DISCRETE HARMONIC OSCILLATOR CHAIN

We here reiterate a justification for the Wigner crystal
model for interacting electrons, starting from the sine-Gordon
model. Subsequently, we use the former to compute the charge
noise, given in the main text in Eq. (18). As shown by Cole-
man and Mandelstam [56,57], the massive Thirring model
(interacting relativistic fermions in 1 + 1 dimensions) can be
exactly mapped onto the sine-Gordon model. In simple words,
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FIG. 4. The principle of a requantization of the boson field �.
(a) Possible configurations of � as a function of x for standard
Luttinger liquid theory. The black and gray curves represent possible
quantum superpositions of two different realizations of �. Only
the total difference �(0) − �(L) is an integer multiple of 2π , but
for arbitrary positions �(a) − �(b) the field may assume arbitrary
values. Thus, any local charge operator is not quantized in general.
(b) Configuration of � including a mass term in the nonrelativistic
limit c → ∞, again for two different quantum realizations (black and
gray). Here, the mass term leads to a steplike behavior, such that
�(a) − �(b) is an integer multiple of 2π independent of a and b.
Thus, the local charge is always guaranteed to be quantized.

we can take the Luttinger liquid Hamiltonian and add a mass
term

H =
∫

dx

[
cK

2
�2 + c

2K
(∂x�)2 − α

4πK
cos

(
2
√

π�
)]

,

(E1)

where K parametrizes the interactions, and a nonzero α gives
rise to a mass gap. Let us treat the soliton positions of the sine-
Gordon model given in Eq. (E1) semiclassically, as a chain
of harmonic oscillators. Assuming a nonrelativistic limit, i.e.,
when the cosine terms dominate, the smooth field � will be
looking rather like a a staircase (see Fig. 4). The dynamics
of the system will be rather described by the positions of the
kinks x j , the simplest model for which will be Eq. (16). To
quantize the oscillators chain we deploy the ansatz

x̃ j = x j − j
L

N

= X + 1√
2N

∑
q>0

1√
αq

[eiq jaq + e−iq ja†
q], (E2)

p j = 1

N
P − i

1√
2N

∑
q>0

√
αq[eiq jaq − e−iq ja†

q], (E3)

where [aq, a†
q′ ] = δqq′ , momentum q = 2π

N n n ∈ Z, while

X = 1
N

∑N
j=1 x j and P = ∑N

j=1 p j . The normalization factor

has to be chosen as αq = 2mω| sin( q
2 )|. Adding the chemical

potential we get the diagonalized Hamiltonian

H = 1

2m

1

N
P2 + ω

∑
q>0

2

∣∣∣∣ sin

(
q

2

)∣∣∣∣a†
qaq

+ ω
∑
q>0

∣∣∣∣ sin

(
q

2

)∣∣∣∣ + mω2

2

L2

N
− μN. (E4)

Comparing this with the bosonized Luttinger liquid Hamilto-
nian in the diagonalized form

HLL = u
∑
q �=0

|q|a†
qaq + πu

2L

(
(N − NF )2

K
+ KJ2

)
(E5)

we can obtain all necessary values

ω = vF
N

L
, kF = π

N

L
, m = π

vF

N

L
. (E6)

Putting the expressions for xi into Eq. (2) we expand over δx̃r
j

as follows:

Q =
∑

j

1

π

[
θ

(
L

N
j + X + δx̃ j

)
− θ

(
L

N
j + X + δx̃ j − l

)]

=
∑

r j

1

π

δx̃r
j

r!
∂r

X

[
θ

(
X + L

N
j

)
− θ

(
X + L

N
j − l

)]
.

(E7)

The derivatives of the θ functions can be obtained using

1

π
[θ (a) − θ (b)] = 1

2π

∫
dk

∫ b

a
dX eikX

= 1

2π

∫
dk

eikb − eika

ik
.

To calculate first 〈Q〉 and second 〈Q2〉 moments we need 〈δx̃r
j〉

and 〈δx̃r
jδx̃r′

j′ 〉 which can be computed via generating function
equal to (for large N � 1)

〈eiξδx̃ j 〉 ≈ e−ξ 2a, (E8)

〈ei(ξδx̃ j+ζ δx̃ j′ )〉 = e−K[(ξ+ζ )2a−2ξζb( j− j′ )], (E9)

where

a = − 1

8π
4
3

L2

N2
ln

(
π

2N

)
, (E10)

b( j − j′) =
{

1
2π2

L2

N2

[
1 + 1

2 ln | j − j′|] for j �= j′,

0 for j = j′.
(E11)

The calculation of the charge gives us 〈Q〉 = l N
L . The noise is

given through an expression

〈Q2〉 = N

2L

∑
δ j

∫ l

0
dX

[
erf

(
l − L

N δ j − X

2
√

2Kb(δ j)

)

− erf

(
− L

N δ j − X

2
√

2Kb(δ j)

)]
. (E12)
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FIG. 5. DMRG computations of the parity expectation values.
The color designates the interaction strength. The data points are
collected for kF from π/20 to π/10, and the interval length varies
in L ∈ [1 . . . 199] at total number of sites 200.

APPENDIX F: STRONG SZEGO THEOREM
AND ZERO TEMPERATURE

We use Eq. (21) of Ref. [23], substituting formulas for
T = 0 given in the text between Eqs. (24) and (25), expressed
through the value given in Eq. (14). Noting that the value c
from [23] equals to c = 1/pF , we get

c(λ) = i
λpF

π
−

L∑
l=1

l

[
λ

sin pF l

π l

]2

= i
λpF

π
− λ2

2π2
(log(2L sin pF ) + γEuler ) + O

[
1

L

]
.

(F1)

APPENDIX G: CONVERGENCE
OF THE PERTURBATION SERIES

The convergence of the perturbation series can be violated
in two ways. The first way is the divergency due to the

momenta integration. The parameter L serves as a natural
cutoff for this integration, however, since we are interested
in L � 1, let us consider this integration for arbitrary order in
the interaction expansion. The perturbative term of the order
M to the cumulant of order P > 1 can be estimated formally
as follows. For M interaction vertices we have 2M Green’s
functions, P of which are correction of the dressed function
G̃, so as a result we have 2M + P bare Green’s functions G(0)

estimated as (iωn − ξ ) and P additional momenta q together
with prefactors q−1 and typical cutoffs at kF � |q| � L−1. Ex-
cept, we have initial 2M integrations over momenta, 2M + P
summations over the Matsubara frequency ωn, and M conser-
vation laws for both momenta and frequency. Putting all of
this together we get

V M ζ P

ξM

(∫
d p

)M(∫
kF >|q|>L−1

dq

q

)P

. (G1)

As we see potentially the maximal divergence we may obtain
in any perturbation order is ln kF L.

The other source of the probable nonanalytic behavior is
the Green’s function itself. As we mentioned in the end of
Sec. III, the denominator in the Green’s function definition
is equal to ec0 and goes to zero at λ = π and kF = kC,n.
Thus, the diagram of the Mth order can be estimated as V M ×
(kF − kC,n)2M , and, obviously, the diagrammatic expansion in
small V fails if kF approaches kC,n. For this reason we per-
formed a DMRG computation of the parity expectation value
(i.e., generating function at λ = π ) for the chain of length
Nsites = 200 with boundary periodic conditions for different
kF , L = 1 . . . Nsites − 1, and various interaction strengths. The
result is presented in Fig. 5. We observe that the vicinity
of the n + 1

2 points, where our perturbative approach fails,
is the least affected by interaction strength (in very wide
range), so by the particular values of kF and L for the given
kF L = (n + 1/2)π value. Thus, we can conclude that the in-
teraction correction c(π ) − c0(π ) remains finite in the limits
of kF → kC,n.

[1] L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys. 37,
4845 (1996).

[2] D. Bagrets, Y. Utsumi, D. Golubev, and G. Schön, Fortschr.
Phys. 54, 917 (2006).

[3] D. B. Gutman, Y. Gefen, and A. D. Mirlin, Phys. Rev. Lett. 105,
256802 (2010).

[4] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie, and K.
Le Hur, Phys. Rev. B 85, 035409 (2012).

[5] E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 4,
308 (1963).

[6] A. Luther and I. Peschel, Phys. Rev. B 12, 3908 (1975).
[7] D. G. Shelton, A. A. Nersesyan, and A. M. Tsvelik, Phys. Rev.

B 53, 8521 (1996).
[8] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[9] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,

1698 (1979).
[10] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[11] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[12] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 72, 724 (1994).
[13] L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev.

Lett. 79, 2526 (1997).
[14] R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G.

Bunin, and D. Mahalu, Nature (London) 389, 162 (1997).
[15] A. Stern, Ann. Phys. 323, 204 (2008).
[16] K.-V. Pham, M. Gabay, and P. Lederer, Phys. Rev. B 61, 16397

(2000).
[17] F. D. M. Haldane, J. Phys. C: Solid State Phys. 14, 2585 (1981).
[18] R. Rajaraman and J. Bell, Phys. Lett. B 116, 151 (1982).
[19] S. Kivelson and J. R. Schrieffer, Phys. Rev. B 25, 6447 (1982).
[20] D. A. Ivanov and I. P. Levkivskyi, Europhys. Lett. 113, 17009

(2016).
[21] R.-P. Riwar, SciPost Phys. 10, 093 (2021).
[22] D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965).
[23] D. N. Aristov, Phys. Rev. B 57, 12825 (1998).

235133-10

https://doi.org/10.1063/1.531672
https://doi.org/10.1002/prop.200610305
https://doi.org/10.1103/PhysRevLett.105.256802
https://doi.org/10.1103/PhysRevB.85.035409
https://doi.org/10.1063/1.1703955
https://doi.org/10.1103/PhysRevB.12.3908
https://doi.org/10.1103/PhysRevB.53.8521
https://doi.org/10.1103/PhysRevD.13.3398
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevLett.72.724
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1038/38241
https://doi.org/10.1016/j.aop.2007.10.008
https://doi.org/10.1103/PhysRevB.61.16397
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1016/0370-2693(82)90996-0
https://doi.org/10.1103/PhysRevB.25.6447
https://doi.org/10.1209/0295-5075/113/17009
https://doi.org/10.21468/SciPostPhys.10.4.093
https://doi.org/10.1063/1.1704281
https://doi.org/10.1103/PhysRevB.57.12825


COUNTING INTERACTING ELECTRONS IN ONE … PHYSICAL REVIEW B 108, 235133 (2023)

[24] D. A. Ivanov, A. G. Abanov, and V. V. Cheianov, J. Phys. A:
Math. Theor. 46, 085003 (2013).

[25] R.-P. Riwar, Phys. Rev. B 100, 245416 (2019).
[26] M. A. Javed, J. Schwibbert, and R.-P. Riwar, Phys. Rev. B 107,

035408 (2023).
[27] K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347

(1985).
[28] D. Loss and K. Mullen, Phys. Rev. A 43, 2129 (1991).
[29] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,

J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[30] J. Koch, V. Manucharyan, M. H. Devoret, and L. I. Glazman,
Phys. Rev. Lett. 103, 217004 (2009).

[31] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Science 326, 113 (2009).

[32] A. Mizel and Y. Yanay, Phys. Rev. B 102, 014512 (2020).
[33] D. Thanh Le, J. H. Cole, and T. M. Stace, Phys. Rev. Res. 2,

013245 (2020).
[34] A. Murani, N. Bourlet, H. le Sueur, F. Portier, C. Altimiras, D.

Esteve, H. Grabert, J. Stockburger, J. Ankerhold, and P. Joyez,
Phys. Rev. X 10, 021003 (2020).

[35] P. J. Hakonen and E. B. Sonin, Phys. Rev. X 11, 018001 (2021).
[36] A. Murani, N. Bourlet, H. le Sueur, F. Portier, C. Altimiras, D.

Esteve, H. Grabert, J. Stockburger, J. Ankerhold, and P. Joyez,
Phys. Rev. X 11, 018002 (2021).

[37] R. P. Riwar and D. P. DiVincenzo, npj Quantum Inf. 8, 36
(2022).

[38] A. Kenawy, F. Hassler, and R.-P. Riwar, Phys. Rev. B 106,
035430 (2022).

[39] C. Koliofoti and R.-P. Riwar, arXiv:2204.13633.
[40] I. Klich, An elementary derivation of Levitov’s formula, in

Quantum Noise in Mesoscopic Physics, edited by Y. V. Nazarov
(Springer Netherlands, Dordrecht, 2003), pp. 397–402.
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