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Dynamical exchange-correlation potential formalism for spin-1
2 Heisenberg and Hubbard chains:

The antiferromagnetic/half-filled case
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The exchange-correlation potential formalism previously introduced and applied to the one-dimensional Hub-
bard model has been extended to spin systems and applied to the case of the one-dimensional antiferromagnetic
spin- 1

2 Heisenberg model. Within the spin exchange-correlation potential formulation, a sum rule for spin
systems is derived. The exchange-correlation potential for the Heisenberg model is extrapolated from exact
diagonalization results of small antiferromagnetic Heisenberg clusters. This procedure is also employed to revisit
and computationally improve the previous investigation of the exchange-correlation potential of the half-filled
Hubbard model, which was based on the exchange-correlation potential of the dimer. Numerical comparisons
with exact benchmark calculations for both the Heisenberg and the Hubbard models indicate that, starting from
the exchange-correlation potential of a finite cluster, the extrapolation procedure yields a one-particle spectral
function with favorable accuracy at a relatively low computational cost. In addition, a comparison between the
ground-state energies for the one-dimensional Hubbard and Heisenberg models displays how the well-known
similarity in behavior of the two models at large interactions manifests itself within the exchange-correlation
potential formalism.
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I. INTRODUCTION

Lattice models, in spite of their apparent simplicity, can be
very valuable to reveal important features in low-dimensional
and highly correlated quantum systems. This certainly is the
case of two highly paradigmatic models of condensed matter
physics, namely the Hubbard [1] and spin- 1

2 quantum Heisen-
berg models [2].

For several decades, these two models have been a test
ground for new theoretical and computational methods [3–5].
Notably, they have been used to describe phenomena such
as the Mott transition [6], high-critical-temperature super-
conductivity [7], quantum spin liquids [8], and quantum
entanglement [9,10]. Furthermore, via suitable parametriza-
tion from first-principles ground-state calculations, they
have also been used to describe the dynamical behavior
of real materials, which is experimentally measurable via,
e.g., neutron scattering and angle-resolved photoemission
spectroscopy. This model approach is very useful when
first-principles descriptions are too complicated to perform
(see, e.g., Refs. [11–14]).
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There are a number of approaches of increasing sophis-
tication being continuously developed to solve the Hubbard
and Heisenberg models [15–22]. Exact analytical solutions
remain scarce. In one dimension (1D), both models are in-
tegrable and exactly solvable via the Bethe ansatz [23,24].
Yet, exact analytic treatments for higher-dimensional or even
extended 1D systems [e.g., with next-nearest-neighbor (NNN)
coupling] are in general not available. As it happens, already
in 1D not all quantities of interest can be accessed: The
Bethe ansatz provides information about the energy disper-
sion [25,26] but not, for example, the spectral weight, one
of the more interesting quantities to consider when study-
ing dynamical correlations (the latter are usually directly
connected to experimental results). In this case, approaches
based on the Bethe ansatz, such as the vertex-operator ap-
proach [27] or the algebraic Bethe ansatz [28,29], have been
used.

On the numerical side, several approaches can be suitably
employed for both models, such as exact diagonalization (ED)
[30], quantum Monte Carlo (QMC) [31–34], and density ma-
trix renormalization group (DMRG) [35–37], to name a few.
ED gives exact and complete information about the system,
but it is restricted to small systems and thus is unable to
capture the thermodynamic limit features. DMRG and QMC
are applicable to fairly large systems and have high accuracy
in 1D [38–40], but for higher dimensions the computational
cost increases rapidly [41–43].

Density functional theory (DFT) [44–48], a standard
methodology for first-principles treatment of materials, has
also been used to study the two models [49], via direct adap-
tation and application of the lattice case [50–54], not only
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to calculate the model parameters from first principles (e.g.,
Hubbard U [55–57] and Heisenberg J [58]), but also to use
model results as input in realistic calculations [59]. Although
formally exact, DFT in practice requires approximations for
the exchange-correlation energy [60].

The local-density approximation (LDA) and its extension
to the local-spin-density approximation (LSDA) are widely
used in DFT [47,61,62]. L(S)DA successfully describes many
materials but does not perform well in strongly correlated sys-
tems, and much effort has been devoted to improving it. With
focus on model lattice systems, one way is to use the exact
Bethe ansatz solution of the Hubbard model to approximate
the correlation energy of an inhomogeneous lattice system
[63]. A similar employment of DFT has also been considered
for the Heisenberg model [64]. What is noteworthy about
these L(S)DA approaches when applied to the Hubbard and
Heisenberg models is that the exchange-correlation term has
information about the lattice structure and dimensionality of
the system.

From a different perspective, a formalism based on the
dynamical exchange-correlation potential (Vxc) was recently
introduced [65]. The Vxc can be interpreted as the Coulomb
potential of the exchange-correlation hole, which represents
the density fluctuations in the many-electron system upon ad-
dition of a hole or an electron into the system. The formalism
is not limited by system size, system dimensionality, or type
and range of the interaction, and it is thus useful to describe
electronic and magnetic structures in general situations. A
main feature of the dynamical Vxc formulation is that the
coupling between the dynamical Vxc and the Green’s function
occurs as a direct product in space and time. In contrast,
the self-energy, which is traditionally used to calculate the
Green’s function, acts on the Green’s function as a convolu-
tion in space and time.

As a first application of the framework, the lattice one-
particle Green’s function of the infinite 1D Hubbard chain was
determined [65,66] using an extrapolation scheme, starting
from the dynamical Vxc of the Hubbard dimer as input. In
spite of the simplicity of the approximation used and the
low computational load, the scheme provides estimates of the
band gap and spectral function in favorable agreement with
the results obtained from the Bethe ansatz and the dynamical
density matrix renormalization group (DDMRG) [67]. One
general conclusion from this investigation is that the Vxc
formalism provides a simple picture of the one-electron spec-
trum: For a given momentum, a time-independent term in the
Vxc together with the kinetic energy term determines the main
peak of the spectral function, while a time-dependent term
in the form of an exponential couples the Green’s functions
with different momenta and generates incoherent structures or
satellite peaks. The energy variable appearing in the exponent
can be understood as the main bosonic excitations of the
system.

More recently, as a step towards the study of realistic
systems, the Vxc of the homogeneous electron gas was
calculated within the random-phase approximation [68] with
the long-term aim of constructing the Vxc as a universal
functional of the ground-state density within the local-density
approximation.

II. THIS WORK, AND PLAN OF THE PAPER

In this paper, the Vxc framework is extended to spin sys-
tems, more specifically to the 1D Heisenberg model. The
Vxc-based equation of motion and the sum rule for the spin
exchange-correlation hole are derived. Furthermore, the ex-
trapolation scheme employed in the previous work for the
1D Hubbard chain is adopted [66]. The essential idea of the
extrapolation scheme is to start from the Vxc of a finite cluster
(kernel), which can be calculated accurately using an exact
diagonalization method or other methods such as the density
matrix renormalization group. By a suitable extrapolation,
this is then used to determine the Green’s function of the
corresponding lattice model. The spin Vxc framework within
the extrapolation scheme is applied to calculate the spectral
functions of the 1D spin- 1

2 antiferromagnetic (AFM) Heisen-
berg model in the thermodynamic limit, starting from the spin
Vxc of small clusters.

In addition, the 1D Hubbard chain is revisited. In the pre-
vious work [66], the Hubbard dimer was the kernel, which
was used to calculate the Green’s function of the 1D Hubbard
chain. In this paper, in order to improve the quality of the
starting Vxc, the cluster size is enlarged so that additional in-
formation arising from interactions beyond nearest neighbors
is captured. The improved Vxc is then used to calculate the
Green’s function of the half-filled 1D Hubbard chain.

To summarize, the main outcomes of the present work are
as follows: (i) derivation of the Vxc-based equation of motion
and the sum rule of the spin exchange-correlation hole for
the 1D Heisenberg model, which can be readily generalized
to other spin systems; (ii) calculations of the spinon Green’s
function for the 1D AFM Heisenberg lattice by extrapolating
from a finite-cluster spinon Vxc; (iii) improved treatment of
the Vxc of the half-filled 1D Hubbard lattice from the previous
work [66] by using as kernel a Vxc from a finite cluster; and
(iv) illustration of how in the Vxc formalism the well-known
large-U limit (where results from the Hubbard model match
those from the AFM Heisenberg one) is recovered.

The plan of the paper is as follows: In Sec. III, we review
briefly the general Vxc formalism. Then, in Secs. III A and
III B we extend and apply the approach to the 1D AFM
Heisenberg model. Specifically, in Secs. III C and III D, we
derive an analytic expression for the Vxc for a four-site chain
and compute the lattice dynamical structure factor by extrapo-
lating the finite-cluster Vxc to the infinite case. In Sec. IV, we
revisit the 1D Hubbard model and compute the exact Vxc of
a finite cluster larger than the dimer, with which we improve
previous results in the infinite-chain limit. In Sec. V we dis-
cuss the Vxc from a comparative perspective, addressing the
ground-state energy for both the 1D AFM Heisenberg model
and the half-filled 1D Hubbard model in the large-U limit.
Finally, in Sec. VI we provide some concluding remarks and
an outlook.

III. GENERAL FORMALISM AND APPLICATION
TO THE HEISENBERG CHAIN

For a system with a one-body term h0(r) = − 1
2∇2 +

V ext(r) and two-body interactions v, the Hamiltonian
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reads

Ĥ =
∫

drψ̂†(r)h0(r)ψ̂ (r) + 1

2

∫
dr1dr2ψ̂

†(r1)

× ψ̂†(r2)v(r1, r2)ψ̂ (r2)ψ̂ (r1), (1)

where ψ̂ (r) is the fermion field operator and r = (r, σ ) is a
combined space and spin variable. The time-ordered Green’s
function is defined in the Heisenberg picture as

iG(1, 2) := 〈T ψ̂ (1)ψ̂†(2)〉, (2)

where the argument numbers label the space-time 1 :=
(r1, t1), 〈·〉 denotes the zero-temperature ground-state expecta-
tion value, and T is the time-ordering symbol. The equation of
motion in the Vxc formalism is given by [65][

i∂t1 − h(r1) − V xc(1, 2)
]
G(1, 2) = δ(1 − 2), (3)

where the single-particle term

h(r) = h0(r) + V H(r) (4)

contains the Hartree potential

V H(r) =
∫

dr′v(r, r′)ρ(r′); (5)

ρ(r) is the ground-state electron density. For an equilibrium
system, V xc and G depend on the time difference t1 − t2, and
t2 can be set to zero. The exchange-correlation field has a
simple physical interpretation as the Coulomb potential of the
exchange-correlation hole ρxc:

V xc(r, r′; t ) =
∫

dr′′v(r − r′′)ρxc(r, r′, r′′; t ). (6)

The exchange-correlation hole fulfills a sum rule∫
d3r′′ρxc(r, r′, r′′; t ) = −δσσ ′′θ (−t ) (7)

and an exact constraint

ρxc(r, r′, r′′ = r; t ) = −ρ(r) (8)

for any r, r′, and t .
The Vxc reproduces the interaction term containing a spe-

cial case of the two-particle Green’s function, i.e.,

V xc(1, 2)iG(1, 2) =
∫

d3v(1, 3)〈T ψ̂†(3)ψ̂ (3)ψ̂ (1)ψ̂†(2)〉

−V H(1)iG(1, 2). (9)

For fermion field operators and in the presence of Coulomb
interactions, the bare exchange part of the Vxc can be obtained
by considering the lowest order of the first term on the right-
hand side of Eq. (9),

V x(1, 2)iG(1, 2) = −
∫

d3v(1 − 3)G(1, 3)G(3, 2). (10)

A. Spin-spin interactions

We now apply the general formalism to spin systems on a
discrete lattice. The lattice contains in total N sites, which are
labeled with p = 1, 2, 3, . . . , N . At each site, a localized elec-
tron orbital gives rise to a local spin. The spin field operators

can be written as

Ŝα
p =

∑
ξξ ′

ĉ†
p,ξσ

α
ξξ ′ ĉp,ξ ′ , (11)

where α = x, y, z is the spin orientation, ĉ†
p,ξ (ĉp,ξ ) is the cre-

ation (annihilation) operator of an electron with spin ξ = ↑,↓
at site p, and σx,y,z denote the Pauli spin matrices. In what fol-
lows, we also use the spin ladder operators: Ŝ±

p := Ŝx
p ± iŜy

p.
For systems with spin-spin interactions, an observable of

central interest is the spin dynamical structure factor, whose
longitudinal and transverse terms are

Szz(k, ω) = 1

N

∑
pq

∫
dt

〈
Ŝz

p(t )Ŝz
q(0)

〉
eiωt e−ik(p−q) (12)

and

S+−(k, ω) = 1

N

∑
pq

∫
dt〈Ŝ+

p (t )Ŝ−
q (0)〉eiωt e−ik(p−q), (13)

respectively, where Ŝz,+,−
p (t ) are the spin field operators in the

Heisenberg picture. Also, the time of Ŝz,−
q is set to zero, since

the system is at equilibrium.
For the Hubbard model, the spin dynamical structure factor

can be obtained by solving a two-particle Green’s function

G(2)
ppqq(t ) := 〈T [ĉ†

p↑(t )ĉp↓(t )][ĉ†
q↓ĉq↑]〉, (14)

but the equation of motion of the two-particle Green’s func-
tion contains the three-particle Green’s function and thus is
generally difficult to solve. Simplification is, however, re-
covered for large repulsion, where charge transfer becomes
less likely and spin correlations can be obtained by studying
the AFM Heisenberg model. It is thus of fundamental and
practical interest to discuss the Vxc formalism directly for the
Heisenberg model.

The isotropic 1D Heisenberg Hamiltonian with nearest-
neighbor (NN) exchange coupling is given by

ĤHeis = −J
∑

p

[
1

2
(Ŝ+

p Ŝ−
p+1 + H.c.) + Ŝz

pŜz
p+1

]
, (15)

where for convenience we use an even total number of sites
before taking the thermodynamic limit. We define the Green’s
function with spin field operators

iGpq(t ) = θ (t )
〈
Ŝ+

p (t )Ŝ−
q (0)

〉 + θ (−t )
〈
Ŝ−

q (0)Ŝ+
p (t )

〉
, (16)

in which the Heisenberg J is the analog of the two-particle
interaction in Eq. (1). From the Heisenberg equation of motion
for the spin field operators, the equation of motion of the
Green’s function reads

i∂t Gpq(t ) + iFpq(t ) = 2δpqδ(t )
〈
Ŝz

p

〉
, (17)

where the interaction term is

Fpq(t ) = −
∑

l

Jpl [〈p, l; q〉 − 〈l, p; q〉]. (18)

Here,

〈l, p; q〉 := 〈
T Ŝz

l (t+)Ŝ+
p (t )Ŝ−

q (0)
〉
, (19)

and Jpl = J (δl,p+1 + δl,p−1) for the 1D NN exchange cou-
pling. One can define the spin exchange-correlation potential
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analogous to the charge case as follows:

V xc
pp,qq(t )iGpq(t ) := Fpq(t ) − V H

p iGpq(t ) −
∑

l

V F
pl iGlq(t ),

(20)

where the last two terms on the right-hand side, V H and
V F, are the analog of the Hartree and exchange potentials,
respectively:

V H
p (t ) := −

∑
l

Jpl
〈
Ŝz

l

〉
, (21)

V F
pl (t ) := Jpl

〈
Ŝz

p

〉
. (22)

Consequently, a spin correlator gl pq(t ) can be defined such
that

〈l, p; q〉 = iGpq(t )gl pq(t )
〈
Ŝz

l

〉
, (23)

while the spin exchange-correlation hole ρxc is defined as

ρxc
l pq(t )iGpq(t ) = −〈l, p; q〉 + 〈

Ŝz
l

〉
iGpq(t ). (24)

Denoting the total z component of the spin by Sz = ∑
l〈Ŝz

l 〉,
and observing that∑

l

〈l, p; q〉 = [θ (−t ) + Sz]iGpq(t ), (25)

we can obtain a sum rule for general spin interactions:∑
l

ρxc
l pq(t ) = −

∑
l

[gl pq(t ) − 1]〈Ŝl〉 = −θ (−t ). (26)

The detailed derivation is provided in Appendix B.
In this paper, we consider only the case of AFM coupling:

that is, J < 0, so that Sz = 0. In the spin- 1
2 1D AFM system,

the low-lying excitations are known as spinons [18]. Spinons
carry fractional spin and are excited in pairs. The dynamical
structure factor, which is defined with two spin operators, is
related to two-spinon processes. Therefore we call the Vxc
defined in Eq. (20) specifically the two-spinon Vxc. It has
been shown that the dynamic structure factor corresponding to
two-spinon processes has a lower and an upper boundary [15]:

ωlb(k) = (−J )
π

2
| sin k|, (27)

ωub(k) = (−J )π sin
k

2
, (28)

such that for a given k, only ω ∈ [ωlb(k), ωub(k)] gives
nonzero S(k, ω). For a translationally invariant system, the
Hartree and Fock terms [Eqs. (21) and (22)] vanish, and thus
the two-spinon Vxc is then

V xc
pp,qq(t )iGpq(t ) = −J

∑
δ=±1

[〈p, p + δ; q〉 − 〈p + δ, p; q〉],

with the corresponding exchange term (derived in
Appendix B) given by

F x
pq(t ) := V x

pp,qq(t )iGpq(t )

= J[Gp+1,p(0+)Gpq(t ) + Gp−1,p(0+)Gpq(t )

− Gp,p+1(0+)Gp+1,q(t ) − Gp,p−1(0+)Gp−1,q(t )].

(29)

In Sec. III B, we show how to use the exchange term F x to
find a reference Vxc, as the starting point to solve the Green’s
function.

B. The infinite chain

We specialize now the description to the case of the ho-
mogeneous infinite Heisenberg chain, where 〈Sz

p〉 ≡ s is site
independent due to translational symmetry. It is convenient
to move to the momentum domain, with the Green’s function
and V xc defined via the Fourier transform as

G(k, t ) = 1

N

∑
pq

Gpq(t )e−ik(p−q), (30)

V xc(k, t ) = 1

N2

∑
pq

V xc
pp,qq(t )e−ik(p−q) (31)

and where the equation of motion for the Green’s function
becomes

i∂t G(k, t ) −
∑

k′
V xc(k − k′, t )G(k′, t ) = 2sδ(t ). (32)

In the momentum representation, the exchange term becomes

F x(k, t ) = 4J

N
G(k, t ) sin

k

2

∑
k′

G(k′, 0+) sin

(
k′ − k

2

)

= −Jλ sin2 k

2
iG(k, t ), (33)

where iG(k′, 0+), the static structure factor, is an even func-
tion for k ∈ [−π, π ]. We show in Appendix A that λ is a
constant which is independent of k. It can be seen that the
exchange term V x of the two-spinon Vxc is static in character:

V x(k) := F x(k, t )/iG(k, t ) = −Jλ sin2 k

2
. (34)

Inspired by the time-independent structure of V x, we proceed
to separate the full Vxc into a dynamical part, Zsp(k, t ), and a
static part, V s, i.e.,∑

k′
V xc(k − k′, t )G(k′, t ) = V s(k)G(k, t )

+ Zsp(k, t )G(k, t ). (35)

In this way, we finally arrive at the solution to the equation of
motion (32):

G(k, t ) = G(k, 0+)e−iV st e−i
∫ t

0 Zsp(k,t ′ )dt . (36)

In this expression, the k-dependent static term V s determines
the main peak of the spectral function, and the dynamical term
Zsp(k, t ) produces the satellite structure. To attain an explicit
solution, it is expedient to solve for a reference Green’s func-
tion by keeping only the static V s term in the equation of
motion. Here we use Eq. (27) and choose V s = ωlb such that
the simplified reference solution contains the lower boundary
of the two-spinon energy dispersion [15]

Gref(k, ω) = 1

ω − (−J )π | sin k|/2
. (37)

The complete information from the interaction term F is still
contained in the dynamic part Zsp(k, t ), which needs to be
described appropriately to solve for the full G(k, ω).
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C. A four-site spin chain

It is useful to start our discussion of the spinon Vxc in finite
spin clusters by considering a four-site chain. This is the mini-
mal cluster (with an even number of sites) in which the Vxc is
nonzero. Furthermore, it is easy to obtain a compact analytical

solution that illustrates qualitatively several features present
also in larger clusters (in which our solution is numerical in
character). To illustrate the features of the four-site Vxc, we
choose one of its diagonal elements as a representative case,
namely

V xc
11,11(t > 0) = −J

( (xy+x)(xy+x+2y)
a2+

)
f1 + (x2 + x) f2 + ( (xy−3x)(xy−3x+2y−4)

a2−

)
f3( xy+x+2y

a+

)2
f1 + x2 f2 + ( xy−3x+2y−4

a−

)2
f3

, (38)

where x = 1 + √
3, y = 1 + √

2, a± =
√

8 ± 4
√

2, and
fi=1,2,3 are time oscillation factors determined by the differ-
ence between the spin excitation energies and the ground-state
energy. The full details and the explicit forms are given in
Appendix C, together with other elements of the Vxc. It is use-
ful at this point to move from site orbitals {ϕa} to bondinglike
ones {φμ}. In analogy to what is done with a Bloch basis (a
more detailed and comparative discussion of the Bloch basis
and the bondinglike basis can be found in Appendix C), we set
φμ = ∑

a Uμaϕa, ϕa = ∑
μ Uaμφμ, in which μ = A, B,C, D,

a = 1, 2, 3, 4, and the U matrix is

U = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠. (39)

For the Green’s functions, the transformation reads Gμν =∑
ab UμaGabU ∗

bν and Gab = ∑
μν U ∗

aμGμνUνb. One can define

V xc
μα,βν (t ) :=

∑
mn

UμmU ∗
mαV xc

mm,nn(t )UβnU
∗
nν, (40)

such that the equation of motion is now

i∂t Gμν (t ) −
∑
αβ

V xc
μα,βν (t )Gαβ (t ) = sμνδ(t ), (41)

where sμν = 2
∑

pq Uμp〈Sz
p〉δpqU ∗

qν . Comparing the equa-
tion of motion for the diagonal terms Gμμ,[

i∂t − V xc
μμ,μμ

]
Gμμ(t ) −

∑
γ �=μ

V xc
μγ ,γμGγ γ

−
∑
γ �=δ

V xc
μγ ,δμ(t )Gγ δ (t ) = sμμδ(t ), (42)

to the infinite-chain equation of motion (32), we note the fol-
lowing: (i) Gμμ maps to G(k); (ii) the contribution from fully
off-diagonal terms V xc

μν,δμ should be negligible; (iii) V xc
μγ ,γμ,

which maps to V (k), depends only on the difference of μ, γ ;
and (iv) the weights of the higher-excitation term f3 are rela-
tively small.

According to points (i)–(iv) and ignoring the high-energy-
excitation contributions from f3, one thus arrives at an
approximate expression for the matrix elements of V xc

μγ ,γμ:

V xc
BB,BB(t > 0) ≈ −Jα,

V xc
BC,CB(t > 0) ≈ −Jβ exp

[
iJt√

2

]
, (43)

whereas V xc
BD,DB(t > 0) ≈ 0, V xc

BA,AB(t > 0) ≈ 0, in which

α := xy + x

xy + x + 2y
= 2x + 2

xy + x + 2
, (44)

β := 1

4

(
a+

xy + x + 2y
+ a+

xy + x + 2

)2

(x2 + x − αx2),

(45)

and as in (38), a+ =
√

8 + 4
√

2. The analytic spinon Vxc
in the bonding basis and its main excitation approximation
are shown in Fig. 1. Ignoring the high-excitation factor f3

reduces the fine-structure details in Vxc. Consequently, V xc
BB,BB

simplifies to a constant whereas V xc
BC,CB oscillates with a single

frequency and a constant magnitude, and all other components
are negligible.

FIG. 1. Real part of the Vxc of a four-site spin- 1
2 AFM Heisen-

berg chain, in units of |J|. Top: exact. Bottom: results when the
high-excitation contribution is ignored [see Eqs. (43)–(45) and re-
lated discussion].
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FIG. 2. Real part of Z sp from a spin- 1
2 AFM Heisenberg ring. Top

(bottom): results for a ring with 8 (12) sites.

D. Infinite chain from cluster extrapolation

In Fig. 2, we show ReZsp(k, t ) as obtained from the cluster
Vxc discussed in the previous section.

It can be seen that for each k, ReZsp(k, t ) oscillates in
time, a behavior that can be understood as due to a single
quasiparticle-like main excitation. We therefore propose the
following ansatz for Zsp in the infinite-chain case:

Zsp(k, t ) = A(k)e−iωsp (k)t + B(k), (46)

where the amplitude A, the spinon excitation energy ωsp, and
the shift term B all increase monotonically as k increases from
0 to π . The Green’s function is given by inserting the ansatz
into Eq. (36):

Gsp(k, t > 0)

= Gsp(k, 0+)e−i[V s (k)+B(k)]t e
A(k)
ωsp (k) (e−iωsp (k)t −1)

, (47)

where the static potential is V s(k) = −Jπ | sin k|/2.
Expanding the last term on the right-hand side of Eq. (47)

to first order in e−iωsp (k)t , i.e.,

e
A(k)
ωsp (k) (e−iωsp (k)t −1) ≈ 1 + A(k)

ωsp(k)
(e−iωsp (k)t − 1), (48)

one gets an approximate Green’s function

Gsp
(1)(k, t > 0) = Gsp(k, 0+)e−i[V s (k)+B(k)]t

×
[

1 + A(k)

ωsp(k)
(e−iωsp(k)t − 1)

]
, (49)

which in the frequency domain becomes

Gsp
(1)(k, ω) = Gsp(k, 0+)

[
1 − A(k)

ωsp(k)

ω − [V s(k) + B(k)]

+
A(k)
ωsp(k)

ω − [V s(k) + B(k) + ωsp(k)]

]
. (50)

From Eq. (50), it can be seen that the main peak position of
the dynamical structure factor is given by V s + B. The spinon
excitation energy ωsp transfers weight from the main peak to
the higher-energy region resulting in satellite peaks at V s +
B + ωsp. The relative weight between the main peak and the
satellite is determined by the amplitude term A and the spinon
energy ωsp. Specifically at k = π , the finite-cluster solution
gives nonzero B, which opens a spin gap that does not exist
for the spin- 1

2 lattice. We attribute this to finite-size effects,
and thus we adjust B to a smaller value in our extrapolation.

Based on our discussion so far, we now present the lattice
case obtained by extrapolating the cluster Vxc. The 12-site
cluster ED result provides Zsp(K, t ) and G(K, 0+) for K =
2π
12 × 0, 1, 2, . . . , 6 (we only need to consider 0 � K � π ).
For each K , we extract A(K ) as half the difference between
the maximum and minimum of ReZsp(K, t ). We approximate
ωsp(K ) = 2π/T̄ , where T̄ is the average time difference be-
tween neighboring peaks of ReZsp(K, t ). To reduce the gap
opening due to the finite size, we set B(π ) = 0.2 to be compa-
rable to the broadening factor. For other k values, we estimate
A(k), B(k), and G(k, 0+) by linear interpolation and estimate
the spinon excitation energy by fitting to the two-spinon spec-
trum boundary,

ωsp → (−J )π

[
sin

k

2
− 1

2
| sin k|

]
. (51)

The longitudinal and transverse spin dynamical structure fac-
tors are then calculated from the spinon Green’s function.
Since for a spin isotropic system Szz and S+− differ by a
constant factor, we only calculate the spectral function of
the Green’s function [Eq. (47)], as shown in Fig. 3 (inter-

estingly, approximating the term exp { A
ωsp [ exp(−iωspt ) − 1]}

by 1 + A
ωsp [ exp(−iωspt ) − 1] gives no marked changes of the

properties of Gsp(k, ω)). A notable aspect in the behavior of
the spin dynamical structure factor is that both the peak loca-
tions and the relative weights are close to the inelastic neutron
scattering data from the 1D compound KCuF3 [21] (a DMRG
reference result from a 100-site AFM Heisenberg is shown in
Appendix A for a qualitative comparison). Coming to more
specific features, S(k, ω) is very small (i.e., close to zero) at
small k, while, for a generic k, most of its spectral weight
is concentrated around the main peak and the satellite peak.
As k → π , the relative weight between the main peak and
the satellite peak increases, and the spectrum with broadening
factor 0.1 is gapless.
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FIG. 3. Dynamic structure factor of a 1D spin- 1
2 AFM Heisen-

berg lattice calculated with the Vxc, with broadening 0.1. Top:
weight factor G(k, t = 0) considered as the unit. Bottom: weight
renormalized with cluster G(k, 0+). The blue dashed curves are the
boundaries for two-spinon processes.

While providing a qualitatively good approximation of the
main peak positions and the relative weights of the dynam-
ical structure factor for the 1D AFM Heisenberg model, the
present implementation of the spinon Vxc approach is also
subject to some limitations. This can be seen by, e.g., com-
paring the dynamical structure factor from the Vxc approach
with the two-spinon lower and upper boundaries (blue dashed
curves in Fig. 3). It is apparent that the main peak frequency
ω = V s(k) + B is still slightly overestimated. To reduce the
finite-size effects due to a parameter B(π ) originating from a
12-site cluster, we set B(π ) to be the same as the broadening
factor, i.e., about 0.2 (see Fig. 2). However, the actual Bethe
ansatz value of B(π ) should be zero. The overall point is that,
to obtain a more accurate dynamical structure factor, and to
avoid the finite-size effects inherent in the extrapolation from
a small cluster, more powerful external methods need to be
employed (e.g., the algebraic Bethe ansatz).

These considerations might reveal weaknesses of the
extrapolation procedure. However, it must also be clearly
stressed that this implementation of the Vxc approach cap-
tures most of the qualitative features of the 1D AFM Heisen-
berg model with a very low computational load and this cen-
tral attractive feature of the method is expected to also apply

in more challenging situations, e.g., in higher dimensions,
where rigorous references such as the Bethe ansatz are not
available.

IV. IMPROVING THE TREATMENT
OF THE 1D HUBBARD LATTICE

Encouraged by the 1D AFM Heisenberg chain results ob-
tained with a Vxc extrapolated from clusters, we now revisit
the case of the 1D Hubbard Hamiltonian,

ĤHub = −�
∑
pσ

[ĉ†
p,σ ĉp+1,σ + H.c.] + U

∑
p

n̂p↑n̂p↓, (52)

using also in this case a Vxc obtained from small (Hubbard)
clusters. In Eq. (52), p = 1, 2, . . . , N are the site labels (with
N → ∞ eventually), σ = ↑,↓ is the spin label, � is the
hopping energy, and U > 0 is the local repulsion. In the site
basis, the spin-up channel Green’s function is

Gpq(t ) = −iθ (t )〈ĉp↑(t )ĉ†
q↑(0)〉 + iθ (−t )〈ĉ†

q↑(0)ĉp↑(t )〉,
(53)

and the Vxc reads

V xc
pp,qq(t )iGpq(t ) = U 〈T ĉ†

p↓(t )ĉp↓(t )ĉp↑(t )ĉ†
q↑(0)〉

−Uρp↓iGpq(t ), (54)

where ρp↓ is the spin-down particle density at site p. The
exchange part of Vxc fulfils

V x
pp,qq(t )iGpq(t ) = −UGpp(0−)Gpq(t ), (55)

where Gpp(0−) = i〈ĉ†
p↑ĉp↑〉 = iρp↑; thus the exchange part of

the Vxc of the Hubbard model is static and cancels the Hartree
potential at half filling, in contrast to the Heisenberg model,
in which the exchange part depends on the momentum. In
general, the exchange part is time dependent [68].

Written in the momentum domain, the equation of motion
for the Hubbard lattice takes the form

[i∂k − εk]G(k, t ) −
∑

k′
V xc(k − k′, t )G(k′, t ) = δ(t ), (56)

where εk = −2� cos k is the kinetic energy. Equation (56)
shows that the interaction term, expressed as the direct product
of the Vxc and the Green’s function in the space-time domain,
is a convolution in the momentum domain. It has been shown
[66] that the main peak position of the electron (hole) spectral
functions can be described with V xc(k = 0), together with
the kinetic energy, while V xc(k = π ) plays an important role
in determining the satellite peaks. One can also write the
interaction term as a direct product in the momentum domain,∑

k′
V xc(k − k′, t )G(k′, t )

= V xc(0, t )G(k, t ) + Y (k, t )G(k, t ), (57)

which gives explicitly the solution for the Green’s function:

G(k, t > 0) = G(k, 0+)e−iεkt e−i
∫ t

0 dt ′V xc(0,t ′ )e−i
∫ t

0 dt ′Y (k,t ′ ),

(58a)

G(k, t < 0) = G(k, 0−)e−iεkt ei
∫ 0

t dt ′V xc(0,t ′ )ei
∫ 0

t dt ′Y (k,t ′ ).

(58b)
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FIG. 4. V xc(k) of a finite Hubbard ring, U = 7.74, � = 1, in
units of U . Top: real part. Bottom: imaginary part. V (k, t ) =
V (−k, t ), and V (k, t ) = −V (−k,−t ).

One can then use an N-site cluster with twisted boundary con-
ditions [69] to parametrize G(k, 0±), and thus the generalized
Vxc in the momentum domain becomes

Zel(k, t ) := V xc(0, t ) + Y (k, t ). (59)

Extrapolation from finite clusters

The Vxc of clusters with six and eight sites and with the
periodic boundary condition was computed using ED. The
Hubbard U was chosen to be 7.74 with � = 1, to allow for
comparisons with previous work and the DDMRG results
from the literature. In contrast to the dimer case, the cluster
Vxc exhibits multiple sharp peaks as a function of time t .
Time snapshots of the Vxc as a function of k are shown

in Fig. 4. For t � 0, we have that V xc(k, t ) ≈ V xc(π − k, t ),
but such behavior is unseen during the time evolution. The
particle-hole symmetry leads to V xc(k,−t ) = −V xc(k, t ), and
the increase of cluster size from N = 6 to N = 8 does not
change qualitatively the characteristics of V xc as a function
of k.

The dynamical properties of Vxc can be better illustrated
through Zel, a generalization of the Vxc in the momentum
basis defined in Eq. (59). Due to degeneracy, Zel(−k, t ) =
Zel(k, t ), and because of particle-hole symmetry, Zel(k,−t ) =
−Zel(π − k, t ). To improve the simulation of Zel, we use a
cluster with the twisted boundary condition, which provides
larger k-point sampling. The real part of Zel(k, t ) with the
twisted boundary condition is shown in Fig. 5: For small k,
it oscillates weakly in time (with small amplitude and long
period). However, where the band gap opens (k → π

2 ), the
oscillation of ReZel is more evident. For k → π , ReZel ex-
hibits sharp peaks at certain times. The peaks can be both
positive and negative: Mathematically, this means that some
of the zeros of the Green’s function are located where the
interaction term [Eq. (54)] has nonzero finite (positive or
negative) values. These spiky structures cannot be fitted into
a weighted sum of several (but finite in number) oscillations,
indicating that a model beyond the single-energy quasiparticle
picture is necessary.

Provided with the numerically exact Vxc for N = 6, 8 clus-
ters, we reconsider the approximate scheme proposed in the
previous work based on the Hubbard dimer (N = 2) [66]. The
dimer admits two k points (k = 0, π ), with the corresponding
approximate values for the Vxc given by

V xc(k = 0, t ) ≈ αU

2
, (60a)

V xc(k = π, t ) ≈ αU

2
(1 − α2)e−i2�t . (60b)

Here, the constant α depends only on U
�

(the explicit de-
pendence relation is shown in Appendix D together with a
summary of the properties of the Vxc obtained from the Hub-
bard dimer), and 2� in the exponential represents the main
excitation energy. In what follows, we use Eqs. (60a) and
(60b) to compute the hole part of the spectral function, with

FIG. 5. Real part of Zel(k, t ) of a finite Hubbard chain with the twisted boundary condition, U = 7.74, � = 1, in units of U . Left and
middle: with shorter time scale and fewer k points; N = 8, 6, respectively. Right: N = 6, with longer time and more k points; peaks out of the
color scale are not shown. Zel(−k, t ) = Zel(k, t ), and Zel(k, −t ) = −Zel(π − k, t ). For a discussion of the negative peak in the middle panel,
see the main text.
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the particle part obtainable via the particle-hole symmetry
Ae(k, ω) = Ah(π − k,−ω). When |k| � π

2 , the hole part of
the Green’s function given by the dimer model is

Gh(k, ω) = 1

ω − ωh
k − iη

[1 − Vxc(ω)], (61)

Vxc(ω) = 1

N

occ∑
k′

V xc(π, 0)

ω − [εk′ − V xc(0) − 2�] − iη
, (62)

where η is a broadening factor. The spectral function of Gh

has a main peak at ωh
k , determined by V xc(k = 0) and by the

kinetic energy: ωh
k = εk − V xc(0). The term Vxc(ω) gives rise

to a continuous satellite region. Its relative weight to the main
peak is V xc(π, 0), and its lower and upper boundaries are
given by the minimum and maximum occupied state kinetic
energy, respectively:

ω
h,lower
k = ε0 − V xc(0) − 2�, (63a)

ω
h,upper
k = ε π

2
− V xc(0) − 2�. (63b)

The dimer model [66] managed to capture the main structure
of the hole spectra of the Hubbard lattice but can be improved
in several aspects: The main peak position given by the model
is just the kinetic energy εk = −2� cos k plus a constant
determined by U , while the true k dependence of ωh should
be more complicated; the upper and lower boundaries of the
satellite part given by the model are independent of k, which
is also an oversimplification. Rewriting Eq. (58b) in the spirit
of a factorization into a main peak term and a satellite term,

G(k, t < 0) = G(k, 0−)e−i(εk+Zh,main
k )t

×ei
∫ 0

t dt ′Zh,sat (k,t ′ ), (64)

where Zh,main
k + Zh,sat(k, t ) = Zel(k, t ) for t < 0, one can see

the following: (i) A momentum-dependent static term, Zh,main
k ,

which is not present in the dimer model, together with
εk , determines the main peak; and (ii) the dispersion of
ωh,lower and ωh,upper can be explained by the satellite term
Zel,sat(k, t ′). Compared with Fig. 5, Zh,main

k is seen to be
the time-independent part around which Zel(k, t ) oscillates,
and Zh,sat(k, t ) represents a series of excitation energies. The
spikelike ReZel(k, t ) for k → 0, t < 0 is a consequence of
multiple excitation energies and large satellite peaks, while
the less oscillatory ReZel(k, t ) for k → π , t < 0 explains the
lack of strong satellites of the hole spectral functions Ah(k →
π,ω).

Taking advantage of the physical picture given by the dimer
model, we include the correction to the occupied k values
by adding a set of momentum-dependent parameters, l1,2,3,
such that (i) α → αl1(k), (ii) the main excitation determin-
ing the satellite boundaries [Eqs. (63a) and (63b)] becomes
2� → 2�l2(k), and (iii) the effective kinetic energy in the
summation of Eq. (61) becomes εk′ → −2� cos k′l3(k). The
parametrized dispersion relations of the key frequencies are

ωh
k = −2� cos k − αU

2
l1(k), (65a)

ω
h,lower
k = −2�[l3(k) + l2(k)] − αU

2
l1(k), (65b)

ω
h,upper
k = −2�l2(k) − αU

2
l1(k). (65c)

Thus the hole-part bandwidth for a given momentum, the
satellite width, and the band gap are

ωh
k − ω

h,lower
k = 2�[l2(k) + l3(k) − cos k], (66a)

ω
h,upper
k − ω

h,lower
k = 2�l3(k), (66b)

Eg = αUl1
(π

2

)
, (66c)

respectively. This means that the main peak location, the
bandwidth, and the satellite region width from cluster calcula-
tions can be used to determine the parameters l1,2,3, which are
then used to calculate the lattice spectral functions A(k, ω) for
k < π

2 . For k > π
2 , where the dimer model gives zero weight

for the hole-part spectrum, the cluster results show that the
corresponding Vxc can be approximated with a single-energy
excitation,

Zel
(

k >
π

2
, t < 0

)
≈ Ake−iωel

k t + Bk, (67)

where the parameters A, B, and ωel
k are estimated from cluster

result, which is similar to the treatment for the spinon Vxc
[Eq. (46)]. Combining the l1,2,3-involved occupied region and
the A,B, ωel-involved unoccupied region, the hole-part spec-
tral function can now be calculated for the whole Brillouin
zone. The spectral functions for selected k values are shown
in Fig. 6.

Compared with the dimer model, the cluster Vxc-based
parametrization improves the agreement with DDMRG (see,
e.g., Figs. 10 and 11 of Ref. [67]) in several aspects. Specif-
ically, we note the following: (i) The missing weights for
unoccupied k points appear when using as input a cluster Vxc.
(ii) The main peak positions (and thus the band-gap value
as well) are more accurate. In fact, the band-gap value from
the dimer model, αU , shows a discrepancy with the Bethe
ansatz exact value at small U , due to the lack of long-range
screening effects. Using a cluster Vxc, however, removes the
disagreement. (iii) Both the boundaries and the relative weight
of the satellite structure are better described by the cluster
Vxc and its momentum-basis generalization Zel. (iv) The total
weight of the hole or electron part cannot be renormalized
within the dimer model, because the noninteracting Green’s
function used in the dimer model can only fix the total spectral
weight:

∫
dωAh(k, ω) = θ (kF − k). With a cluster Vxc, using

〈ĉ†
k ĉk〉, we can rescale the total spectral weight for each k

value.
Yet, the main peak ωh

k in Fig. 6 is in general lower than
the one from DDMRG. This can be understood as due to the
band gap narrowing upon increasing the number of sites (the
eight-site cluster we used leads to the overestimation of
the gap and thus of the main peak position).

We conclude our discussion of the Hubbard chain by con-
sidering its spectral functions in real space that we obtain
starting from those in the momentum domain:

A(r, ω) = 1

2π

∫
dkA(k, ω)eikr, (68)

where r = 0, 1, 2, . . . is in units of the lattice parameter.
A(r, ω) describes the correlation strength between two space
points separated by r, at a given energy ω. The local case
A(r = 0, ω) corresponds to the density of states.
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FIG. 6. Momentum-resolved hole-part spectral function Ah(k, ω)
for U = 7.74, � = 1. For k < π

2 , the parameters l1,2,3 are determined
using the peak locations of the eight-site twisted boundary condition
cluster spectrum. For k > π

2 , Zel of the eight-site twisted boundary
condition cluster is used via Eq. (67) to calculate Ah. Top (middle): k
points chosen to compare with DDMRG results [67], without (with)
renormalized weight. Bottom: the satellite structure is approximated
with two peaks at the satellite region boundaries, in order to get
clearer dispersion branches. The k values are π

64 × 0, 1, 2, . . . , 64.
The locations of the spinon branch (0 < k < π/2, −3.5 < ω < −2),
the holon branches, and the lower boundary of the holon-spinon
continuum (π/2 < k < π , ω < −6) are close to the DDMRG result.
For the spinon branch, we have ω(k = 0) = −3.25, which differs
from the DDMRG result (approximately equal to −3) because the
finite cluster gives in general a larger band gap. In all calculations,
we set the broadening parameter η = 0.1.

Results for A(r, ω) with an eight-site kernel are shown in
Fig. 7, while those from a six-site kernel with different U
and r are reported in Appendix A. The cluster Vxc result
for A(r = 0, ω) shows better agreement with DDMRG than
the dimer model does. Also, the NN spectral weight at posi-
tive energy is predominantly negative, and for r � 2, A(r, ω)

FIG. 7. Spatial spectral functions, calculated with the eight-site
Vxc as the kernel (for the six-site case, see Appendix A) for
U = 7.74, � = 1, and broadening η = 0.1. Sixty-four k points are
used to approximate the k integral, according to the Chadi-Cohen
method [70].

exhibits nodal structures. Concerning the role of electronic
correlations, spatial spectral functions with different U values
become qualitatively alike at large repulsion (U > 4), but
the band-gap value keeps increasing with U . Finally, spectral
functions calculated with eight-site and six-site kernels are
qualitatively similar (see Appendix A for the six-site case),
with similarities in the overall shape and in the number of
nodes. However, the estimated value of the band gap improves
upon increasing the cluster size.

V. VXC FROM HUBBARD AND HEISENBERG MODELS:
A COMPARATIVE DISCUSSION

It is well known that the 1D spin- 1
2 AFM Heisenberg model

becomes equivalent to the 1D half-filled Hubbard model in the
large-U regime [71,72]. After having discussed the Vxc in the
two models separately, it can be useful to look at both models
together using as perspective the behavior of the Vxc in this
limit. Meanwhile, Zel and Zsp do not show a direct asymptotic
behavior Zel|U→∞ = Zsp, because they are coupled to the
single-particle Green’s function [Eq. (53)] and single spin-
flipping Green’s function [Eq. (16)], respectively. For the
Hubbard model, the term corresponding to Zsp is coupled to
the two-particle Green’s function 〈T [ĉ†

p↑(t )ĉp↓(t )][ĉ†
q↓ĉq↑]〉.

The equation of motion of the higher-order Green’s function
needs to be solved for the Hubbard model to calculate the
“higher-order Vxc” that is comparable with the spinon Vxc
under large repulsion. This means that the Vxc formalism for
the Heisenberg model, having a similar sum rule [Eq. (26)],
reduces the difficulty in deriving the equation of motion and
improves the interpretability via the quasiparticle picture.

Instead of solving the higher-order Green’s function, we
consider the more modest task of comparing the lattice
ground-state energies for the two models. In the large-U
limit [72],

lim
U→∞

EHub
0

N
= 1

U

(
4

EHeis
0

N
− 1

)
, (69)

where EHub
0 is the ground-state energy of an N-site Hubbard

ring with � = 1 and EHeis
0 is the ground-state energy of an
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FIG. 8. The ground-state energies calculated with different meth-
ods, with the exact Bethe ansatz result for the 1D Hubbard model,
EBA

0 , as a reference. The Vxc-based results for the 1D Hubbard model
and the 1D AFM Heisenberg model are indicated with red dots and
blue crosses, respectively. The ED results for a six-site Hubbard
cluster and a six-site Heisenberg cluster are indicated by red and blue
curves, respectively. For both models, the Vxc is extrapolated from a
six-site kernel. For Heisenberg model results, Eq. (69) is used.

N-site AFM Heisenberg ring with J = −1. Both energies can
be calculated from the Green’s function via

EHeis
0

N
= 3

2
〈S+

1 (t = 0+)S−
2 〉 (70)

and

EHub
0

N
= −[2〈ĉ†

1↑ĉ2↑(t = 0−)〉 − i∂t 〈ĉ†
1↑ĉ1↑(0−)〉]. (71)

In the frequency domain,

EHeis
0

N
= 3i

4π

∫
Gsp(r = 1, ω)dω, (72)

EHub
0

N
= i

2π

∫
[2Gel(r = 1, ω) − ωGel(r = 0, ω)]dω.

(73)

To perform a comparison, we compute the ground-state en-
ergy of the Hubbard lattice in two ways: (i) by directly using
the electron Vxc at different U values and (ii) by calculating
EHeis

0 for a J = −1 Heisenberg lattice with the spinon Vxc, to
be then used in the effective EHub

0 of Eq. (69). The differences
between the results from these two prescriptions and the exact
Bethe ansatz solution are shown in Fig. 8. The E0 results from
ED for a six-site ring are also shown as a reference.

For U < 10, the repulsion strength is not large enough for
Eq. (69) to be valid, leading to a discrepancy between the total
energies for the two lattice models. However, in this region,
EHub,Vxc

0 (red dots) is already close to the exact Bethe ansatz
value, and the difference gets smaller with increasing U . For
U > 30, the ED results for the two models converge, meaning
that the large-repulsion limit is reached. The Vxc-based ener-
gies E0 for the two models also converge to the exact Bethe
ansatz value.

It is interesting to observe that the effective Vxc-based
Heisenberg result is rather accurate, with an absolute error of
less than 10−4: This can be understood as a result of using the
two-spinon upper and lower boundaries in the extrapolation

and adjusting the B parameter from the cluster within the
zero-spin-gap picture. In contrast, the Vxc-based Hubbard
result is extrapolated without a good reference and is more
affected by the finite-size effects. Thus the difference between
it and the Bethe ansatz result is larger. It could also be that the
AFM Heisenberg model does not contain multiple-energy ex-
citations in the two-spinon process. Zsp in the whole Brillouin
zone can be described by one ansatz, while Zel has a spikelike
structure for certain k, which may suggest that the Vxc for the
AFM Heisenberg model as an effective model with no charge
flow is simpler than that for the Hubbard model.

As an overall remark, the comparative analysis in this sec-
tion shows the versatility of the Vxc approach across different
lattice models, with results that are consistent with trends and
benchmarks from other methods.

VI. CONCLUSION AND OUTLOOK

We have presented an exchange-correlation potential (Vxc)
formalism for the one-dimensional antiferromagnetic Heisen-
berg model and derived a general sum rule for spin systems.
Our spin formulation is a tailored extension of a previously
introduced general framework for many-body systems that
include both charge and spin degrees of freedom. Together
with this formulation, we have also devised a procedure to
obtain, from a Vxc extracted from small finite clusters, an
extrapolation to the thermodynamical limit. This procedure
to access the Vxc, originally devised for spin systems, has
also permitted us to revisit and improve the treatment of the
half-filled one-dimensional Hubbard model, a system already
considered in earlier work within the Vxc approach. For
both the 1D AFM Heisenberg model and the 1D Hubbard
model, the static exchange term of the Vxc was derived and
shown to exhibit model-distinctive properties. For the 1D
AFM Heisenberg model, the static exchange term corresponds
to a dispersion delimited by the boundaries of the two-spinon
spectrum, which motivates us to choose the lower boundary
as reference. For the Hubbard model, the local U leads to a
constant V x, which cancels the Hartree potential.

For both models, the spectral functions calculated within
the Vxc approach show favorable agreement with DDMRG
and with experimental results. Furthermore, a single-energy
quasiparticle picture can be used to explain the dynamics of
the spinon Vxc for the 1D AFM Heisenberg model and the
unoccupied or occupied part of the hole or electron Vxc for the
1D Hubbard model. Finally, we showed how the Vxc formal-
ism captures the equivalence of the two models in the large-U
limit, by a comparative analysis via the lattice ground-state
energies.

In conclusion, our results indicate that the Vxc formalism
provides an alternative way of calculating the single-particle
Green’s function which is computationally cost-beneficial but
also physically well defined. Looking forward, we plan to ap-
ply this dimensionality- and interaction-insensitive scheme to
models of increasing complication and higher dimensionality.
At the same time, we intend to explore ways to devise accurate
Vxc approximations with the goal of calculating excited-state
properties of real materials from first principles.
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FIG. 9. The dynamic structure factor of a 100-site AFM Heisen-
berg chain with J = −1, computed with DMRG. The weights are
renormalized to be in the range 0–1.
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APPENDIX A: ADDITIONAL RESULTS

In conjunction with the discussion given in Sec. III D, we
report in Fig. 9 the DMRG dynamical structure factor of a
100-site AFM Heisenberg chain with J = −1. Our result is
consistent with that in Fig. 2 of the study from Benthien and
Jeckelmann [67]. As an additional result to Fig. 7 in Sec. IV,
Fig. 10 shows the spatial spectral functions of a Hubbard chain
calculated with a six-site kernel.

APPENDIX B: SUM RULE AND EXCHANGE TERM
OF A HEISENBERG CHAIN

We first derive the sum rule for the spinon Vxc formalism.
Some essential terms and definitions introduced in the main
text are repeated here to ensure readability. The equation of
motion of the Green’s function for the Heisenberg model is

i∂t Gpq(t ) + iFpq(t ) = 2δpqδ(t )
〈
Ŝz

p

〉
, (B1)

where the interaction term is

Fpq(t ) = −J
∑

δ

[〈p, p + δ; q〉 − 〈p + δ, p; q〉], (B2)

and

〈l, p; q〉 := 〈
T Ŝz

l (t+)Ŝ+
p (t )Ŝ−

q (0)
〉

(B3)

is the three-site correlation. The correlator gl pq(t ) and the
exchange-correlation hole ρxc

l pq(t ) are defined to fulfill

〈l, p; q〉 = iGpq(t )gl pq(t )
〈
Ŝz

l

〉
, (B4)

ρxc
l pq(t )iGpq(t ) = −〈l, p; q〉 + 〈

Ŝz
l

〉
iGpq(t ), (B5)

ρxc
l pq(t ) = −[gl pq(t ) − 1]

〈
Ŝz

l

〉
. (B6)

For t > 0, ∑
l

〈l, p; q〉 = SziGpq(t ), (B7)

and for t < 0,∑
l

〈l, p; q〉 =
∑

l

[〈
Ŝ−

q (0)Ŝ+
p (t )Ŝz

l (t )
〉 + 〈Ŝ−

q (0)Ŝ+
p (t )〉δpl

]
= (1 + Sz )iGpq(t ). (B8)

Equations (B7) and (B8) can be written in a compact form
as ∑

l

〈l, p; q〉 = [θ (−t ) + Sz]iGpq(t ). (B9)

Therefore the correlator fulfills∑
l

iGpq(t )[gl pq(t ) − 1]
〈
Ŝz

l

〉 =
∑

l

〈l, p; q〉 −
∑

l

〈
Ŝz

l

〉
= θ (−t )iGpq(t ), (B10)

from which the sum rule can be retrieved:∑
l

ρxc
l pq(t ) = −θ (−t ). (B11)

Next, we derive the exchange term of the two-spinon Vxc.
We define a vertex function

�l pq(t ) := 〈
T Ŝz

l (t+)Ŝ+
p (t )Ŝ−

q (t ′)
〉

− 〈
Ŝz

l (t+)
〉
iGpq(t ). (B12)

The interaction term can be written as

Fpq(t ) = −J
[
�pp̄q(t ) − �p̄pq(t )

+ 〈
Ŝz

p(t+)
〉
iGp̄q(t ) − 〈

Ŝz
p̄(t+)

〉
iGpq(t )

]
, (B13)

where for simplicity, we write p̄ = p + δ as the NN site of
p and drop the summation symbol

∑
δ . According to the

definition of the Vxc, we have

V xc
pp,qq(t )iGpq(t ) = −J[�pp̄q(t ) − �p̄pq(t )]. (B14)

Our aim is to find an approximation of � such that we can get
an expression for the Vxc. To do that, we use the fact that for
local spins, Ŝz

p = Ŝ+
p Ŝ−

p − 1
2 , and we write the vertex function

as

�l pq(t ) = 〈T Ŝ+
l (t+)Ŝ−

l (t+)Ŝ+
p (t )Ŝ−

q (0)〉
− [

1
2 + 〈Ŝz

l (t+)〉]iGpq(t ) (B15)

and approximate the correlation with four spin operators as

〈T Ŝ+
l (t+)Ŝ−

l (t+)Ŝ+
p (t )Ŝ−

q (0)〉
≈ 〈Ŝ+

l (t+)Ŝ−
l (t+)〉〈T Ŝ+

p (t )Ŝ−
q (0)〉

+ 〈Ŝ+
p (t+)Ŝ−

l (t+)〉〈T Ŝ+
l (t )Ŝ−

q (0)〉, (B16)
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FIG. 10. Spatial spectral functions of a Hubbard chain, calculated with a six-site kernel.

which is a factorization with an exchange of the site indices.
Therefore we get the exchange term of the vertex function,
which is labeled as �x:

�x
l pq(t ) := −Gpl (0

+)Glq(t ). (B17)

We also note that 〈Ŝz
p〉 = 0 for AFM Heisenberg lattice; so the

exchange part of the interaction term is now

F x
pq(t ) = −J

[
�x

pp̄q(t ) − �x
p̄pq(t )

]
= −J[Gp,p+1(0+)Gp+1,q(t ) + Gp,p−1(0+)Gp−1,q(t )

− Gp+1,p(0+)Gpq(t ) − Gp−1,p(0+)Gpq(t )]. (B18)
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This reads in the momentum domain as

F x(k, t ) = −J

N

∑
k′

G(k′, 0+)G(k, t )

× [e−ik′
eik + eik′

e−ik − eik′ − e−ik]

= −2J

N

∑
k′

G(k′, 0+)G(k, t )[cos(k − k′) − cos(k′)]

= −4J

N

∑
k′

iG(k′, 0+)iG(k, t ) sin
k

2
sin

(
k

2
− k′

)
.

(B19)

One can notice that the exchange part of the Vxc is time
independent:

V s(k) := F x(k, t )

iG(k, t )

= −4J

N

∑
k′

iG(k′, 0+) sin
k

2
sin

(
k

2
− k′

)
, (B20)

which is of even parity for k ∈ [−π, π ], with iG(k, 0+) =
〈S+

k S−
−k〉 being the ground-state correlation.

We want to obtain a reference Vxc with F x. Therefore
we do not calculate the analytic form of iG(k, 0+) via the
Bethe ansatz, but use the symmetry of iG(k, 0+) to get an
approximate result. We write iG(k, 0+) as an expansion of
even-order polynomials:

iG(k, 0+) =
∑
ξ=0

gξ k2ξ . (B21)

For the infinite lattice, the finite sum can be replaced with an
integral:

1

N

∑
k′

iG(k′, 0+) sin

(
k

2
− k′

)

→ 1

2π

∑
ξ

gξ

∫ π

−π

dk′(k′)2ξ sin

(
k

2
− k′

)
. (B22)

In turn, the integral

Iξ (k) :=
∫ π

−π

dk′(k′)2ξ sin

(
k

2
− k′

)
(B23)

can be written as sin( k
2 ) multiplied with a factor only de-

pending on ξ . Absorbing all the k-independent factors in the
expansion coefficient gξ , we get

V s(k) = −J sin2 k

2

⎡
⎣ 1

π

∑
ξ

gξ

⎤
⎦. (B24)

APPENDIX C: ANALYTIC VXC OF A FOUR-SITE
HEISENBERG CHAIN

We start with comparing the Bloch basis, which is usually
used for systems with periodicity, and the bondinglike basis,
which is defined in Sec. III C for a finite chain with open
ends. The Bloch state is defined as ψk = 1√

N

∑
a e−ikaϕa. If

we write Ũka = 1√
N

e−ika, we find that the Bloch basis and

the bondinglike basis are transformed similarly from the local
orbitals. The difference is that the transformation matrix U is
real, while Ũ is complex. We also notice the correspondence
between G(k) and Gμμ,

G(k) =
∑

ab

ŨkaGabŨ
∗
bk, (C1)

Gμμ =
∑

ab

UμaGabŨ
∗
bμ, (C2)

and between V xc(k − k′) and V xc
μγ ,γμ,

V (k − k′) =
∑

ab

ŨkaŨ
∗
ak′GabŨk′bŨ

∗
bk, (C3)

V xc
μγ ,γμ =

∑
ab

UμaUaγV xc
aa,bbUγ bU

∗
bμ. (C4)

We want to (i) derive the analytic form of the spinon Vxc in
the local-orbital basis, (ii) transform the Vxc to the bonding-
like basis, and, finally, (iii) with the mapping between the
bondinglike basis and the Bloch basis, obtain the features
of the lattice Vxc. Therefore, in step (ii), we look at the
equation of motion of Gμμ, which can be mapped to G(k), and
ignore terms such as the convolution between V xc

μγ ,δμ and Gγμ,
since they are numerically small and have no corresponding
terms in the Bloch basis. As a result, the Vxc in both the
local-orbital basis (labeled by Latin letters) and the bonding-
like basis (labeled by Greek letters) can have four indices;
however, only V xc

aa,bb and V xc
μγ ,γμ are considered.

With these manipulations performed, we can then calculate
the Green’s function in the local-orbital basis. For positive
times, we get

Gpq(t ) = 〈�|eiHt Ŝ+
p e−iHt Ŝ−

q |�〉, (C5)

where |�〉 is the ground state. One needs to use a complete
set of eigenstates |n〉 which gives nonzero weight elements
〈n|Ŝ−

q |�〉. For an even number of sites and AFM coupling,
the total z spin of |�〉 is zero, which means that the states
{|n〉} are in the Sz = −1 sector. Labeling the eigenenergy
corresponding to state |n〉 with E−

n , the Green’s function can
be written as

Gpq(t > 0) = ∑
n e−i(E−

n −E0 )t 〈�|Ŝ+
p |n〉〈n|Ŝ−

q |�〉, (C6)

and the interaction term for positive time is

〈l, p; q〉t>0 =
∑

n

e−i(E−
n −E0 )t 〈�|Ŝz

l Ŝ+
p |n〉〈n|Ŝ−

q |�〉. (C7)

By diagonalizing the Hamiltonian in the Sz = 0 and Sz = −1
sectors, one gets {|�〉; E0} and {|n〉; E−

n }, respectively, and
thus the weight elements 〈n|Ŝ−

q |�〉 and 〈n|Ŝ−
p Ŝz

l |�〉, respec-
tively. Out of the four states of |n〉, only three of them give
nonzero 〈n|Ŝ−

q |�〉. Explicitly, the time factors are

f1 = e−i(E−
0 −E0 )t = eiJ (

√
3−√

2+1
2 )t , (C8)

f2 = e−i(E−
1 −E0 )t = eiJ (

√
3+1
2 )t , (C9)

f3 = e−i(E−
2 −E0 )t = eiJ (

√
3+√

2+1
2 )t . (C10)
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The independent elements of V xc in the orbital basis can be calculated with V xc
pp,qq(t ) = Fpq (t )

iGpq (t ) :

V xc
11,11 = −J

( (xy+x)(xy+x+2y)
a2+

)
f1 + (x2 + x) f2 + ( (xy−3x)(xy−3x+2y−4)

a2−

)
f3( xy+x+2y

a+

)2
f1 + x2 f2 + ( xy−3x+2y−4

a−

)2
f3

, (C11)

V xc
22,22 = −J

( 2(x+1)(xy+x+2)
a2+

)
f1 + (x2 + x) f2 + ( 2(x+1)(xy−3x−2)

a2−

)
f3( xy+x+2

a+

)2
f1 + x2 f2 + ( xy−3x−2

a−

)2
f3

, (C12)

V xc
11,22 = −J

( − (xy+x)(xy+x+2)
a2+

)
f1 − (x2 + x) f2 − ( (xy−3x)(xy−3x−2)

a2−

)
f3( − (xy+x+2y)(xy+x+2)

a2+

)
f1 − x2 f2 − ( (xy−3x+2y−4)(xy−3x−2)

a2−

)
f3

, (C13)

V xc
11,33 = −J

( (xy+x)(xy+x+2)
a2+

)
f1 − (x2 + x) f2 + ( (xy−3x)(xy−3x−2)

a2−

)
f3( (xy+x+2y)(xy+x+2)

a2+

)
f1 − x2 f2 + ( (xy−3x+2y−4)(xy−3x−2)

a2−

)
f3

, (C14)

V xc
11,44 = −J

−( (xy+x)(xy+x+2y)
a2+

)
f1 + (x2 + x) f2 − ( (xy−3x)(xy−3x+2y−4)

a2−

)
f3

−( xy+x+2y
a+

)2
f1 + x2 f2 − ( xy−3x+2y−4

a−

)2
f3

, (C15)

V xc
22,33 = −J

−( 2(x+1)(xy+x+2)
a2+

)
f1 + (x2 + x) f2 − ( 2(x+1)(xy−3x−2)

a2−

)
f3

−( xy+x+2
a+

)2
f1 + x2 f2 − ( xy−3x−2

a−

)2
f3

, (C16)

where the constant factors x, y, and a± are defined in the main text. Other terms such as V xc
33,33 can be obtained via considering

the symmetry of the chain. The terms in the “bonding-antibonding” basis are then

V xc
BB,BB = 1

16

[
2
(
V xc

11,11 + V xc
11,44 + V xc

22,22 + V xc
22,33

) + 4
(
V xc

11,22 + V xc
11,33

)]
, (C17)

V xc
BC,CB = 1

16

[
2
(
V xc

11,11 − V xc
11,44 + V xc

22,22 − V xc
22,33

) + 4
(
V xc

11,22 − V xc
11,33

)]
, (C18)

V xc
BA,AB = 1

16

[
2
(
V xc

11,11 − V xc
11,44 + V xc

22,22 − V xc
22,33

) − 4
(
V xc

11,22 − V xc
11,33

)]
, (C19)

V xc
BD,DB = 1

16

[
2
(
V xc

11,11 + V xc
11,44 + V xc

22,22 + V xc
22,33

) − 4
(
V xc

11,22 + V xc
11,33

)]
. (C20)

APPENDIX D: THE DEPENDENCE OF THE α PARAMETER ON U
�

IN THE HUBBARD DIMER MODEL

The equations in this Appendix are rewritten from the Hubbard dimer work [66]. With a two-site open-ends chain, the
half-filled Hubbard Hamiltonian equation (52) can be analytically solved, given the analytic bonding (k = 0) and antibonding
(k = π ) Vxc:

V xc(k = 0, t > 0) = αU

2

1 − α2e−i4�t

1 − α4e−i4�t
, (D1a)

V xc(k = π, t > 0) = αU

2

(1 − α2)e−i2�t

1 − α4e−i4�t
, (D1b)

where α = 1−κ
1+κ

, with κ = 1
4 (

√
(U
�

)2 + 16 − U
�

). After neglecting the higher-excitation term e−i4�t in Eq. (D1), the approximated
dimer Vxc in the main text [Eq. (60)] is obtained.
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