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Strongly interacting two-dimensional electron systems:
Evidence for enhanced one-dimensional edge-channel coupling
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We observe nearly vanishing Hall resistances for integer filling factors in a counterflow experiment on a
density-balanced two-dimensional (2D) bilayer system. Filling-factor-dependent equilibration lengths demon-
strate enhanced 1D coupling via edge channels. Due to the narrow barrier the edge modes of the two 2D electron
gases are in close proximity allowing for exciton formation at the sample edges. Electron drag measurements
confirm the observed quantum-state-selective coupling between the layers.
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I. INTRODUCTION

Semiconductor heterostructures formed by aluminium
(Al), gallium (Ga), and arsenic (As) have outstanding material
properties for the growth of high-mobility bilayers of two-
dimensional electron gases (2DEGs) in close proximity. The
bilayer coupling depends on the ratio between the intralayer
and interlayer Coulomb forces, governed by the electron den-
sity and the center-to-center quantum well (QW) separation
[1]. In addition, the Coulomb gap suppresses the tunneling
of electrons between the layers for increasing perpendic-
ular magnetic fields [2]. The interaction between adjacent
two-dimensional (2D) charge layers leads to a multitude of
phenomena. In zero magnetic field, the electron tunneling
between similar 2DEGs shows a conductance resonance at
equal densities and zero interlayer bias due to momentum
and energy conservation [3–5]. In high magnetic fields where
the energy levels of the charges are quantized in Landau
levels (LLs), a charge condensate state can be observed if
the sum of the LL fillings of the adjacent layers equals 1.
In this case, vanishing Hall and longitudinal resistances in a
counterflow (CF) experiment as well as quantized Coulomb
drag are signatures of an exciton condensate [6–8]. The latter
is made up of filled and empty electron states showing a
BCS-like behavior interpreted as condensation of 2D excitons
[9–14]. Dissipationless flow of the exciton condensate and the
Josephson effect between the layers have been observed [15].

Similarly, we here present filling-factor-dependent vanish-
ing Hall resistances in a CF experiment and nearly quantized
Coulomb drag resistances for integer filling factors on a
balanced-density 2DEG bilayer system in a strongly interact-
ing regime. This filling-factor-dependent enhanced coupling
is observed for single-layer filling factors ν � 2. However, for
integer filling factors the bulk of the 2DEG is in a localized
state where the transport takes place in edge modes only.
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The vanishing Hall resistances originate from equilibration of
these edge modes at the edge of the sample through electron
tunneling, rather than a correlated bulk phenomena reported
on previously. This electron tunneling picture is consistent
with our computed equilibration lengths between the edge
channels of the two 2DEGs, which are strongly filling factor
dependent. Our device distinguishes itself from the preceding
reported research by exhibiting higher electron mobilities and
enlarged tunneling coupling due to the 6-nm-thick barrier
between the layers. Using ion-implanted back gates, we are
able to measure both layers independently.

II. DEVICE FABRICATION AND CHARACTERIZATION

We establish patterned back gates by photolithography
and oxygen ion implantation on a metal-organic chemical
vapor deposition (MOCVD) prepared GaAs wafer [16]. Sub-
sequently, the implanted wafer is overgrown by molecular
beam epitaxy with an AlGaAs-GaAs heterostructure, featur-
ing two GaAs QWs of 18.7 nm width and an Al0.8Ga0.2As
barrier of 6 nm [16,17]. The QWs are remotely doped with
silicon, enabling mobilities of 2 × 106 cm2 V−1 s−1 in each
QW at a single-layer density of 0.92 × 1011 cm−2.

A Hall bar of 1250 µm length and 200 µm width is pho-
tolithographically processed, as shown in Fig. 1. We use
ion-implanted pinch-off back gates and metallic top pinch-
off gates to contact the 2DEGs separately [17]. Global top
and back gates are used to tune the upper and lower 2DEG
densities, respectively.

By applying a sufficient negative back gate voltage the bot-
tom 2DEG can be depleted of its charge carriers. Thereby, the
top 2DEG’s transport characteristics can be probed as a single
layer. The density of the top layer predominantly depends on
the top gate voltage and is independent of the lower 2DEG
density. Analogously, the top 2DEG can be depleted, and the
bottom QW can be characterized, as seen in Fig. 2(a). Typical
quantum Hall resistances featuring plateaus at fractions of the
von Klitzing constant are obtained [18], while the longitudinal
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FIG. 1. Schematic of the bilayered Hall bars with contact labels.

resistance vanishes at integer fillings. Using this single-layer
characterization technique, the gate voltages to balance the
2DEG densities can be determined.

By applying Fourier transform analysis to the Shubnikov–
de Haas (SdH) oscillations the energy splitting �SAS between
the symmetric and antisymmetric wave functions can be

determined [19], which for our sample yields a value of
�SAS ≈ 160 µeV (see Supplemental Material [20]).

The zero-bias tunneling conductivity can be determined
by a differential conductance measurement. The zero-field
conductivity is the largest and decreases strongly with applied
perpendicular magnetic field, ranging from 19 mS at low field
to below 1 mS at high field [20].

III. COUNTERFLOW AND DRAG EXPERIMENTS

In our CF experiment a current of 1 nA is fed into the
top 2DEG (contact T6) and is drawn from the bottom 2DEG
(contact B6). A wire connects the far end of the two Hall bars
(contacts T3 and B3). The gates are adjusted such that both
2DEGs have the same density of 0.92 × 1011 cm−2.

For a CF experiment with completely uncoupled QWs,
one would expect the Hall resistivities in the individual lay-
ers to coincide with those traditionally observed in a single
layer. If, however, the QWs are strongly coupled, meaning
that charges can be exchanged readily, then the Hall voltages
would compensate each other to zero. The coupling between
the two layers and, in turn, the tunneling conductivity depend
on the center-to-center QW distance, the barrier width, and

(a) (b)

(c) (d)

FIG. 2. (a) Individually recorded Hall and longitudinal resistances for the top and bottom 2DEGs. (b) The Hall resistances for both layers
in the CF experiment nearly vanish for the same integer fillings. For higher magnetic fields the CF Hall resistance increases. Inset: CF Hall
resistances for small fields. (c) The CF longitudinal resistance is asymmetric in magnetic field. The resistances on the same side of the Hall
bar are alike. (d) Drag experiment: The Hall resistance of the current-carrying top layer roughly follows the single-layer Hall resistance trace.
Minima occur at integer filling factors where the drag resistance in the bottom layer features a maximum. The drag resistance does not have a
maximum at ν = 1.
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the applied magnetic field. In our sample the tunneling area
of 0.25 mm2 results in a tunneling conductivity as high as
19 mS for small perpendicular magnetic fields and lower for
higher fields. Hence, for a CF Hall resistance at small fields,
a strongly reduced Hall resistance due to electron tunneling
is expected. For high magnetic fields where the Coulomb gap
suppresses tunneling, a resistance closer to the single-layer
resistance has to be anticipated. For our CF Hall resistance
measurement we measured the Hall resistance in both layers
simultaneously between contacts T2 and T4 and contacts B2
and B4. In Fig. 2(b) the CF Hall resistances are compared with
the single-layer Hall resistance with labeled integer filling
factors. We record Hall resistances remaining below 100 �

for magnetic fields up to 0.2 T. From 0.2 T on until 2.2 T the
Hall resistance increases and features filling-factor-dependent
minima smaller than 270 �. For filling factors lower than
ν < 2 the CF Hall resistance does no longer nearly vanish.

Longitudinal resistance voltage measurements for the CF
experiment display a pronounced magnetic field sign depen-
dence, as seen in Fig. 2(c). Either the longitudinal resistance
increases with magnetic field as 1/B periodic SdH oscillations
or it is nearly zero depending on the sign of the magnetic
field. The longitudinal resistance near zero field (0 ± 0.2 T)
is roughly 25 �, which is smaller than the corresponding
single-layer longitudinal resistance. This indicates that a large
portion of the current tunnels between the 2DEGs for such
small fields. In this magnetic field range the experiment does
not resemble a CF experiment.

Similarly to the longitudinal resistance, the interlayer volt-
age features a strong magnetic-field-dependent asymmetry, as
seen in Fig. 3(a). The interlayer voltage is composed of either
twice the Hall voltage or zero voltage. Whether the voltage
is zero or corresponds to twice the Hall voltage depends on
the side of the Hall bar. For nonzero potentials the voltage
difference follows the same oscillatory maxima and minima as
the Hall resistance. Comparing the interlayer voltages on the
same side shows that for contacts closer to the current driving
(contact T6) and the ground lead (contact B6) a larger voltage
is measured.

The magnitude of the coupling between the two layers
leads to a Coulomb drag response [8]. For our drag experiment
a constant drive current of 1 nA is passed through the top
2DEG from contact T6 to contact T3, and we measure the Hall
resistance in both layers (contacts T2 and T4 and contacts B2
and B4). In Fig. 2(d) we compare the single-layer Hall resis-
tance of the current-carrying top layer and the drag resistance
in the lower 2DEG. The top layer follows the single-layer
trace. At integer fillings the resistance drops substantially. For
the electron-populated but nondriven bottom layer the Hall
resistance also increases with magnetic field, with distinctive
maxima at integer filling factors. The relative magnitude of
the resistance of the bottom layer compared with the top layer
indicates the coupling strength between the layers. The loca-
tions of the maxima coincide with the minima of the vanishing
Hall resistances measured in the CF experiment.

IV. EQUILIBRATING EDGE CHANNELS

Condensation of the 2DEGs’ density of states for a per-
pendicular magnetic field into LLs can be described by the

(a)

(b)

(d)

(c)

FIG. 3. (a) Interlayer voltages are strongly asymmetric. For the
nonvanishing side, the interlayer voltage is twice the Hall voltage.
The interlayer voltage features the same minima as the Hall voltage.
(b) Calculated equilibration length leq using the interlayer voltages
from one side of the sample are depicted. The equilibration lengths
for two fillings, ν = 3 and ν = 3.5, are circled. (c) Using the circled
equilibration lengths, 0.36 mm and 1.3 mm potentials for the top and
the bottom edge channels are computed. (d) Simplified schematic of
the Hall bar-shaped edge modes for a CF experiment.

Büttiker 1D edge-channel picture [21]. When the bulk of
the sample is in an insulating gapped state, corresponding to
the Fermi level being between two LLs, only the chiral edge
modes carry current. An applied bias offsets the Fermi levels
slightly and leads to a net current. In this situation the electron
density is increased on one side of the sample and lowered on
the other. The density reduction is equivalent to a population
with holes.

In the special case of a CF experiment, the electron density
increase in the top layer is situated above the augmented hole
population in the bottom layer, as illustrated in Fig. 3(d). This
applies for both sides of the Hall bar. As the excitonic binding
energy of electrons and holes in one dimension is strongly
enhanced in contrast to its counterpart for bulk 2D excitons
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[22,23], we also expect increased tunneling between the 1D
edge channels.

Figure 2(b) shows that the Hall resistance nearly vanishes
in both layers for an insulating bulk. For the Hall resistance
to vanish, the potentials across the Hall bars must be equal.
This charge balancing cannot take place in the insulating bulk
of the sample. In addition, the recorded interlayer voltage is
minimal for the same filling factors ν as the Hall resistance.
Therefore the potentials are nearly the same in both 2DEGs.
The Coulomb gap suppresses electron tunneling in the bulk
leaving the equilibration of the potentials to the edges. We
suggest that the equilibration of the edge modes at integer
filling factors leads to the almost complete vanishing of the
Hall resistances observed in the CF experiment.

Equilibration between the edge modes is established by
electron tunneling. A shorter equilibration length relates to
an increased coupling between the two 2DEGs. In Fig. 2(d)
the drag resistance features distinctive maxima for integer fill-
ing factors ν � 2 where the current-driven top 2DEG shows
minima. The increase (decrease) in Hall voltage is caused by
an increased (decreased) current in the bottom (top) 2DEG
caused by electron tunneling. We suspect that tunneling oc-
curs predominantly between edge channels, where occupied
conduction band states are positioned above unoccupied states
in close proximity. The electrons in the bulk are localized, and
there are no unoccupied states. The highest tunneling coupling
is achieved at integer filling factors.

V. CALCULATING THE EQUILIBRATION LENGTH

Equilibration between adjacent edge modes by tunneling
has been discussed before [24]. Coupled differential rate equa-
tions yield an equation for the potential difference between the
channels

μ1(x) − μ2(x) = e−γ x[μ1(0) − μ2(0)], (1)

where γ is the equilibration rate describing the electron tun-
neling probability per length. The characteristic equilibration
length is then defined by leq = 1/γ .

For our bilayer system the left-hand side of Eq. (1) is the
measured interlayer voltage at a distance x. The right-hand
side is the initially applied bias times an exponential decay
factor depending on the length of copropagation of the edge
channels. We use Eq. (1) and the measured interlayer voltages
between contacts T1 and B1 and between contacts T2 and B2
from Fig. 3(a) to calculate the equilibration length in our CF
experiment. The distance between contact T1 and contact T2
is approximately equal to 650 µm. The equilibration lengths
are plotted in Fig. 3(b). Using the equilibration lengths of
360 and 1300 µm, normalized edge potentials were calculated
with Eq. (1) and are depicted in Fig. 3(c). The exponen-
tial decay (increase) of the potential along the top (bottom)
edge represents a consistent description of the measured CF
voltages. From Fig. 3(c) the interlayer voltage is directly ob-
tained by choosing a distance from the origin and taking the
difference between the top and bottom potentials. The Hall
voltage is determined by taking the difference between the
computed potential and half of the applied voltage. Finally, the
longitudinal voltage is obtained by computing the potential
drop between two points on the x axis.

From the computed edge-channel potentials of Fig. 3(c)
the asymmetric behavior of the interlayer voltages and the
longitudinal resistances becomes evident. The edge modes on
one side of the sample have equilibrated to half of the applied
potential. Hence the longitudinal voltage and the interlayer
voltage are minimal on that side. With a change in chirality
the opposing side of the Hall bar then measures zero-potential
difference. The nearly vanishing Hall resistance is a conse-
quence of the decreased equilibration length between the edge
modes.

As described before, exciton formation between the 1D
edge channels can be responsible for an enhanced coupling
at integer filling factors and an almost complete vanishing
of the Hall, longitudinal, and interlayer voltages. Since for
completely filled LLs, where the bulk is insulating, electronic
transport exclusively takes place along the sample edges, 1D
exciton formation there has the strongest effect on tunneling.

Strikingly, our picture does not apply to the filling factor
ν = 1. The spin-polarized filling factor ν = 1 is different.
Around ν = 1, skyrmionic ground states consisting of charged
spin textures affect the tunneling between the layers leading to
an increase in equilibration length [25,26]. As seen in Fig. 2(b)
the Hall resistance does not vanish at filling factor ν = 1.
The plateaus at fractions of the von Klitzing constant are
present and less pristine. The curve seems to be shifted by
the magnetic field corresponding to the filling of ν = 2. The
drag resistance in Fig. 2(d) shows no maxima at filling factor
ν = 1; this is compliant with the nonvanishing Hall voltage.
The coupling between the two layers remains low for fillings
ν < 2. Additionally, the longitudinal resistance partly loses
its asymmetry for ν < 2. Therefore the edge channels do not
equilibrate, which is consistent with a longitudinal resistance
measured on both sides of the Hall bar. Tunneling experiments
for fillings below ν < 2 must, thus, be described differently.

Finally, we do not expect to observe a bulk Bose-Einstein
condensate (BEC) with vanishing Hall voltages at filling ν =
1/2 in our counterflow measurement. For our sample the ratio
�SAS/(e2/(4πεε0lB)) is approximately equal to 12.6e−3. The
condition for a BEC to form in this case is d/lB < 2, which is
substantially smaller than our value of 2.65 at 8 T (ν = 1/2).

VI. CONCLUSIONS

In conclusion, we widen the observable parameter space
by investigating a high-mobility sample with a 6-nm barrier
and independent contacts to each layer. In our CF exper-
iment we explore the transition between strong and weak
couplings of the QWs, where potential equalization takes
place through tunneling between the chiral edge modes of
the QWs. We observe nearly vanishing Hall resistances at
integer filling factors ν > 1. We trace the selectiveness of the
equilibration to the enhanced tunneling coupling at filled LLs,
which corresponds to a merging of occupied and unoccupied
electron states in close proximity at the edge. The increased
coupling originates from the excitonic binding between the
electrons and holes in the one-dimensional edge modes. With
the currently realized sample design allowing for independent
contacts to strongly coupled bilayer systems, investigations
into couplings between different filling factors or fractional
edge modes become feasible.
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