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We investigate twisted bilayer graphene (TBG) at filling ν = −3 in the presence of realistic heterostrain. Strain
amplifies the band dispersion and drives the system beyond the strong-coupling regime of previous theoretical
studies. We use DMRG to conduct an unbiased, large-scale numerical calculations that include all spin and
valley degrees of freedom, up to bond dimension χ = 24 576. We establish a global phase diagram that unifies
a number of theoretical and experimental results. Near zero strain we find an intervalley-coherent quantized
anomalous Hall (QAH-IVC) state, a competitive strong-coupling order that evaded past numerical studies. A
tiny strain around 0.05% drives a transition into an incommensurate Kekulé spiral (IKS) phase, supporting the
mean-field prediction in [Kwan et al., Phys. Rev. X 11, 041063 (2021)]. Even higher strains above 0.2% favor a
flavor-symmetric metallic order, which may explain metals found at ν = −3 in many experiments.

DOI: 10.1103/PhysRevB.108.235128

In recent years, the nature of strongly correlated states in
magic-angle twisted bilayer graphene (TBG), in particular
at integer fillings ν ∈ (−4,+4), has been the center of ex-
perimental investigations. However, consensus on the ground
state order has still not been achieved. Comparing numerous
experimental reports [1–14] (see also Appendix A in the Sup-
plemental Material [15]) reveals a persistent puzzle: Although
these reports reach consensus at all even fillings ν = 0,±2
and one odd filling ν = +3, all identified as correlated in-
sulators, results at other fillings remain inconsistent. This is
particularly acute at filling ν = −3, where metals, insulators,
and even superconductors have all been observed. Such a
rich phenomenology hints at a subtle competition between
orders—a mystery that must be unravelled to understand the
proximate superconductor phase between −3 � ν � −2.

Theoretically, ground-state studies of TBG have primarily
taken a strong-coupling approach [16–19], wherein the small
dispersion of the flat band is treated perturbatively on top
of the Coulomb interaction. The resulting possible phases at
ν = −3 include quantum anomalous Hall (QAH) ferromag-
nets [18] and charge-density-wave insulators [20,21], which
are supported numerically from self-consistent Hartree-Fock
(SCHF) [21–26], density renormalization group (DMRG)
[20] and exact diagonalization (ED) [27,28]. However, these
approaches neglect a crucial facet of realistic TBG devices:
heterostrain. Heterostrain [29–34] is a mismatch in the strains
of the two graphene layers, with typical experimental values
in the range 0.03–0.7% [35–39]. This seemingly insignifi-
cant amount of heterostrain amplifies the kinetic energy of
the flat bands enormously, boosting their bandwidth to the

same order as the interaction scale [Fig. 1(b)]. In this realistic
intermediate coupling regime, a chief phase candidate is the
“incommensurate Kekulé spiral” (IKS) phase, identified at
mean-field level in [24,40].

Connecting these proposals to experiment requires an unbi-
ased solution of the many-body problem at ν = −3. SCHF, for
instance, can be biased toward insulating states [41] (which
could explain its failure to find metallic states at |ν| = 3).
On the other hand, the large number of degrees of freedom
makes ED or DMRG computationally demanding. The largest
ED on unstrained TBG has at most 3 × 3 unit cells at |ν| =
3 when keeping valley and spin degrees of freedom. But
such small systems may be biased when trying to capture an
incommensurate state such as the IKS. Similarly, DMRG cal-
culations performed on MATBG to date assume valley/spin
polarization to reduce computational cost [20,31,42], ex-
cluding several promising ground state candidates. Quantum
Monte Carlo suffers from a sign problem away from ν = 0,
making it impractical [43,44]. It is therefore imperative to
perform full-scale DMRG studies with all flavors of elec-
trons to resolve the competition among all ground state
candidates.

In this work, we perform eight-flavor DMRG to estab-
lish the ground state phase diagram of TBG at |ν| = 3 with
heterostrain εGr. We find a phase diagram, summarized in
Fig. 1(c), that unified all previous phase candidates. The key
results are fourfold.

(i) The ground state at vanishing strain carries spin-
polarized QAH order with intervalley coherence (QAH-IVC),
which is nearly degenerate with the valley-polarized variant
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FIG. 1. (a) Moiré pattern from two graphene lattices with 1◦

relative twist and εGr = 0.5% uniaxial heterostrain. Strain is am-
plified at the superlattice scale, significantly distorting the moire
unit cell. (b) Noninteracting bandstructure of TBG with εGr = 0.3%
heterostrain. Heterostrain shifts the Dirac nodes D1,2 close to the �

point (inset). (c) Phase diagram of TBG at |ν| = 3 obtained from
DMRG up to bond dimension χ = 24 576. The phase transitions
are identified with their characteristic order parameters: Chern band
polarization OQAH, ferromagnetic order magnitude �FM, intervalley
coherence wave vector qIVC, and deviation of valley-summed elec-
tron density from uniform filling δN (qIVC) (see main text for the
definition). (d) Valley-nested DMRG electron occupations of the first
Brillouin zone in the IKS phase (parameters match Fig. 2, Ly = 6).
The relative shift qIKS makes the total occupations uniform while �

is depleted in both valleys.

(QAH-VP) identified in past studies. We expect electron-
phonon coupling (EPC) observed in recent experiments [45]
to favor QAH-IVC.

(ii) Low strain stabilizes the spin-polarized IKS state, re-
inforcing the recent prediction from the mean-field study [24]
to a much more robust level.

(iii) Intermediate strain drives a transition from
flavor-polarized IKS to fully-symmetric Fermi liquid
(FL), with close energy competition in their crossover
region.

(iv) There is a large low-energy manifold of “�-depleted”
orders—states where the electron occupation is low in the
vicinity of the � point. The IKS phase is one such order,
but others such as commensurate spin spirals (CSS) appear
as close competitors.

Our study highlights the complex competition between a
large manifold of distinct orders and selects the global ground
state of TBG at ν = 3 among various proposals. Equipped
with this unbiased prediction from DMRG, we conclude with

concrete near-term experiments that would confirm these pre-
dictions.

I. MODEL AND HETEROSTRAIN

We use a standard Bistrizer-MacDonald (BM) model [46]
of TBG at twist angle θ = 1.08◦, and add realistic heteros-
train [30] and strong Coulomb interactions. We take chiral
ratio κ = wAA/wAB = 0.65, where wAA/AB are interlayer
tunneling strengths for different sublattices, in the realistic
range 0.5–0.8 to account for some lattice relaxation [47–49].
Heterostrain modifies the Hamiltonian as an effective layer-
dependent vector potential −i∇ → −i∇ + A
 [30,47,50–59]:

A
 = −


2

β
√

3

2a
(εxx − εyy,−2εxy), (1)

and also distort lattice vectors ai [and reciprocal vectors gi )]
such that C3z and C2x are strongly broken, while C2z and time-
reversal are preserved [30].

Figure 1(b) shows the band structure for a single valley
and spin in the presence of strain. Crucially, even subpercent
level of heterostrain can dramatically increase the flat band
dispersion of TBG as much as tenfold. The reason graphene-
scale heterostrain εGr has such a large effect is that the strain
εmoiré it produces on the moiré superlattice is amplified by a
factor of inverse twist angle 1/θ ∼ 100 (see Appendix B of
the Supplemental Material [15]):

εmoiré ∝ εGr

θ
. (2)

Quantitatively, the narrow bands of TBG have bandwidth of
2.5 meV without heterostrain, which increases to 16 meV at
εGr = 0.2% and 40 meV by εGr = 0.5%—comparable to the
Coulomb scale of 30–50meV. Heterostrain is therefore an ex-
perimental parameter of paramount importance to accurately
determine the ground state phase diagram of TBG.

We consider interacting physics within the eight narrow
(“flat”) bands of TBG. A complete description of the model
is given in Appendix C of the Supplemental Material [15].
We use a Chern or “maximally sublattice polarized” [18]
basis ĉ†

kστ s where (σ, τ, s) = (A/B, K/K ′,↑/↓) label sub-
lattice, valley, and spin. These bands have Chern number
C = στ . Below we will use corresponding Pauli matrices
σμ, τμ, and sμ. The Hamiltonian is

Ĥ =
∑

k

ĉ†
khkĉk + 1

2

∑
q

Vq : ρ̂qρ̂−q :, (3)

where ρ̂q is the (8 × 8 component) flat band density operator
at momentum q and Vq is the double gate-screened Coulomb
interaction, normal ordered relative to the background. As
usual, the dispersion hk is the BM part minus a correction
to avoid double-counting Coulomb interactions [18,42]. The
model studied here has approximate particle-hole symmetry
[24], so ground states at ν = −3 and 3 are nearly identical;
we take ν = −3.

Our DMRG calculations are performed on an infinite cylin-
der geometry with a circumference of Ly moiré unit cells.
We choose a computational “cylinder” basis ĉn,ky,σ τ s of hybrid
Wannier orbitals that are maximally (exponentially) localized
at the nth unit cell along the cylinder axis, but have definite
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momentum ky around the cylinder [20,42,60]. Fourier trans-
formed, our model captures Ly line cuts through the moiré
Brillouin zone at ky = 2πm

Ly
, −Ly � 2m < Ly. The long-range

interactions in the Hamiltonian, encoded as matrix prod-
uct operators (MPO) in DMRG, are faithfully compressed
[42,61] to accuracy <10−2 meV at all distances. Our simu-
lations required significant numerical resources. The Ly = 4
Hamiltonian has MPO bond dimension χMPO ≈ 2000, and
we consider states up to bond dimension χ = 24 576. Our
algorithm conserves electron occupation in each spin and
valley (U (1)↑K × U (1)↓K × U (1)↑K ′ × U (1)↓K ′) as well as
crystalline momentum along the circumference of the cylin-
der. We focus on the spin/valley unpolarized (τ z, sz ) = (0, 0)
sector with zero crystalline momentum. See Appendix D of
the Supplemental Material [15] for details. Each unit cell
on our cylinder consists of Ly × 8 orbitals (already beyond
normal exact diagonalization), and each datapoint requires
∼ 40 000 core hours.

II. VANISHING STRAIN: QAH-IVC ORDER

We start near zero strain, where strong coupling theories
[18,19] predict a ground state with quantized anomalous Hall
order. Previous numerical studies [21–28] have singled out
QAH states with spin and valley polarization (QAH-VP),
even when allowing UV (1) symmetry breaking. If we assume
valley-polarization, DMRG recapitulates this finding. How-
ever, our treatment of all eight flavors allows us to drop this
assumption. With total spin and valley charge zero, we find
a new ground state candidate: a QAH insulator with interval-
ley coherent order (QAH-IVC). We briefly detail these states
to introduce our method and notation, then consider larger
strains.

QAH states have a time-reversal breaking order parameter

OQAH = 1

Nk

∑
k

〈ĉ†
kσ

zτ zĉk〉 (4)

that measures the polarization of the Chern bands. Despite
their similar names, QAH-VP and QAH-IVC have unequal
flavor polarizations, and hence, strikingly different charge
density patterns at the graphene scale. These orders are adi-
abatically connected to “model” Slater determinant states
specified by correlation matrices Pαβ (k) = 〈ĉ†

k,β
ĉk,α〉. Explic-

itly, the “model” QAH-VP state at ν = −3 has OQAH = 1:

PQAH−VP(k) =
(

1 + σ zτ z

2

)(
1 + τ z

2

)(
1 + sz

2

)
, (5)

with flavor polarization (τ z, sz ) = (1, 1). By contrast, the
“model” QAH-IVC state with spin along x is

PQAH−IVC =
(

1 + σ zτ z

2

)(
1 + σ xτ x

2

)(
1 + sx

2

)
, (6)

with zero flavor polarization (τ z, sz ) = (0, 0). This state also
has OQAH = 1.

Figure 1(c) shows OQAH versus εGr in the (0,0) sector. At
εGr ≈ 0, we find OQAH ≈ 0.87 (slightly depolarized due to
band hybridization), signaling QAH order before an abrupt
transition at εGr ≈ 0.05%. To confirm this as QAH-IVC order,
we define intervalley coherent (IVC) and ferromagnetic (FM)

order parameters (used repeatedly below):

�̂IVC =
∑

k

ĉ†
kσ

xτ+ĉk, �̂FM =
∑

k

ĉ†
ks+ĉk. (7)

As these two-electron operators are off diagonal in the con-
served quantities τ z/sz, they identically vanish; we must
instead measure a four-electron correlator of their Fourier
transform (Appendix D of the Supplemental Material [15] for
details and the relation to Hohenberg-Mermin-Wagner theo-
rem). Explicitly, for

�̂FM(n) =
∑

ky

ĉ†
n,ky

s+ĉn,ky (8)

we consider

CFM(n) = 〈�̂FM(0)�̂†
FM(n)〉 , �FM ≡

∑
n

|CFM(n)|, (9)

and define CIVC, �IVC analogously. Since �FM/IVC captures
how fast CFM/IVC decays, a large �FM/IVC quantitatively
distinguishes long-range FM/IVC ordering from other short-
range phases with smaller �FM/IVC. (We provide more precise
distinctions in Appendixes E and G in the Supplemental Ma-
terial).

Figure 1(c) shows �FM ≈ 1 at εGr = 0% and we find �IVC

is also large, confirming QAH-IVC order in the (τ z, sz ) =
(0, 0) sector at vanishing strain. Appendix F1 in Supplemen-
tal Material [15] examines the valley-polarized sector (1,1),
finding QAH-VP order. These two QAH states are nearly
degenerate, with QAH-VP lower by 0.1 meV per electron
at εGr = 0%—two orders of magnitude below the Coulomb
scale. This near degeneracy is due to the proximity of our
system to the “chiral limit” [62], where these QAH states are
related by an emergent U (4)± symmetry [18]. Following the
analysis of Ref. [63], the electron-phonon coupling will split
the degeneracy in favor of the QAH-IVC state. Our results so
far match strong coupling theory, but strains of only 0.05%
change the picture entirely.

III. LOW STRAIN: IKS ORDER

At low strains εGr = 0.05 − 0.1% we now show the ground
state has an incommensurate valley spiral order and identify
the phase as the incommensurate Kekulé spiral (IKS) [24].
Previous work on this phase was limited to mean-field level,
leaving open the reasonable scenario that this incommensurate
order is destroyed by strong fluctuations. Our key result here
is that IKS is indeed stable to fluctuations—partially due to its
“�-depletion” property, as we explain below—making it the
many-body ground state at intermediate strain.

We briefly overview the IKS phase and then provide
numerical results. IKS order breaks both moiré translation
symmetry T̂a1,2 as well as U (1)valley = eiθvτ

z
symmetry down

to a combined symmetry

T̂ IKS
ai

= T̂ai e
iqIKS·aiτ

z/2. (10)

This produces an incommensurate real space spiral of the
order parameter: θv (r + ai ) = θv (r) + ai · qIKS, observable in
STM as a slowly changing Kekulé order between unit cells
[39,64]. At ν = −3, the IKS phase is an insulator with ferro-
magnetic and intervalley coherent order, similar to QAH-IVC.
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FIG. 2. IKS at εGr = 0.05%. (a), (b) Valley-resolved electron density of TBG at ν = −3. Dashed hexagons denote the first Brillouin zone,
and the dot in the middle is the � point. (c) Total electron density NqIKS

(k) in Eq. (12), after a relative boost by qIKS, whereupon the density
becomes uniform. (d) Fourier transform of the IKS correlation function. The peak at q ≈ 0.80π matches qIKS · a1 from (c). (e) Scaling analysis
of correlation lengths of several order parameters, showing that IVC and FM dominate at large bond dimensions χ > 16 384.

Unlike QAH-IVC, IKS order preserves time-reversal symme-
try (so OQAH = 0) and has intervalley coherence only at wave
vector qIKS, condensing

�̂IKS =
∑

k

ĉ†
k+qIKS

σ xτ xĉk. (11)

A “model” correlation matrix for IKS order must reflect �̂IKS

via coherence between the two valleys at k and k + qIKS.
We now show these distinctive features of IKS order in

DMRG. Figures 2(a) and 2(b) shows the electron density
nK/K′ (k) for each valley. The valleys are related by time-
reversal symmetry nK(k) = nK′ (−k). The region near � is
depleted in both valleys; we comment below why this crucial
feature minimizes the energy of IKS. Remarkably, a shift
by qIKS = 0.40g1 + 0.25g2 reveals a nearly uniform electron
density as shown in Fig. 2(c):

NqIKS
(k) = nK(k) + nK′ (k − qIKS) ≈ 1, (12)

consistent with a “model” correlation matrix for the IKS insu-
lator PIKS ∼ 〈ĉ†

k+qIKS
σμτ xĉk〉 with uniform filling. To examine

this quantitatively, we compute qIVC that minimizes

δN (�q) = max
k

|nK(k) + nK′ (k − �q) − 1| (13)

and plot it in Fig. 1(c). We find δN is small while |qIVC| is
large, consistent with IKS order.

Next, we directly analyze the IVC and FM orders within
the IKS phase, providing another determination of qIKS. Fig-
ure 1(c) shows FM order �FM is the same order of magnitude
as in the QAH-IVC phase. The IVC order, on the other hand,
needs to be generalized with translation breaking to capture
IKS:

�IKS(n; qy) =
∑

ky

ĉ†
n,ky+qy

σ xτ+ĉn,ky . (14)

In this way, the corresponding correlator CIKS(n; qy) will show
the phase spiral at wave vector qIKS:

Arg
[
CIKS

(
n; qy = qy

IKS

)] ∼ (qIKS · a1)n. (15)

In Fig. 2(d) we show the Fourier transform of CIKS(n; qy) with
the expected qy

IKS = 0.25|g2|: C̃IKS(q) = F[CIKS(n; qy
IKS)],

which indeed exhibits a sharp peak at q = qIKS ·
a1/2π ≈ 0.40. This suggests that qIKS = 0.40g1 + 0.25g2,

which is consistent with that determined from the electron
occupation.

Finally, we establish (quasi-)long-range order correspond-
ing to IVC and FM order parameters. To do so, we extract
the correlation length ξFM/IVC from the long distance be-
havior of the correlator |CFM,IKS(n)| ≈ e−n/ξFM,IKS . If the state
has(quasi-)long-range order, ξ should diverge with the DMRG
bond dimension χ . In Fig. 2(e), we plot the correlation length
ξ corresponding to various operators, and observe that ξFM/IKS

indeed sharply increases with χ . On the other hand, correla-
tion lengths for operators with no long-range order, such as
�̂1e ∼ ĉk, �̂0e ∼ ĉ†

kĉk′ , do not increase with χ . We conclude
that, even in the presence of fluctuations, the many-body
ground state at low strains is the IKS phase.

IV. INTERMEDIATE STRAIN: FERMI LIQUID

At yet-higher strains, the increasingly large dispersion ren-
ders IKS less favorable than a conventional Fermi liquid
(FL). The Fermi liquid is the “normal” state with a fully
symmetric occupation in each valley and spin that partially
fills the (interaction-renormalized) band structure. This is the
state found in DMRG at εGr = 0.2%. On the other hand, the
ground states at lower strains show a “mixed” order with
both metallic and flavor-polarized features, highlighting the
close competition of different orders at the IKS-FL crossover
region.

Figures 1(c) and 3 show the key features of the FL phase
at εGr = 0.2%. Unlike IKS, the electron density nK/K′ (k)
shown in Figs. 3(a) and 3(b) is concentrated into a few
small pockets that cannot be nested into close-to-uniform
filling, with δN (q0) ≈ 0.4 even at the minimizing wave vec-
tor q0. Moreover, these pockets are reminiscent of Fermi
surfaces of metallic states, which closely match those ob-
tained from symmetry-enforced SCHF as shown in Fig. 3(c).
A closer look at momentum wire ky = π/2 is displayed in
Fig. 3(d): although no sharp Fermi surfaces are observed due
to the quasi-1D geometry, the DMRG state does manifest
drops/increases of n(k) where the Fermi surfaces are ex-
pected from SCHF. n(k) �= 0, 1 in DMRG are expected from a
combination of finite bond dimension and nonunity quasipar-
ticle weight. Finally, both IVC and FM orders are small in
the ground state compared to the IKS phase, suggesting the
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FIG. 3. FL at εGr = 0.2%. (a), (b) Spin-up electron density in K (′)

valley, plotted similarly to Fig. 2. The spin-down sector is related by
the spin-flip symmetry sx and shows identical occupations. Dotted
lines in (a) circled the Fermi surfaces predicted from fully symmetric
SCHF. (c) Energy E (k) of the partially occupied band from SCHF.
The electron only occupies the regions circled in solid lines, forming
sharp Fermi surfaces. (d) The DMRG electron occupations in (K,↑)
sector along the ky = π

2 wire at various bond dimensions, where the
filled/emptied regions closely matches that of SCHF (dashed lines).

absence of flavor order. Therefore, we conclude that ν = −3
ground state at εGr = 0.2% is consistent with a symmetric
Fermi liquid in 2D.

For εGr = 0.1 − 0.15% [Fig. 1(c), shaded region], DMRG
is inconclusive about the nature of the state. These states
exhibit features of both the FL state, such as large variations
in n(k), and small FM and IVC order. However, the state also
shows a spin density wave not present in either the FL or IKS
phases (Appendix G3 in the Supplemental Material [15]). We
attribute this to the extremely close competition between FL
and IKS here, not resolved at our largest bond dimensions.

V. STRAIN FAVORS �-DEPLETED STATES

A key conclusion from the previous section is the impor-
tance of the � point: away from zero strain, all DMRG ground
states in (0,0) sector feature electron depletion at � point. The
reason can be understood at the mean-field level even without
symmetry breaking. The combination of the Hartree poten-
tial and strain-induced dispersion creates a sharp peak in the
mean-field bandstructure, Fig. 3(c) (see also Appendix D in
the Supplemental Material [15]). Therefore, any state that oc-
cupies this region incurs a substantial kinetic energy penalty,
favoring �-depleted states. Below we show that this is in
fact a general feature of ground-state competition of TBG:
�-depleted states form a low-energy manifold, wherein an
intricate competition picks out the true ground state.

FIG. 4. (a) DMRG energies in all four sectors as a function of
heterostrain εGr � 0.2%. The (1,0) sector was not computed beyond
εGr = 0.2%, but is expected to be above (0,0) and (0,1) in energy.
(b) The energy of different flavor sectors as a function of χ at
εGr = 0.2%. (c) Electron density per momentum near �: n(k ∼ �) =∑

|k|<1/5|g1| n(k). Parameters match Fig. 2.

In Fig. 4(a), we compare the ground state energy of DMRG
ground state in (0, 0) sector to those in other (τ z, sz ) sectors,
which feature different ground-state orders under enforced
flavor polarization (see Appendix F in the Supplemental Ma-
terial [15] for their phase identification). At vanishing strain
εGr, energy competition is tight between different sectors, as
they all manifest QAH-VP or QAH-IVC. However, at larger
strains there is a clear energy separation between (1, 1) sector
and other sectors, which increases linearly with strain. This is
explained by Fig. 4(c), where all low-energy states share the
�-depleted feature. Meanwhile, the energy difference within
the low-energy manifold is only around 0.3 meV, which is
hardly resolved at the largest bond dimension [Fig. 4(b)].
We speculate that the difficulty of resolving the IKS to FL
transition within DMRG is likely due to this proliferation of
low-energy states.

VI. DISCUSSION AND IMPLICATIONS

Our realistic microscopic model, Eq. (3), has reasonably
neglected a number of effects at the 0.1 meV level, such as
intervalley scattering terms in the Coulomb interaction and
anisotropy [18]. However, there are also a number of possible
phenomena on the 1 meV scale that we have not yet included,
such as lattice relaxation, particle-hole symmetry breaking
[65], and, notably, the electron-phonon coupling (EPC) un-
covered in recent studies [63]. Quantitatively determining the
contribution of each perturbation is crucial to identify the
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accurate phase diagram. For example, it is argued in Ref. [63]
that EPC lowers the energy of intervalley orders by order
of 0.5 meV, which clearly favors QAH-IVC and IKS over
their competitive counterparts. This, in particular, suggests the
Chern insulators found at finite magnetic field [66] may be
connected to QAH-IVC. We leave the implementation of these
perturbations to future work.

Experimentally, our results suggest that the amount of
heterostrain present in virtually all experimental samples is
more than sufficient to push TBG into the intermediate cou-
pling regime. In this regime, our numerics suggest IKS as the
primary insulating ground state candidate at |ν| = 3, which
is consistent with the great majority of experiments (see the
Table in Appendix A in the Supplemental Material [15]) at
ν = 3. (We do note this is specific to samples not aligned to
an hBN substrate; alignment strongly favors the QAH phase
[67,68]). We also suggest FL as a competitive ground-state
candidate at the intermediate-strain region, which might ex-
plain why most experiments find a metallic state near ν = −3
(e.g., selected by particle-hole breaking effects). We also note
that QAH-IVC might be identified in the rare ultralow strain
samples [39].

The predicted phases at |ν| = 3 could be directly confirmed
by atomically resolved STM experiments [64,69]: the IVC
order in QAH-IVC and IKS will result in charge density wave
on the graphene lattice at “Kekulé” wave vector Q = K − K ′,
and the phase spiral of IKS is reflected in the changing pattern
of such charge density wave on the moiré lattice at wave
vector qIKS. We note that both of these phenomena have been

successfully identified in recent STM experiments focusing
on |ν| = 2 [39], confirming the physical relevance of IKS
order.
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