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In conformal field theory (CFT), the four-point correlator is a fundamental object that encodes CFT properties,
constrains CFT structures, and connects to the gravitational scattering amplitude in holography theory. However,
the four-point correlator of CFTs in dimensions higher than two-dimensional remains largely unexplored due to
the lack of nonperturbative tools. In this paper, we introduce a new approach for directly computing four-point
correlators of three-dimensional (3D) CFTs. Our method employs the recently proposed fuzzy (noncommutative)
sphere regularization, and we apply it to the paradigmatic 3D Ising CFT. Specifically, we have computed
three different four-point correlators: 〈σσσσ 〉, 〈σσεε〉, and 〈σσTμνTρη〉. Additionally, we verify the crossing
symmetry of 〈σσσσ 〉, which is a notable property arising from conformal symmetry. Remarkably, the computed
four-point correlators exhibit continuous crossing ratios, showcasing the continuum nature of the fuzzy sphere
regularization scheme. This characteristic renders them highly suitable for future theoretical applications,
enabling further advancements and insights in 3D CFT.
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Conformal field theories (CFTs) are a fascinating class of
quantum field theories with an elegant mathematical structure
and wide-ranging applications, from classical and quantum
phase transitions in condensed matter physics [1,2] to quan-
tum gravity [3]. However, CFTs beyond two-dimensional
(2D) [4] pose theoretical challenges due to their strongly
interacting nature. Developing nonperturbative numerical or
analytical tools to study CFTs in three-dimensional (3D) and
higher dimensions continues to be an ongoing challenge for
various physics communities.

The power and elegance of conformal symmetry are
revealed through the highly constrained correlators of pri-
mary operators in CFTs [5]. Specifically, the two-point
(scalar) correlators are given by 〈φi(x1)φ j (x2)〉 = δi j

x
2	i
12

,

while the three-point (scalar) correlators are expressed as
〈φi(x1)φ j (x2)φk (x3)〉 = fi jk

x
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31

[6]. These

correlators are completely determined up to universal data,
such as scaling dimensions 	i and operator product expansion
coefficients fi jk . In contrast, the four-point correlator will not
be completely fixed. However, by virtue of conformal symme-
try, it can be reduced to a universal function of two variables
that depends on the theory and operators involved, e.g., for
scalars

〈φ(x4)φ(x3)φ(x2)φ(x1)〉 = G(u, v)

x2	
12 x2	

34
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and v = x2
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24
are called crossing ratios.

Importantly, the four-point correlator satisfies crossing sym-
metry, which is obtained by exchanging points in Eq. (1).
For example, x1 ↔ x3 gives u−	G(u, v) = v−	G(v, u). This
crossing equation, also known as the bootstrap equation [7,8],
imposes highly stringent constraints on the conformal data
of CFTs. Solving these equations constitutes the conformal
bootstrap program [7–9]. In general, there is an infinite num-
ber of bootstrap equations due to the vast number of global
conformal primaries, making the analytical implementation of
the conformal bootstrap program a daunting task. However,
the conformal bootstrap program has seen successful applica-
tions in 2D CFTs, thanks to the presence of a larger emergent
local conformal symmetry [4]. Excitingly, recent progress in
3D has demonstrated the ability to obtain strong numerical
constraints from a limited number of 2 ∼ 3 bootstrap equa-
tions. This advancement has notably led to the determination
of world-record precise critical exponents for the 3D Ising
CFT [9].

The four-point correlator plays a central role in the realm
of CFTs. It not only constrains conformal data but also en-
codes these data, which can be extracted using the inversion
formula [10]. Moreover, in the context of the anti—-de Sitter
(AdS)/CFT correspondence [3], the four-point correlator of a
CFT is related to the scattering amplitude of particles in the
dual quantum gravitational theory in AdS spacetime [11,12].
However, little is known about the four-point correlator of 3D
CFTs due to the lack of computational methods [13–15]. For
the paradigmatic 3D Ising CFT, the only nonperturbative com-
putation of the four-point correlator was achieved through an
indirect reconstruction using the conformal block expansion
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based on numerical conformal bootstrap data [16]. In this
Letter, we present a new approach by utilizing the recently
proposed fuzzy (noncommutative) sphere regularization [17],
enabling us to directly compute four-point correlators of the
3D Ising CFT. Specifically, we compute 〈σσσσ 〉, 〈σσεε〉,
and 〈σσTμνTρη〉, with the last one being beyond the state-
of-the-art bootstrap computation. Furthermore, we directly
verify the crossing symmetry of 〈σσσσ 〉 in our computa-
tion. Notably, unlike the traditional lattice regularization, the
fuzzy sphere regularization preserves the continuum nature
even for finite physical volumes. As a result, the four-point
correlator computed using the fuzzy sphere approach is a
continuous function of crossing ratios, making it amenable to
various applications, including the application of the inversion
formula.

I. FUZZY SPHERE REGULARIZATION

The fuzzy sphere regularization scheme [17] involves
studying a continuum strongly interacting quantum mechan-
ical model, where particles (e.g., fermions) reside on the
surface of a two-sphere S2 in the presence of a magnetic
monopole. Specifically, for the 3D Ising CFT, one can study a
2 + 1D transverse Ising model on the sphere with a charge
4πs monopole at the origin. Besides the kinetic energy of
fermions, the system is characterized by a continuous Hamil-
tonian:

∫
R4d�ad�b U (�ab)2n↑(�a)n↓(�b) − h

∫
R2d� nx(�).

(2)

The model consists of spin operators, namely n↑(↓) =
ψ

†
↑(↓)ψ↑(↓) and nα (�) = ψ†(�)σ aψ(�), where ψ†(�) =

(ψ†
↑(�), ψ†

↓(�)) represents the spinful (nonrelativistic) elec-
tron operator, and σ x,y,z are the Pauli matrices. The first
term 4n↑(�a)n↓(�b) = n0(�a)n0(�b) − nz(�a)nz(�b) de-
scribes the Ising-type density-density interaction between
electrons located at spatial points �a = (θa, ϕa) and �b =
(θb, ϕb) on a sphere with a radius R. The interaction term
U (�ab) = g0

R2 δ(�ab) + g1

R4 ∇2δ(�ab) is taken to be a local and
short-ranged interaction, ensuring that the phase transition
is described by a local theory. The second term represents
a transverse field. At the half-filling, the transverse field h
triggers a phase transition from a quantum Hall ferromagnet
[18] with spontaneous Z2 symmetry breaking to a quantum
paramagnet, which falls into the 2 + 1D Ising universality
class.

The emergent conformal symmetry of the transition has
been convincingly demonstrated through radial quantization.
Both the scaling dimensions [17] and the operator product ex-
pansion coefficients [19] of conformal primary operators have
been computed with high accuracy. For a detailed description
of the fuzzy sphere regularization, we refer to Ref. [17]. In
this paper, we will use the same interaction form U (�ab) as
presented in Refs. [17,19]. Additionally, we will reexamine
the critical field strength hc by employing a new quantity,
namely the dimensionless two-point correlator, which will be
described in detail below.

FIG. 1. (a) In spherical coordinates, x1, x2, x3, and x4 are respec-
tively positioned as follows: x1 is located at the origin, x2 is set at
the point (r, θ, ϕ = 0), x3 is positioned at the north pole of the unit
sphere (r = 1, θ = 0, ϕ = 0), and x4 is placed at infinity. (b) The
finite-size scaling of the two-point correlator Gσσ (r = 1, θ = π ) is
shown for different values of h, namely h = 3.155, 3.16, 3.165. The
theoretical value at the critical point is approximately 0.487577,
which is close to the value obtained at h = 3.16. (c) The angle
dependence of the two-point correlator Gσσ (r = 1, θ ) is plotted for
system sizes N = 16 − 40, while (d) shows Gσσ (r = 1.6, θ ) for sys-
tem sizes N = 16−32. The red dashed line represents the theoretical
prediction. The discrepancy is more pronounced for small values of
θ due to the singularity at θ = 0 in the thermodynamic limit.

II. COMPUTATION SCHEME

The fuzzy sphere provides a realization of 3D CFT on
the geometry S2 × R, allowing us to utilize the state-operator
correspondence [20,21] to simplify the computation of the
four-point correlator. We begin by choosing the conventional
conformal frame for the four-point correlator in Eq. (1),
where we set x1 = (0, 0, 0), x2 = (x, y, 0), x3 = (1, 0, 0), and
x4 = (∞, 0, 0). We can introduce the complex coordinate
z = x + iy, z̄ = x − iy, so that the crossing ratios are u = zz̄
and v = (1 − z)(1 − z̄). Next, we employ the state-operator
correspondence to convert operators to states [5], i.e., φ1(x1 =
0)|0〉 = |φ1〉 and limx4→∞ x2	

4 〈0|φ4(x4) = 〈φ4|. As a result,
the computation of Eq. (1) reduces to evaluating a “two-
operator” expectation value 〈φ4|φ2(x2)φ3(x3)|φ1〉. It is more
convenient to parametrize the coordinate (z = reiθ , z̄ = re−iθ )
by spherical coordinates, and we will use (z, z̄) and (r, θ )
interchangeably. As shown in Fig. 1(a), in spherical coordi-
nates, we can position x3 at the north pole of the unit sphere
(r = 1, θ = 0, ϕ = 0) and x2 at the point (r, θ, ϕ = 0). More-
over, since we are performing computations in the geometry
S2 × R, an additional Weyl transformation (r, θ, ϕ) → (τ =
R log r, θ, ϕ) is required to map our results to correlators in
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Euclidean R3 (R is the radius of the sphere S2 on the cylinder).
As explained in Appendix B, the four-point correlator can be
expressed as the S2 × R observable:

Gφ1φ2φ3φ4 (r, θ ) = r	1〈φ4|φ2(τ = R log r, θ )φ3|φ1〉
〈0|φ2|φ2〉〈0|φ3|φ3〉 . (3)

Here, and in subsequent expressions, we omit writing a coor-
dinate (τ , θ , or ϕ) explicitly when it is taken to be zero.

In the fuzzy sphere model, the eigenstates of the Hamilto-
nian correspond to CFT states and are nearly exact, with small
finite-size corrections. On the other hand, we can construct
local operators to approximate CFT primary operators and
compute their correlators. For instance, to approximate the
primary operator σ , we can use the Z2 odd density operator
nz(τ, θ, ϕ) as an approximation [19]. The correlator can then
be computed as follows:

Gφ1σσφ4 (r, θ ) = r	1〈φ4|nz(τ = R log r, θ )nz|φ1〉
〈0|nz|σ 〉2

+ O(R−1),

(4)
where the subleading contribution comes from the component
of the descendant operator ∂μσ in nz [19]. This subleading
contribution becomes negligible in the limit of a large system
size (R � 1).

In practice, all the computations are performed in the or-
bital space defined by the fermionic operator cm,↑(↓) with
m = −s,−s + 1, · · · , s, where s is monopole charge at the
origin of the sphere [22], and these fermion operators form a
spin-s irreducible representation of the SO(3) sphere rotation.
We can easily translate between real space and orbital space
by using monopole harmonics Y (Q)

s,m [23]

ψa(�) = 1√
N

s∑
m=−s

cm,aȲ
(s)

s,m(�), (5)

and subsequently take the limit s → ∞ to approach the ther-
modynamic limit. So the monopole flux s or equivalently the
electron number N = 2s + 1 plays the role of system size
(i.e., space volume ∼R2). In this context, the density operator
becomes

na(θ, ϕ) = 1

N

∑
m1,m2

Y (s)
s,m1

(θ, ϕ)Ȳ (s)
s,m1

(θ, ϕ)c†
m1

σ acm2

=
2s∑

l=0

l∑
m=−l

na
l,mYl,m(θ, ϕ), (6)

where Yl,m is the spherical harmonics relating to monopole
harmonics Y (Q=0)

l,m .
The numerator and denominator of Eq. (4) can be com-

puted separately by

〈0|nz|σ 〉 =
∑
l,m

Yl,m(θ, ϕ)〈0|nz
l,m|σ 〉

= 1√
4π

〈0|nz
l=m=0|σ 〉

〈φ4|nz(τ, θ )nz|φ1〉 =
2s∑

l=0

Ȳl,m=0(θ, 0)Yl,m=0(0, 0)

× 〈φ4|nz
l,m=0(τ )nz

l,m=0|φ1〉. (7)

Note that the spherical harmonics Yl,m(0, 0) is nonzero only
for m = 0 which greatly simplifies the calculation. The major
computation is to evaluate

〈φ4|nz
l,m=0(τ )nz

l,m=0|φ1〉 = 〈φ4|eτH nz
l,m=0e−τH nz

l,m=0|φ1〉.
(8)

In this work, we use the matrix product state (i.e., density-
matrix renormalization group) to perform the numerical
simulations [24,25], and for the imaginary time evolution,
we employ the time-dependent variational principle (TDVP)
algorithm [26,27]. The numerical errors are controlled by the
matrix product state bond dimension D and the time evolution
step 	τ (i.e., 	r). We have compared different values of 	τ

(i.e., 	r) and D, which yield consistent results. For the time-
evolution simulation, we choose D = 3000 and evolve from
r = 1 to r = 4 with 100 steps, i.e., 	r = 0.03. For the static
simulation, specifically when r = 1 or equivalently τ = 0, we
can achieve a larger system size by using a larger value of
D = 7000.

As one can observe, the computed correlators are continu-
ous functions of θ , demonstrating that the fuzzy sphere model
is defined in the continuum. We obtain a series expansion
of cos θ , given by Gφ1φ2φ3φ4 (r, θ ) = ∑2s

n=0 an(r) cosn θ , where
an(r) is a numerical factor evaluated numerically. The series
expansion is truncated at the order of 2s, implying that the
singularity at (r = 1, θ = 0) will only be fully recovered in
the limit s → ∞. Importantly, the numerical factor an(r) is
also a continuous function of r. In practice, we have to target
at specific values of r, although our calculations allow for
arbitrary values of r to be accessed.

Before presenting our numerical results, it is important to
provide a precise definition of the sphere radius R for the
computation of time evolution (i.e., τ = R log r) in Eq. (4).
R can be defined by relating the Hamiltonian H (after shifting
the ground-state energy to 0) with the CFT dilatation operator
D̂, H = D̂/R. Consequently, for a system of a specific size
N = 2s + 1, we define the sphere radius R as R = 	φ/δEφ ,
where φ represents a CFT operator (which can be chosen as
either the primary operator σ or the stress tensor), and δEφ

denotes the energy gap of the excited state associated with φ

in the context of the state-operator correspondence. We also
note that, except for the computation of time- evolution, we
will interchangeably use R and

√
N , and perform the finite

size extrapolation using
√

N .

III. TOW-POINT CORRELATOR

In Eq. (3), if we choose the states |φ1〉 and |φ4〉 to be
the ground state, we obtain the expression for the two-point
correlator, which is known exactly as (see Appendix A)

Gφφ (r, θ ) = r	

(r2 + 1 − 2r cos θ )	
. (9)

From a computational perspective [as seen in Eq. (4)], there
is no fundamental difference between the computation of the
two-point and four-point correlators. Therefore, we will begin
by computing the two-point correlator as a numerical bench-
mark for subsequent calculations of the four-point correlator.

The two-point correlator given by Eq. (9) can also be
utilized to accurately determine the critical point of the

235123-3



HAN, HU, ZHU, AND HE PHYSICAL REVIEW B 108, 235123 (2023)

FIG. 2. Angle dependence of the four-point correlator at r = 1 is shown for (a) Gσσσσ (r = 1, θ ), (b) Gεσσε (r = 1, θ ), and (c) GTμνσσTρη
(r =

1, θ ). The curves represent different system sizes ranging from N = 16 to N = 40, and they converge to each other. The discrepancy between
the curves becomes more significant for smaller values of θ , which is attributed to the singularity at θ = 0 in the thermodynamic limit.

system. In particular, the equal-time correlator Gσσ (r =
1, θ ) = (2 sin(θ/2))−2	σ is a dimensionless function that
solely depends on the angle θ between the two operators.
Thus, the critical point can be identified by finding the value
of h that yields the best fit of this dimensionless function.
Specifically, we set θ = π , resulting in Gσσ (r = 1, θ = π ) =
2−2	σ ≈ 0.487577 (	σ ≈ 0.5181489(10) [28]). We can then
examine which value of h produces the correct Gσσ (r =
1, θ = π ) in the thermodynamic limit. Figure 1(b) displays
Gσσ (r = 1, θ = π ) for different values of h (specifically, h =
3.155, 3.16, 3.165). By employing proper finite-size extrap-
olation with respect to 1/

√
N , we find that hc ≈ 3.16. This

result is consistent with the previously determined critical
point using local order parameter scaling [17]. Below we show
results of correlators at h = 3.16.

Figures 1(c)–1(d) depict the two-point correlation func-
tion Gσσ (r, θ ) by fixing r = 1 and r = 1.6, respectively, for
different system sizes N = 16−40 and N = 16 − 32. The θ

dependence of two-point correlator is quite close to the CFT
prediction Eq. (9), except for the small θ regime where singu-
lar behavior is anticipated and can only be produced at infinite
s limit.

IV. FOUR-POINT CORRELATOR

Next, we turn to the computation of the four-point corre-
lator Gφ1σσφ4 (r, θ ), which can be achieved by selecting the
excited states corresponding to the desired CFT operators as
|φ1〉 and |φ4〉 in Eq. (4). Figures 2(a)–2(c) present the re-
sults for Gσσσσ (r = 1, θ ), Gεσσε (r = 1, θ ), and GTμνσσTρη

(r =
1, θ ) [29], and Fig. 3(a) shows Gσσσσ (r, θ ) for the regime
1 � r � 4. It is evident that all the curves of different system
sizes N = 16 − 40 in Fig. 2 converge quickly in the interme-
diate θ regime (θ ∈ [0.4π, 1.6π ]), and the small θ results are
improved at a large system size. Furthermore, we compare our
results at θ = π, π/3 with the four-point correlator obtained
from conformal bootstrap data in Table I, demonstrating ex-
cellent agreement between them.

An important feature of the four-point correlator is the
crossing symmetry. For identical scalar primaries (e.g., σ )
there are two independent crossing equations

G(z, z̄)

(zz̄)	
= G(1 − z, 1 − z̄)

((1 − z)(1 − z̄))	
, (10)

and

G(z, z̄) = G

(
z

z − 1
,

z̄

z̄ − 1

)
. (11)

Our data for G(z, z̄), |z|2	

|1−z|2	 G(1 − z, 1 − z̄), and G( z
z−1 , z̄

z̄−1 )
in Fig. 3(b) exhibit excellent agreement among the three,
providing strong evidence for the crossing symmetry of our
computed four-point correlator.

V. SUMMARY AND DISCUSSION

Using the fuzzy sphere regularization, we have introduced
a novel approach to study 3D CFT correlators. A key feature
of this method is that it produces correlators that are continu-
ous functions of space-time coordinates. More concretely, we
introduced a dimensionless two-point correlator, analogous to
the well-known binder cumulant, which can serve as a valu-
able tool for precisely determining critical points in various
phase transitions within the fuzzy sphere model. We fur-
ther directly compute several four-point correlators (〈σσσσ 〉,
〈σσεε〉, and 〈σσTμνTρη〉) of the paradigmatic 3D Ising CFT,
and verified the crossing symmetry of 〈σσσσ 〉. Our results for

FIG. 3. (a) A 3D plot of the four-point correlator Gσσσσ (r, θ ) is
shown for a system size of N = 32. (b) The crossing symmetry of the
four-point correlator Gσσσσ is demonstrated for a system size of N =
32. The blue solid line represents G(z, z̄) obtained by setting z = reiθ

with r = 1.15. The quantities |z|2	

|1−z|2	 G(1 − z, 1 − z̄) and G( z
z−1 , z̄

z̄−1 )
are plotted as black circles and red triangles, respectively. These data
points agree well with G(z, z̄), providing support for the crossing
symmetry expressed in Eqs. (10) and (11).
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TABLE I. Comparison of Gσσσσ (r = 1, θ ) between our fuzzy
sphere computation and the conformal bootstrap data reveals very
small discrepancies. The conformal bootstrap data is obtained by
reconstructing the four-point correlator using a conformal block ex-
pansion, for example, see Ref. [16]. These discrepancies diminish
as the system size N = 2s + 1 increases, indicating good agreement
between our computation and the conformal bootstrap results.

Bootstrap N = 40 N = 32 N = 24 N = 16

θ = π 1.76855 1.76742 1.76671 1.76549 1.76244
θ = π/3 2.049 2.03921 2.03495 2.02470 2.01212

the four-point correlator 〈σσσσ 〉 exhibit excellent agreement
with indirect reconstruction using conformal bootstrap data.
For instance, at z = z̄ = −1, the discrepancy is approximately
0.06% for N = 40 electrons (spins)! Additionally, the further
verification of crossing symmetry of mixed correlators should
be straightforward using the procedure outlined in this work.

One intriguing future direction is to directly extract con-
formal data, such as primary operator scaling dimensions and
operator product expansion coefficients, using the inversion
formula [10]. It is also interesting to compute multipoint
correlators such as 5-point [30] and 6-point correlators in
particular, the latter provides access to all the 3-point struc-
tures. Another exciting avenue to pursue is to study 3D CFT
correlators in Lorentzian space-time. This involves studying
quantities such as the out-of-time correlator, which captures
the real-time dynamics and information scrambling properties
of the CFT.
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APPENDICES

In this Appendix, we will show more details about the
correlators of CFT scalar primary operators on the cylinder
geometry S2 × R. For ease of notation, we will explicitly
consider the case of three dimensions, although most deriva-
tions directly apply to other dimensions. We will use the Weyl
transformation [20,21]

(r, θ, ϕ) → (τ = R log r, θ, ϕ) (12)

to map the correlators in Euclidean space R3 to the correlators
on the cylinder S2 × R. Here, (θ, ϕ) are the spherical angles
on S2, and R is the radius of the sphere S2 on the cylinder.

The operator φflat (r, θ, ϕ) in R3 and the operator φcyl(τ, θ, ϕ)
in S2 × R are related by the equation

φcyl(τ, θ, ϕ) = R−	eτ	/Rφflat (r, θ, ϕ), (13)

where 	 is the scaling dimension of the operator.

APPENDIX A: TWO-POINT CORRELATOR Gφφ

Let us start with the two-point correlator. In R3, the two-
point correlator of a scalar primary is given by

〈φflat (r, θ, ϕ)φflat〉 = 1

(r2 + 1 − 2r cos θ )	
, (A1)

where we have considered r2 on the unit sphere, i.e., r2 = 1.
After performing the Weyl transformation, the resulting two-
point correlator on the cylinder S2 × R is given by

〈φcyl(τ = R log r, θ, ϕ)φcyl〉 = R−2	r	

(r2 + 1 − 2r cos θ )	
. (A2)

We can also use the state-operator correspondence

|φ〉 = lim
r→0

φ(r, θ, ϕ)|0〉, 〈φ| = lim
r→∞ r2	〈0|φ(r, θ, ϕ) (A3)

to map the operator φflat (r2) in Eq. (A1) to a state |φ〉 by taking
r2 → 0,

〈0|φflat (r, θ, ϕ)|φ〉 = 1

r2	
, (A4)

and the Weyl transformation gives

〈0|φcyl(τ = R log r, θ, ϕ)|φ〉 = R−	r−	, (A5)

which is independent of the spherical angles. Combining
Eqs. (A2) and (A5), we obtain a two-point correlator

Gφφ (r, θ ) = 〈φcyl(τ = R log r, θ, ϕ)φcyl〉
〈0|φcyl|φ〉2

= r	

(r2 + 1 − 2r cos θ )	
. (A6)

This form of the two-point correlator on the sphere is totally
fixed by the conformal symmetry. For convenience, we skip
writing the subscripts “cyl” and “flat” in the following and the
main text.

APPENDIX B: FOUR-POINT CORRELATOR Gφ1φ2φ3φ4

Next we turn to the four-point correlator. The general four-
point correlator of scalar primaries in Euclidean space R3 has
the following functional form

〈φ4(x4)φ3(x3)φ2(x2)φ1(x1)〉

=
(

x13

x14

)	4−	3
(

x14

x24

)	2−	1 Gφ1φ2φ3φ4 (u, v)

x	4+	3
34 x	2+	1

12

, (B1)

where u = x2
12x2

34

x2
13x2

24
and v = x2

14x2
23

x2
13x2

24
are called crossing ratios. After

choosing the conventional conformal frame by setting x1 =
(0, 0, 0), x2 = (x, y, 0), x3 = (1, 0, 0), and x4 = (∞, 0, 0),
we obtain

Gφ1φ2φ3φ4 (u, v) = r	2+	1〈φ4|φ2(x2)φ3(x3)|φ1〉, (B2)
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where the state-operator correspondence φ1(x1 = 0)|0〉 =
|φ1〉 and limx4→∞ x2	

4 〈0|φ4(x4) = 〈φ4| has been used. Similar
to the two-point correlator, we use the Weyl transformation to
get the final four-point correlator on the cylinder S2 × R

Gφ1φ2φ3φ4 (r, θ ) = r	1〈φ4|φ2(τ = R log r, θ )φ3|φ1〉
〈0|φ2|φ2〉〈0|φ3|φ3〉 . (B3)

APPENDIX C: CROSSING SYMMETRY OF FOUR-POINT
CORRELATOR

For the sake of convenience, we will explicitly consider
identical scalar primaries, i.e., 	i = 	,φi = φ, i = 1, 2, 3, 4.
Therefore, we have a simpler form of the four-point correlator

〈φ(x4)φ(x3)φ(x2)φ(x1)〉 = G(u, v)

x2	
12 x2	

34

. (C1)

The ordering of fields within correlators does not matter,
therefore, we can freely interchange them. For example, if we
exchange x1 ↔ x3, we can obtain ũ = v, ṽ = u and

G(u, v)

x2	
12 x2	

34

= G(ũ, ṽ)

x2	
23 x2	

14

, (C2)

i.e.,

u−	G(u, v) = v−	G(v, u). (C3)

We could also exchange x1 ↔ x2 and get ũ = x2
12x2

34

x2
14x2

23
= u

v
, ṽ =

x2
13x2

24

x2
14x2

23
= 1

v
. Thus, we obtain the second crossing equation

G(u, v)

x2	
12 x2	

34

= G(ũ, ṽ)

x2	
12 x2	

34

, (C4)

i.e.,

G(u, v) = G

(
u

v
,

1

v

)
. (C5)

Similarly, the third crossing equation comes from the ex-

change x1 ↔ x4. We get ũ = x2
24x2

13

x2
34x2

12
= 1

u , ṽ = x2
14x2

23

x2
34x2

12
= v

u and

G(u, v)

x2	
12 x2	

34

= G(ũ, ṽ)

x2	
24 x2	

13

, (C6)

i.e.,

G(u, v) = u	G

(
1

u
,
v

u

)
. (C7)

In terms of the conformal frame, x1 = (0, 0, 0), x2 = (x, y, 0),
x3 = (1, 0, 0), and x4 = (∞, 0, 0), where z = x + iy = reiθ ,
z̄ = x − iy = re−iθ , the crossing symmetry becomes

G(z, z̄)

(zz̄)	
= G(1 − z, 1 − z̄)

((1 − z)(1 − z̄))	
, (C8)

and

G(z, z̄) = G

(
z

z − 1
,

z̄

z̄ − 1

)
, (C9)

and

G(z, z̄) = (zz̄)	G

(
1

z
,

1

z̄

)
. (C10)
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