PHYSICAL REVIEW B 108, 235121 (2023)

Modular transformation and anyonic statistics of multicomponent
fractional quantum Hall states

Liangdong Hu 12 Zhao Liu®,'3-* and W. Zhu®*
1School of Physics, Zhejiang University, Hangzhou 310058, China
*Westlake Institute of Advanced Study, Westlake University, Hangzhou 310024, China
3Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310058, China

M (Received 20 January 2023; revised 2 November 2023; accepted 6 November 2023; published 5 December 2023)

We investigate the response to modular transformations and the fractional statistics of Abelian multicomponent
fractional quantum Hall (FQH) states. In particular, we analytically derive the modular matrices encoding the
statistics of anyonic excitations for general Halperin states using the conformal field theories (CFTs). We validate
our theory by several microscopic examples, including the spin-singlet state using the anyon condensation picture
and the Halperin (221) state in a topological flat-band lattice model using numerical calculations. Our results,
uncovering that the modular matrices and associated fractional statistics are solely determined by the K matrix,
further strengthens the correspondence between the two-dimensional (2D) CFTs and (2 + 1)D topological orders

for multicomponent FQH states.
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I. INTRODUCTION

Fractionalized quasiparticles [1—4] is a defining feature
of the topological orders in fractional quantum Hall (FQH)
states. These quasiparticles, dubbed anyons, obey exotic frac-
tional statistics [5,6] which emerges only in two spatial
dimensions. How to effectively describe and systematically
classify the fractional statistics and the associated topological
orders is a key problem in the study of the FQH effect. On the
one hand, Abelian-type anyonic statistics has been well cap-
tured by the Chern-Simons effective-field theories describing
the low-energy properties in the bulk of the FQH states [7-9].
On the other hand, the wave functions of many FQH states,
including those with quasiparticle excitations, are shown to
be conformal blocks of suitable rational conformal field the-
ories (CFTs) [2,10-13]. As a result, the fractional statistics
of FQH quasiparticles is formally encoded in the modular
matrices [14-16], which contain the information of mutual
and self statistics, quantum dimensions, and the fusion rule of
quasiparticles. For a specific FQH state, the modular matrices
can be defined by the degenerate ground states in response to
modular transformations (see Fig. 1). Indeed, a large class of
Abelian [17-19] and non-Abelian [20] FQH states has been
successfully classified by their modular matrices.

So far, the identification of FQH states via the modular ma-
trices is mostly limited to single-component systems [17-20].
When particles possess more internal degrees of freedom
(e.g., spins, valleys, layers), the scope of FQH physics further
expands to the multicomponent case [21,22]. Due to the great
variety and tunability of effective interactions, multicompo-
nent FQH states provide a playground for realizing emergent
topological orders that have no analog in single-component
systems. In this context, how to generalize the modular-matrix
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approach to multicomponent FQH states is largely unex-
plored. Previous attempt [23] on the response of the Halperin
model wave function to the modular transformations found
an unexpected size-dependent phase factor appearing in the
modular matrices. The reason of this unphysical phase factor
is not well justified. It is essential to distinguish our work
from this previous approach. In contrast, our study undertakes
a fresh perspective by adopting the tools of conformal field
theory (CFT), thereby addressing and resolving this perplex-
ing issue of the unphysical phase factor. Furthermore, the
K-matrix formalism plays a crucial role in the bulk descrip-
tion of Abelian multicomponent FQH states [7-9]. It is thus
natural to ask whether the CFT-FQH correspondence [12,24]
can be supported by relating modular matrices extracted from
the CFT to the K matrix for multicomponent states.

In this paper, we address these questions critically. First,
we analytically derive the modular matrices of general
Abelian multicomponent Halperin states [22] directly from
the underlying CFT. Remarkably, the result establishes an
explicit relation between the modular matrices and the K
matrix in the corresponding Chern-Simons theory. Moreover,
compared with model wave-function approach [23], the un-
physical size-dependent phase factor does not appear from the
perspective of CFT, demonstrating the superiority of our CFT
method. Our result thus provides compelling evidence for
the correspondence between the two-dimensional (2D) CFTs
and (2 + 1)D bulk topological orders for multicomponent
FQH states. We support our theory by independently deriving
modular matrices of the spin-singlet Halperin states using the
anyon condensation picture and using extensive exact diago-
nalization in a microscopic lattice model.

II. MODULAR MATRICES FROM CFT

Modular matrices capture the quasiparticle statistics of
topologically ordered states [7,15,25,26]. To be specific, the
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FIG. 1. The torus geometry is defined by two fundamental vec-
tors L, = L7 and L; = L&,, and the twist angle is 6. (a) The T
transformation sends T = 7€, + 1,8, to its equivalent geometry T +
&y, thus leaving the torus geometry unchanged. (b) The modular S
transformation generates a counterclockwise rotation and transforms
the torus spanned by Lé, and TL to a torus spanned by |t|Lé,
and —|7|L/%.

modular S-matrix contains braiding statistics and the fusion
rules of anyons, and the modular 7 -matrix contains the self
statistics of quasiparticles. These two matrices are respec-
tively related to the modular S and 7 transformation on a
torus (Fig. 1) [17].

Our goal in this section is to calculate the modular S and
T matrices for Abelian multicomponent FQH states using
CFT, which was rarely studied before to our best knowledge.
For simplicity we only consider the bosonic states throughout
this paper. Recall that the single-component bosonic Laughlin
state at filling v = 1/(2m) is described by the compactified
boson which manifests the #(1),,, CFT (see Appendix A 1)
[2,9,15,27-29]. To incorporate égelian multicgrgponent FQH
states, one can generalize the u(1) theory to u(1), x [29,30],
where the level is no longer a single number but a « x k
positive-definite integer matrix K. It has been proposed that
many physical quantities (e.g., fractional charge, Hall con-
ductance) of Abelian multicomponent FQH states can be well
captured by this K matrix [9,29].

In this context, the partition function of the multicompo-
nent state can be written as summation of the character of
various topological sectors a:

Z |Xa(77)|2s )

ael",*(/l"l(

Z(K) =

where the character yx is expressed by g expansion as

Z q: ! (n+a)- (n+a) (2)

nelg

Xa(T) = ( ¥

with g = e”™™'. Here the vector T parametrizes the torus
(Fig. 1) and 7 is Dedekind’s function. We formulate different
topological sectors by the so-called K lattice I'x and its dual
lattice I'§, as shown in Fig. 2. I'x denotes a set of vectors {n =
Z1K=1 nrer|n; € 7}, with the basis satisfying e; - e; = K5 (Kjy
the element of K matrix). The corresponding dual lattice I'g
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FIG. 2. Schematic plot of the K lattice and its dual lattice. The
blue dots and red dots respectively denote the I'x lattice spanned
by {e;} and the I'g lattice spanned by {e}}. The coset I'y /T'x is the
parallelogram spanned by {e;} (shaded by light blue). Here we draw
two examples of I'y and I' for (a) the Halperin (221) state with

K=( ) and(b) the Halperin (2221) state.

is spanned by the dual basis e] satisfying the relatione; - €] =
817. The linear combination of dual basis 7 Kisej is exactly
the basis of I'x: e, - e; = )\ Kivey - €, = K. With the help
of this lattice representation, it is straightforward to express
the inequivalent topological sectors as the coset of a € I' /T'x
[10].

The modular S and 7 matrices are determined by the
changes of the character under respective modular transforma-
tion. For the modular S transformation T — —1/7 as shown
in Fig. 1(b), the character becomes (see Appendix A2 for
details)

1 1 i
— —X(n-n+2n-a+ta-a)
RN e — e T
X“( r) (—it)n(o)* 2

nelg

1 1 iTm-m—2rim-
ZWW Z eritmm rrma’ (3)
v mel'y

where we have used the generalized Poisson’s resummation
formula

Z efnaq2+q~b

q€lk

Z (P+2m
«/l detK|az T
As any vector in 'y can be expressed as m =) , mef =
>, Ky +bp)e; =n+b, withn=73",ne; € 'y and
b= ,bef € I'x/Tk, we can rewrite the summation over
'k in Eq. (3) and obtain

72ma b
Xa ( ) Yo e = Y Sun()
bel;/Tk | det K| bel; /T
which gives the modular S matrix as
—2mia-b
e
= @)
| detK]|
Similarly, the character changes as
Xa(T + 1) = 7Ga9=3) y (1) (5)

under the modular 7 transformation T — 7 4+ 1 [Fig. 1(a)],
leading to modular 7 matrix

T= 627'[!'(%(11172%)' (6)

Equations (4) and (6) are the main results of this work.
They give the exact forms of modular matrices of general
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multicomponent bosonic Halperin states, which are universal
and capture the global statistical features of anyons in the
(2 + 1)D topological orders. In particular, the form of the
S matrix demonstrates a clear relation with the K matrix.
First, the prefactor is proportional to /| det K|, reflecting the
Abelian nature of the state. Second, the braiding phases of
anyons are uniquely determined by e~>"@*_ where vectors
a, b belong to coset lattice defined by the K matrix. Since
the K matrix plays a crucial role in the Chern-Simons theory
of Halperin states, our result strengthens the correspondence
between CFT and Chern-Simons descriptions of multicompo-
nent FQH states.

Concrete examples

Based on the results in Eqs. (4) and (6), we now present the
modular matrices for some typical Halperin states. First, let us
consider the two- component spin-singlet Halperin (m, m, m —
1) state at filling v = 5——. In this case, the K matrix is

m m—1
m—1 m

and the coset I'} /T'x contains | det K| = 2m — 1 independent
vectors a = {5.-—(ae; +aey)la=0,1,...,2m —2}. These
a vectors form a one-dimensional lattlce [see Fig. 2(a) for
m = 2]. Accordingly, we have

S 1 i 2ab )
= ——exp | 2mi— |,

b= am 1P “m—1

and

2
Top = Sape F iz , (8)

wherea, b =0, 1, ..., 2m — 2 take integer numbers. Our the-
ory also applies to two-component states that are not spin
singlets. In Appendix D, we give the modular matrices for
the Halperin (441) state, in which case the dimension of the
modular matrices is 15 and the a vectors in the coset I'g /T’
form a two-dimensional lattice.

Moreover, our theory is not limited to the two-component
case. For instance, for the three-component (m, m, m, m — 1)
state with

m m—1 m—1
K=|m-1 m m—11],
m—1 m-—1 m
the coset lattice is TI'j/I'x = {3m s(e1 +ex+e3)la=

0,1,---3m —3} [Fig. 2(b) depicts the case of m = 2],
and the corresponding modular matrices are
1
3m — 2

ab

767'[1
-2 =
n— 7;(1 =

. a2 3
Sup = SEETH.(9)

1. Anyon condensation for spin-singlet states

The central results in Eqgs. (4) and (6) can be further ex-
amined by several parallel methods. As an example, for the
two-component spin-singlet Halperin (m, m, m — 1) state, we
do not need to resort to the K matrix when deriving the mod-
ular matrices. Instead we can rely on the CFT of the sf\(2)1
Wess-Zumino-Witten (WZW) model with a u(1),,,_, boson

which describes the (m, m, m — 1) state [2,31,32]. There are
8m — 4 primary fields in the CFT of the WZW model, whose
topological spin and fusion rule are [10]

AMA+2) a?
12 8m — 4’

(A a) ® (1, b) = (A + mod 25 (@ + PImod 4m—2)s  (11)

with A, u =0,1 and a,b=0, 1, ..., 4m — 3. Interestingly,
there exists a special primary field [denoted J=,2m— 1)]

with integer topological spin A 2m—1) = 3 _|_ 4%1,, 13) —m
Z. In addition to the vacuum 1, the ex1stence of such a
bosonic field with integer spin points to an extended chi-
ral algebra [10], i.e., akin to that one cannot distinguish
(A, a) and (A, a) ® 1/ (I € N), one cannot distinguish (A, a)
with (A, a) ® J! (I € N). After condensation of the bosonic
fields, the 8m — 4 primary fields are mapped into 4m — 2 dis-
tinguishable primary fields {[(0, a@)];la =0, 1,...,4m — 3},
where [- - - ]; denotes a equivalent class under the fusion with
J field [(0,a)]; : (0,a) ~ (0,a) ® J. Moreover, we notice
that the difference between the topological spin of a and a ® J
(in the sense of modulo 1) is

(na) = (10)

(a+2m—1) a® _a
4 8m — 4 8m—4 2
Thus only half anyons with even a are deconfined [33],
which form a set {a = [(0, 2a)];la =0, 1, ...,2m — 2} with
the topological spin &, = % and fusion rule N,*: a ® b =
(@ + b)mod 2m—1- The braiding statistics of these deconfined
anyons can be described by the S matrix

Sp= b < i 2 ) (12)
ab = X —2ZIT1 B
Y e 2m— 1

ha®J - ha =

where we have used the formula Sup =
5 2 N Cexpl2mi(h. — hg — hy)ld [33]. Here d. = 1 is the
quantum dimension of Abelian anyon c, and D = 4/2m — 1

is the total quantum dimension. Thus, we conclude that, using
the anyon condensation picture we can obtain exactly the
same modular matrices as in Eq. (7), without resorting to
the explicit K matrix. This result also matches that from the
extended chiral algebra of spin-singlet Halperin states [32]
(see Appendix C for more technical details).

2. Numerical simulation for the halperin (221) state

So far our discussion are solely based on analytical deriva-
tions. Now we turn to numerical simulations in microscopic
models to further validate our analytical results. A well-
developed numerical recipe for the extraction of modular
matrices is the “minimal-entanglement state” (MES) scheme
[17-20], which requires bipartition of the whole system in real
space. To conveniently realize such bipartition, we consider
two-component hardcore bosons in a checkerboard lattice
model [34-38]. The system’s Hamiltonian takes the form of

H= Z |:—t Ze”p”bT = > tubl beo

((r,r’))

> bl er+Hc:|+Uan¢nr¢ (13)

({{r,r")))
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FIG. 3. Surface and contour plots of the entanglement entropy S
of |W(cy, ca, ¢, ¢3)) versus ¢; and ¢; [c3 = (1 — ¢? — ¢3)/?]. Here
we fix ¢, and ¢; at their optimal values ¢, = 0.5z, ¢3 = 0.257.
The entanglement bipartition is along (a) the x direction and (b) the
y direction. The calculation is performed on a 3 x 3 checkerboard
lattice at v = 2/3.

Here bi’g creates a boson with pseudospin o =1, | atsite r,
and (...), ({...)), and (((...))) denote the nearest-neighbor,
the next-nearest-neighbor, and the next-next-nearest-neighbor
pairs of sites, respectively. In what follows, we choose the
parameters as t' = 0.3¢t,¢” = —0.2t, ¢ = w /4 [34],and U =
4.0. A robust Halperin (221) state with threefold nearly degen-
erate ground states (|€;=; 2,3)) can be stabilized in this system
at the total filling v = 2/3 [39].

According to the MES scheme, we bipartite the lattice
along x and y directions, respectively, and search for the corre-
sponding MESs over all superpositions |\W(cy, ¢2, ¢2, ¢3)) =
c1|&1) + c2e'?2|E) + c3€%|&3) within the ground-state mani-
fold, where ¢y, ¢z, c3, ¢, ¢3 are real parameters. For each
bipartition, by minimizing the entanglement entropy over the
ranges of ¢; € [0, 1] and ¢; € [0, 2], we can identify three
entropy valleys in the parameter space, each of which gives
a global MES |E;”, , ;) (Fig. 3). Then the overlap between
the MESs along the two noncontractible bipartition directions
gives the modular matrix § = (E”|E*) [17,18]. Our numeri-
cal calculation returns

0.587 0.572 0.572
S=|0572 0.581e 06 (581067 | (14)
0572 0.581¢0677  (.581¢~ 1067

This result is quite close to the theoretical prediction

1 1 1 1
S = | e-2n/3 i2n/3
V3 o2/ gmidn 3

for the Halperin (221) state, indicating the unit quasiparti-
cle quantum dimension and the Z; mutual statistics between
quasiparticles. Additionally, the statistics phases are in units
of 27 /3, which clearly signals the fractional charge e/3 of
quasiparticles [40].

III. SUMMARY AND DISCUSSION

We have investigated the modular transformation and
fractional statistics for Abelian multicomponent fractional
quantum Hall states. Crucially, we derive a universal for-
mula for the modular matrices by utilizing the conformal

field theory. We establish that the modular matrices of
multicomponent Halperin states can be fully formulated in
terms of the K matrix within the CFT framework, with-
out resorting to the Chern-Simons field theory or other
empirical knowledge, further strengthening the CFT-FQH
correspondence. Moreover, we illustrate several examples
to validate our theory. One is the spin-singlet Halperin
(m,m,m — 1) state obtained by the anyon condensation
picture, and the other example is the Halperin (221) state liv-
ing on a microscopic lattice model, where the modular matrix
are numerically computed via the minimal entangled states. In
both examples, the extracted modular matrices coincide with
our theory.

Several remarks are given in order. Compared with
some examples on calculating modular matrices for special
Halperin states [41], our results exhaust all Abelian multi-
component FQH states. Apart from the field-theory methods,
the modular matrices can also be directly calculated from the
trial wave functions of FQH states. By explicitly applying the
modular S and 7 transformations on the trial wave function,
we recover the CFT results of the modular matrices in Eqs. (4)
and (6) up to a particle-number-dependent phase factor (see
Appendix B for details). In this regard, modular matrices de-
rived by the CFT can be understood via the trial wave function
from a different perspective. The discrepancy between the
CFT-base calculation and the wave-function-based calculation
may come from the choice of gauge fixing scheme in the
calculation of the Berry phase, which calls for a more careful
treatment of the gauge field for the future Halperin wave func-
tion in the adiabatic evolution (see Appendix B for details).

Our work opens several directions for the future study.
First, hopefully our results can be extended to other FQH
states possessing K matrices, such as those described by the
affine Lie algebra conformal field theories [42], the hierarchy
FQH states [43] and the chiral spin liquids [31,44,45]. It
would be interesting to probe the relation between modular
matrices and the K matrix in those cases also. Second,
investigation of modular matrices for lattice FQH states in
Bloch bands with Chern number C > 1 may be helpful to
unveil the potential difference of these states from the usual
C-component Halperin states [46—50]. Finally, one can study
the modular matrices for FQH states beyond the K-matrix
description, such as non-Abelian multicomponent FQH states
[51,52].
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APPENDIX A: CONFORMAL FIELD THEORY METHOD

In the Appendix, we show more details to support the
discussion in the main text. In Appendix A, we show the
details of the derivation of modular matrices by the conformal
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field theory (CFT) that describes the edge. In Appendix B,
we calculate the modular matrices based on the trial wave
function of the general Halperin state. In Appendix C, we
compute the modular matrices of the Halperin (m, m, m — 1)
state, through an extended chiral algebra. In Appendix D, we
present more examples that can be described by our theory.

1. Review of conformal field theory for the Laughlin state

In this section, we first review the CFT which describes
the edge of the single-component v = 1/(2¢) Laughlin state.
The simplest example in CFT is the free boson model § =
b f dxza"qﬁ(x)aﬂqﬁ(x). We put this model on a torus (space-
time manifold) and impose the following boundary condition:

Oz + ko + K wn) = ¢(z) + 2nR(km + k'm),
x k,k',m,m €Z,

where z is the coordinate in the torus, w; and w, are the
periods of the torus (i.e., z ~ z + w; ~ z 4+ wz). The doublet
(m, m") counts the winding number of ¢ when it goes around
the torus in the periodic directions. Under this condition, ¢ is
call the compactified boson on a circle with radius R. When R?
is a rational number R?> = 2¢/p with p, g two coprime positive
numbers, this theory is called the rational CFT (RCFT). RCFT
means that the Virasoro primary fields can be reorganized
into finite number of extended blocks, and they are linearly
covariant under the action of the modular group [10]. Here we
set p = 1, the partition function is

Z(R = /29) =

(e+qm® w
|r;<r>|2 Z ¢, @AD

with topological spins of primary fields

po_fetam? o
T 4 ’ 4q

In Eq. (A1), n(t) = ¢"**[];2,(1 — ¢") is the t-dependent
Dedekind’s n-function with ¢ = ¢**™, and 7 = w,/w, is the
parameter of the torus (see Fig. 1 in the main text). Those

fields can be reorganized into a finite number of extended
blocks:

(e+gm)? (e gm)?
22 = In( e Zq v

w2 (n=2qm)?
4q 4q
|n<r)|2 2 ava

n,meZ

2g—1

Z Z (a+qu)2 (a+2(1< m)q)z
q 4q
In(r)l2

a=0 k,meZ

2g—1
a- (u+21/k)

IT’/(t)|2 )IDITEEED M A

a=0 keZ keZ

2g—1

=Y K@,
a=0

where the extended character of block a is

(Nn+u)

qg . (A2)
neZ

1
KM(t) = —
¢ n(c)
We are interested in the transformation of Kézq)(r) under mod-
ular transformations. The modular transformation T — 7 + 1
is easily seen to be

K0+ = keoq), @)

2
- Qqn+a)*
27 v

. )
where n(z + 1) = e%n(r) and e = ¢*™'% . Another

transformation T — —% is more involved:

. 2
Kézq)(—l/‘t) — %M}

1
/__irn(r)Xn:eXp [_ T 4g
1
~ Vo) Z
7 (e )]
x exp|——|2¢gn" + 2na + —
T 2q

. 2 )
TZGXP |:7Tl'l,'—( a/t) %;—q:|

2q

—27”5 < k2
exp 2711’1'—)
V2q 4q

(21])(.[)

I
”Mm

(A4)

Here we have used the Poisson resummation formula

b 2
Nk R ["( 5) }
neZ keZ

Zexp( wan” + bn) =
in the third line. Therefore, the extended characters are lin-

early covariant under the modular transformations, and these
results give the modular matrices

ab
672711 5

V2
The unitary of S does ensure the modular invariance of the
.. . 2g—1 29) 2
partition function Z(y/2¢g) = ;7" K" (7)|*. In additional,
the quantum dimensions of the ﬁelds are d, sﬁﬂ = 1. Using
the Verlinde formula, we can derive the fusion rules of the
extended fields

N = SamSomSme. _ gmod 24 (A6)

a SOm a+b,c

2i(L— Ly
Top =€ 2%8,,, Sy = (AS)

m

where 8m°d 24 means a = b mod 2¢. This theory is called

the u(l)zq CFT [2,9,15,27-29], where the level is square of
the radius R. The u(1),, CFT is the edge theory of bosonic
Laughlin v = 1/(2q) state and is also the physical realization

of the ZZ) anyon model [53].
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2. Multicomponent Abelian fractional quantum Hall states

In this section, we extend the discussion of the CFT to
general multicomponent Abelian Halperin states. One way to
deal with the Halperin state is to generalize the u(l) theory

to u(/l\few [29,30], where « is the number of components. The

level of u(/l)?% is no longer a single number. Instead the level
becomes a k_x « positive-definite integer matrix K, which we
denote as u(l)K k- The simplest case is a diagonal K where
K;; are positive integers, thus this theory is just a simple direct
sum of each u(l) k.- Here we consider the bosonic states, thus
the diagonal of K is even. (Throughout this work we focus on
bosonic states, and the extension to fermionic cases should be
straightforward.)

In this context, the partition function of the multicompo-
nent state is written as

> ka0

aer,’g/FK
Z qo(n‘Hl) (n+a)

nel'x

Z(K) =

(AT)

Xa(T) = ( ¥

Here we use an intuitive way to define the topological sec-
tors. That is, we define the so-called a K lattice 'y =
{n=7> ,me/n; € Z,e;-e; = K;;}. And its dual lattice I'};
is spanned by the dual basis e satisfying the relatione; - € =
817. 'y /Tk is the coset (see Fig. 1 in the main text). The
transformation T — t 4 1 can be easily evaluated with the
assumption that Kj; is even:

Xa(T + 1) = &1G* 5y (7). (A8)

So we reach

T = riGaa), (A9)

To consider the S transformation T — —%, we utilize the

generalized Poisson’s resummation formula

—nag*+qb _ z(pt+5=
e e 27{/
Z | J[detK]az Z

gel'x pely

and apply it to the character. Then we have

1 § : efﬂ(n -n+2n-a+a-a)

Xa(—=1/7) = W

nelg

| | (A10)

Titm-m—2wim-a
— e D -
|det K| n(t) et

The finial step is to rewrite the summation over '}, by notic-
ing the vector in I'} can be written as

m= Zm;e;‘ = Z <ZnJKJI+b1>e}" =n-+b,
I

1 J

with n = Z[ ne; € g, b = Z[ b,e}“ € FI*(/F](, and the lin-
ear combination of dual basis ), K;se]} is exactly the basis
of I'k: e;-e; = ZN Kiney - e; = Kj;. Thus, we can rewrite

Eq. (A10) as
1 1 4 ,
Xa(—1/7) = ———— priTmm=2mim-a
’ JTdetK] n(z) m;*
K
e 2miah (A11)
= Y ==
beT; /T | et K|
The prefactor is just the modular S matrix
e—2m’a~b
(A12)

= JldetK|

This is the result shown in the main text.
At last, as an example, we consider the (m, m, m — 1) state,
for which the K matrix is

m m—1
m—1 m

and the coset F,’Q /Tk contains | det K| = 2m — 1 independent

vectors @ = {2 — (ae; +aey)la=0,1,...,2m — 2} (bis de-
fined similarly). We can write the 7 matrix as

@m—1)2

Top = 8e ™™ (A13)
and the S matrix as
S ! i 2 (A14)
= — X —2ZTl— .
LA e 1

For more examples please see Appendix D.

APPENDIX B: TRIAL WAVE FUNCTION METHOD

In this section, we introduce another method for deriving
the modular matrices. This method is based on the K-matrix
related trial wave function. This is method is independent of
the CFT, which can be viewed as a complementary method
to the CFT. Part of results have overlaps with an unpublished
work [23].

1. Gauge transformation

Let us consider the Hamiltonian of a charged electron on
the torus spanned by L; = Lé, and L, = L7 with a uniform
perpendicular magnetic field [54]

Hy(A, 7) = 1¢”(t)D,(A)D}(A), (B1)

where D,(A) = —ihd/dX° + |e|A, and A = (—1,L?BX?,0)
are the covariant derivative and vector potential, respectively.
g(7) is the t-dependent metric,

1 2
8(r) = —("' f‘>, (B2)

ST \— T

where S = |E1 X Ezl = 1,17 is the area of the torus which is
invariant under any modular transformation. The ground state
is the lowest Landau level (LLL)

W, (X', X2|7) = —einNG"T[XZ]ZQL(Nq)Z/LlNd;T),
/210 Ny
(B3)
withm =0, 1,..., Ny — 1, where Ny = r2L2/27T£2 is the to-

tal flux through the torus, £ = //i/|e|B is the magnetic length,
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z=x4+iy=LX"+ 1X?) is the complex coordinate of the
electron, and 6,,(z|t) is the theta function, which is defined as

O, (z|T) = Zexp [inr(n+a)2+i27r(n+oc)z]. (B4)
neZ

The modular S transformation makes a 7 /2 rotation in

(X', X?) space
X" -1\ (x!
()-0 )G)

and transforms 7 to —1/t. Since the exchange of the two sides
of the parallelogram (torus), the torus is spanned by L} =
|T|Lé,, Z; = L% and the complex coordinate should be
expressed as 7 = |7|L(X"' — 1X?) = %z = %Z. After the S
transformation, the single-particle Hamiltonian becomes

Hy(A', —1/1) = $¢°(—1/7)D,(A")D},(A"), (B6)
with
1 1 T]
-1 = — , B7
g( /T) ST2 (tl |T|2> ( )
and the LLL wave function becomes
1 ps
\Ijm X/I,X/zl _ 1/_[ — UrNd, [X ]
( ) ~al2Le
xeﬁ[N¢z'/L|N¢(—1/T)], (BY®)
where D/ (A") = —ihd /X" + |e|A, and A =

(=1 L?BX’?,0) are the covariant derivative and vector
potential in (X', X’?) space, respectively. To compare
Eq. (B34) with Eq. (B3), we need to write them in the
same coordinate frame. Therefore, Hy(A’, T + 1) should be
rewritten in (X', X?) by using the relation

g(—1/7) = Mig(t)Ms (B9)

with
0 1
M = (_1 0). (B10)
Thus, Eq. (B32) can be written as
Hy(A', —1/7) = 1[MsD'(A)]g™ (1)[MsD'(A)],.  (B11)
After denoting
DA _ oy (A) = <D}(A/>>, B12)
DZ(A) D, (A")
with A = (0, ,L2BX"?) = (0, 7,L2BX"), we find
Hy(A', —1/7) = Hy(A, 1) = 38°(1)Do(A)Dy(A), (B13)

with Dy(A) = —ihd /0X“ + le|A,. Since Dy(A) and Dy(A)

can be related by a gauge transformation U = e~ 2miNeX'X?

ie.,

D,(A) =U'D,(A)U, (B14)

we get
Hy(A, ) =U"Hy(A

L —1/T)U (B15)

Now we can see that the LLL wave function after this trans-
formation is

Uv,, X", x?% -1/7)

imNy L [X2]* —27iN,X ' X2

I P (Y .

JTLe v\ T

o= iTNe  —im TN [X°T° zlz| N,

— ¢
= On | Ng—| — — ).

JTLL N T T

The Poisson’s resummation formula gives us

No
T

T|Z
). (N¢u
N~ 1

= N¢ Zen (N¢

This suggests us to redefine the wave function W(X!, X?|7) as
W(X!, X2|1)/n(7). The newly defined wave function satisfies
the modular covariance

o 22
N¢r>e 27111'\',‘—4':+an¢?

N “I"m(X/lsX/z| - 1/‘[)
U
n(=1/7)

-1 2
Zsmnq’(x 210 m1e

where S, = exp( 2ri ) One may ask why the

single-orbital wave functlon under an § transformation cannot
be directly related by U, (-1 /t) = W,,(t). The reason is
degeneracy. We denote the space of degenerate LLL wave
functions by M(t), for which

M) =UM(=1/1) = USM(7).

Thus, the action of § transformation will induce a unitary
transformation on single state:

USY,, (1) = AW, (—1/7) = Sy W(7),

where S,,, on the right-hand side of above equation is the
representation of modular S transformation in space M(7):

(‘Iln; T|‘§|\pm’ T) = Smn-

Here the gauge transformation are implicitly included in the
Dirac notation since we cannot compare wave functions in
different gauges:

(W, ISV )
= /dxldxzqz*(xl,xzn)z)\p(x”,X’2| - 1/7).
(B17)

2. Fractional quantum Hall wave function
and modular S matrix

On the torus geometry, the general Halperin state can be
expressed in terms of the theta function [7,55-57]:

({2l }17) = N Az £

] 2
X exp mrN(,,E (L ) , (B18)
153
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where [ is the index of component, a € I'y /T is the vector
labeling degenerate states, z/ = L(X/' + tX/?) is the coordi-
nate of the ith particle in the Ith component, and Z' =", 2!

is the center-of-mass coordinate of the /th component. f, and
fc are the relative part and center-of-mass part of the wave
function:

HHU_KIJ(T)QKN z /L _ Zj/Lh.)

1<J i,j

l_[anKu(.L_)eKu z /L—Zg/Lh') ,

I i<j

AUz ) = () f“UZ/LIv),

where K;; is the

(B19)

underlying K matrix with di-

mension dim(K) =&k and diagonal elements &k =
(Klla KZZ’ e KKK)T’
1\2
On(zlt) = gZ:exp {inr(n + E)

(o)D)

FOZIr) = Z exp {imt(n +a)’ + 27wi(n +a) - Z},

nel'g
(B20)
and Z = )", Z'e; with e; the basis of I'k (i.c., e; - e, = Ky)).
The normalization factor is
N(@) = Nolyman(e )2z 2o, (B21)

where n(t) = ¢"** []72;(1 — ¢")|y=c2= is the T-dependent
Dedekind’s n function, and N is an area-dependent constant.
There are more detailed discussions of the FQH wave function
on the torus in Ref. [55].

Now, we can extract the modular S matrix by considering

Spa = (W8, 7|80 1)
/Hdz v ({f10)d, \y“({ '

where Zf{g the gauge transformation

1 ) (B22)

T

U, = exp { —2miNy Y _ XX} (B23)

Li

derived above, and 7' = |t|z/t is the coordinate after the
modular S transformation. Before the tedious derivation, we
list some useful relations (here we assume the total flux Ny
through the torus is even):

n(—1/t) = v/=itn(1),
B11(2/T] — 1/7) = —v/—ite’S 611 (2l7),
=27
(a) _ K/2 inZ?)t (b)
9@/t =1/1) = (=iv) > mf (Z]7).

bel's /T

Next we deal with the transformation term by term.

a. Derivation of N'(—=1/7)
N (—1/7) is derived as follows:

VT,

N ””‘N‘)[H ( )2]

7 5 > N
= <i) N(@),

% Z[ K[Nl

(B24)
|7l
where we have used the first relation in Eq. (B24).
b. Center-of-mass part f,({Z'}] — 1/1)
The center-of-mass part f.({Z'}| — 1/1) is
a 1 —K (a) z !
27N = 1/t)=n""(=1/O)f | =+ 1=
Z —2mab 5 .
—f (Z'}),
bel': /T | det K|
(B25)

where we have used the first and third relations in Eq. (B24).

c. Relative part f,({z'}|7)
The relative part f,({z/}|7) is
(= 1/7)
— (3% [ZI<J Dierjes K (Z +ZI i Ku (4:/ ]

x (=) Zr Do Kt 2 o K (11 |7), - (B26)

where z = z/ — z] and the first two relations in Eq. (B24)
have been used. The phase factor can be simplified. The con-
stant phase is

Z Z Ku-i—ZZKu

I<J ieljeJ i<j
=Y N'KyN + Z (N’ — DHN'Ky,
1<J
_ a2 I
> (N XI: KN ) (B27)
where N = (N, N,,...) is the particle numbers. The

coordinate-dependent phase needs a careful treatment, since
they should be fully canceled when putting all parts together:

e DIPIR I K

1<J iel,jel i<j
> ) Kulz
2‘L'L2
1,J iel,jeJ
I 1 1 J
‘EL2 Z Z %Kz — ZiKIJZJ‘)
1,J iel,je
- B YA Y K
th
1iel

l7TN¢
'L’L2 T2 Z (B28)

235121-8
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d. Exponential and gauge transformation

Since y!/(r,L) = X/2, we have

N 1 2
Uy exp m_—TN¢;(Xi”’2)

= Z;{g exp

i N,
= exp _WT¢ > (&) texpimTNg Y (Xl.”z)2
1,i 1,i

(B29)

Substituting Eq. (B18) and Egs. (B24)—(B29) into Eq. (B22),
we finally have

(\Ijb |S|\_Ija ) it % > KINI( 1)%NZ e—Zﬂia-b
iT == - ——
7] J[detK]

(B30)

where N = ", N'e, is a vector enclosing the particle number
in each component N’. We expect that the intrinsic properties
such as braiding statistics should be independent of the par-
ticle number N. If we neglect the particle number dependent
U (1) factor [58], we have derived the modular S matrix from
the trial wave function:

efzm'wb

= /@K

The above result is consistent with Eq. (A12) and Eq. (4) in
the main text.

(B31)

3. Modular 7 transformation

Let us first consider how the LLL wave functions evolve
under the Dehn-twist transformation T — 7 + 1. After the
Dehn twist, the coordinate z = L(X' 4+ tX?) can be rewritten
as z=L[X""+ (r + 1)X"?]. Thus we express the single-
particle Hamiltonian in terms of (X'!, X'?) as

Hy(A', T+ 1) = 1¢"(r + DD,(AD,(A"),  (B32)
with
_ 1 T + 1|2 -1 —1
g(T + l) = L2r22 <_f] —1 1 ) (B33)
and the LLL wave function takes the form
1 . 272
7] X/I’X/Z 'L’+1 — it Ng (t+1)[X"]
AT DS T
x 0.0 [Nyz/LINg(r + 1)), (B34)
(3

J

U ({2l Hr +1)

where D/ (A") = —ihd [0X" + |e|A], and A =
(= L?BX’?,0) are the covariant derivative and vector
potential in (X'!, X'?), respectively. To compare Eq. (B34)
with Eq. (B3), we need to write them in the same coordinate
frame. Therefore, Hy(A’, T + 1) should be rewritten in
(X', X?). By using relations

1 1 -1 1
g(’“):m(o 1)g(r)<_1 ?)
2
Di(A)\ (1 0\(DyA)
p,(A)) = \=1 1)\pyan)

with A = (-, L2BX"?, 1,L?BX"?) = (—1,L?BX?, 1;L*BX?),

we find

Hy(A',t + 1) = Hy(A, 1) = 1g(1)D.(A)D,(A),

(B35)
and

(B36)

(B37)

with D,(A) = —ild/3X“ + |e|A,. Because D,(A) and D,(A)
can be related by a gauge transformation 2 = e~ ™VelX’F je
D,(A) =U'D,(A)U, (B38)

we get
Hy(A, v) =UHy(A, 7). (B39)

Now we can see that the LLL wave function after the Dehn
twist, when written in (X!, X?), is

WX X2 +1) =™ %W, (X" X271),  (B40)

where we have used
GNﬂ [Npz|Ng(t + 1)]

Z mN¢r(n+N )2+127T(Vl+]\',” )Nd,mLmNd,(nJr,G" )?

m?

m 7 Z( 1),,N¢ i Nyt (n+ 2 )2+12rr(n+ L )N¢z

n

) IH2
=" 02 (NgzINy ). (B41)
Therefore, a phase factor exp(iw 1”‘7;) is gained in the mth LLL
orbital after the Dehn twist.
Similar to the S transformation, we introduce a many-body
gauge transformation

] 2
U, = exp { it N, Z (Lr )

to relate the many-body wave functions before and after the
modular transformation {7 : T — t + 1}. Using Eqgs. (B18)-
(B21), we can get

(B42)

= UN (T + Df*AZ YT + Df(2 )T + DemmNer+D Xy, /e’

= N@SAUZY 0, ([} 2)e o Zus OlEw) o isin (VN =) e

= wr({X.. X} |T)e%m (NTN=) i2ha

(B43)
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where N = Y, N'e, is a vector enclosing the particle number
in each component N/ and we have used the following useful
relations (here we assume the total flux Ny through the torus
is even):

n(t +1) = e™n(r),
011(zlt + 1) = €6y, (z]7),
fOZIT+1) = ™ @ z)7),

Equation (B43) immediately gives the matrix representation
of the T transform as

Tab — <\I’b;T|T|\I’a;T) — SabeiZTI(hafi)el%inNT.N’ (B44)

where ¢ = « is the chiral central charge of the underlying edge
CFT and A, is the topological spin of the topological sector a
satisfying

he = 3a” -a (mod 1). (B45)

Again, we find that the result of 7 matrix is consistent with
the calculation based on the CFT [Eq. (6) in the main text],
except for a particle number related phase factor.

APPENDIX C: MODULAR MATRICES FOR THE
HALPERIN (m, m, m — 1) STATE

In this section, we explicitly calculate the modular matri-
ces for the Halperin (m, m, m — 1) state, using the method
of anyon condensation and extended chiral algebra, which
serves as an example to validate our theory. We see that
these direct calculations for the Halperin (i, m, m — 1) state
give consistent results with those obtained in the previous
sections. The difference is that the calculation shown in this
section is specific to (m, m, m — 1) state, while the CFT and
trial wave-function methods shown above are more general
for any Halperin state.

1. Anyon condensation method for Halperin (m, m, m — 1) state

Apart from the single-component Laughlin state, we con-
sider another special class of FQH states called the Halperin
(m,m,m — 1) state at filling v = % The Halperin state
lives on a double-layered system, where the particles are la-
beled by the pseudospin index {1, |} and its wave function is

(on the disk) [22]
vy =[G =[] - e -
i.j

i<j i<j

X exp |: - % Z(IZ,TI2 + |Z,»¢|2):|. (C1)

The bosonic Halperin (m, m, m — 1) state (m is even) is de-
scribed by the su(2); WZW model with a u(1)4,,_, boson [2].
The central charge, topological spin and fusion rules are given
by [10]

AA+2) N a’
12 8m —4°
()"7 a) ® (M’ b) = (()‘ + /“L)mod 2 (a + b)mod 4m—2)v (C3)

where A, u =0,1 and a,b=0,1,...,4m — 3. Both fields
have quantum dimension d; ) = d,d, = 1.

c=2, hgao= (C2)

Here, the number of primary fields 2 x (4m —2) = 8m —
4 is greater than the ground-state degeneracy 2m — 1 of the
Halperin (m, m, m — 1) state on the torus. The reason can be
understood by noticing a special primary field with integer

topological spin Ay 2m—1) = }f + ﬁgn:iz) = % € 7. The exis-
tence of such a bosonic field (with integer spin) beside vacuum
indicates the phenomenon Bose-condensation [33]. Let us
denote this field as J = (1, 2m — 1). The period of J is 2, since
its fusion rule is J?> = (0, 0). J should behave like the identity
1 = (0, 0). The reason is, similar to the case that we can-
not distinguish (A, @) from (A, a) ® 1" (m € N), we cannot
distinguish (A, a) from (A, a) ® J" (m € N) either. After con-
densation, the 8m — 4 primary fields are mapped into 4m — 2
distinguishable primary fields {[(0,a)];la =0,1,...,4m —
3}, where [- - -] denotes a equivalence class under the fusion
with J field [(0, a)]; : (0,a) ~ (0,a) ® J. For the notation
simplicity, we will abbreviate [(0, a)]; to a in the following.
Moreover, not all fields in [(0, @)]; are available, since some
of corresponding anyons are confined unless all fields in the
same equivalence class have the same topological spin. The
terminology deconfined means the anyons can exist in the
bulk. To find the deconfined fields, we need to consider the
difference between the topological spin of @ and a ® J (in the
sense of modulo 1):

1 (a@a+2m-1) a? a

ha _haz_ — = —.
ol 4 8m — 4 Sm—4 2

Clearly, for even a two anyons only differ by an integer spin.
Thus only half anyons in set [(0, a)]; are deconfined and form
the final theory

{a=102a)]la=0,1,...,2m -2}, (C4)

with the topological spins
2

T an— 1
which gives the modular 7" matrix as

Cl®b: (a+b)mod2m—lv (CS)

a

.2
Tap = Sape™™ T (C6)

Using the formula
1 : .
Sap = 5 Z/\/a};‘ exp [2mi(he — hy — hp)1de, (C7)
the S matrix of the final theory is
1 2ab
Sip = ——=exp| 2mi— ). C8
b 1 p ( > ) (C8)

m—1

The modular matrix obtained here exactly matches the results
from the CFT and trial wave function.

2. Extended chiral algebra method
for Halperin (m, m, m — 1) state

Furthermore, there is another way to construct the mod-
ular matrices, as we illustrate below. The existence of an
extra bosonic field i, =0 mod 1 signals the possibility of
a “block-diagonal modular invariant” partition function with
a “extended vacuum block™ [10]:

Z:|X0+Xn1+"'+Xm|2+"'~
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FIG. 4. The I'k and I'}; lattices for the (441) state. The solid blue
parallelogram is the coset of (441) states. An equivalent representa-
tion of coset is shown by the dashed blue rectangular.

In our example A = @1 <) u/(.l\ )am—1, the characters of all
primary fields are

—

Xoua(T) = X PN (KD (1), (C9)

() 2 ) .
where X;”( (1) = ﬁ Yomeziapnd" = K; )(7) is the char-

acter of sf\(2)1 and is equivalent to u/(l\ )». The bosonic field
hi,2m—1) = 1 extends the vacuum sector to “vacuum block”
Co(t) = x(0,00(T) + xc1,2m—1)(7), and other “blocks” contain
fields with topological spin differing by integers

Cp(t) = X0.2p)(T) + X1 2p+2m—1)(T).
In terms of the block character C,(7), the block-diagonal
modular invariant partition function can be written as

2m—2

Z=Y 1@

p=0

The integer difference of primary fields ensures the modular-
T invariant, and the S transformation of block characters is
[see Egs. (A4) and (C9)]

2m—2

1 .2
Cp(=1/7) = NeTEs Z [e™ 1501 )0.24(T)
g=0

2p(2g+1)

+ ey 2041 (D]

(b)

Zm—2 3727”‘ 23::11

= Z \/ﬁ[XO,Zq(T) + X1,2g+2m-1(T)]
q=0

Therefore, the S matrix of the block characters is

2pq
2m—1

2m =1

6727'”

Spy = (C10)

which is consistent with Eq. (C8). The unitary STS = 1 gives
the modular-S invariant of the partition function Z. Con-
clusively, the bosonic field gives another type of modular
invariant, the block-diagonal modular invariant, which can
be constructed by grouping the fields with integer difference
topological spin into blocks. After that, the modular S ma-
trix of the block characters is the final result that we are
looking for. Meanwhile, the structure of the vacuum block
indicates a symmetry enhancement or an extended chiral
algebra [31,41,59,60], which is the illustration of anyon con-
densation.

APPENDIX D: MORE EXAMPLES

Our theory is general, which has broad applications. In this
section, we present some examples of modular matrices of
multicomponent states that are beyond two-component spin-
singlet states.

1. Halperin (441) state

This section gives an example of a double-layer (441) state
whose K matrix is
4 1
()

This filling of this state is v =2/5, and the degeneracy
D = |detK| =15 =5 x 3. Numerically, this state has been
found recently [61]. The K lattice and its dual lattice are
shown in Fig. 4. The coset is written as I'y/I'x = {I'o +
aei +aejla=0,1,2,3,4} where I'y = {(0,0), e}, e3}. Ac-
cording to the results of the modular matrix [Eqgs. (4) and (6)

(D1

FIG. 5. The I'k and I'} lattices for (a) (2221) and (b) (4443) states. The blue and red spheres represent the lattice points of I'y and I'k,
respectively. The red spheres inside the parallelepiped are the coset lattice of I'y /T'x.
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in the main text], we obtain

T=e¢ 2”(224)diag{0 2 31 8
1515 5 15
and
1 1 1 1 1 1 1
1« % K3k K Kk
1L K3 oKk? K K6
1 &3 i3 PR T 12
(1 PR O k16 el Pat
1 &2 &« O il 16 18
| 1« « 12 18 a8 24
S=— |11 k0 s 15 (25 420 30
V15 1 &5 ko 15 200 28 30
1«0 K 8 2T T 136
1 k3 48 21 2
1« «B 2120 34 2
1 k2 g2 2436 036 48
1 16 1 2B 38 54
1 k1l g6 Py & P
with « = 2715, Bach small 3 x 3 matrix corresponds to

the three points in Iy + a(e; + e2) = {ae; + aes, (a + 1)e; +
aey, ae; + (a + 1)ey}.

We would like to stress that, here the representation of the
coset 'y /T'x of the Halperin (441) state is two dimensional,
which is different from the one-dimensional representation of
the spin-singlet state (see Fig. 1 in the main text).

2. Halperin (m, m, m, m — 1) state

In this section we consider the three-component Halperin
(m,m,m,m — 1) state. The K matrix of (m,m,m,m — 1)
state is defined as

m—1
m—1 m m—11,
m—1 m-—1 m

K= (D4)

8 41148 812 2

T L = =g (D2)

155335151551515}
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K65 K70 K81 K92 K97 108 K119 K124
(D3)

(

with filling v = 3/(3m — 2) and degeneracy D = |detK| =

3m — 2. Two examples of the K lattice and its dual lattice

are shown in Fig. 5. The coset lattice is I'y /T'x = {3m 2(e] +

er+e3)a=0,1,...,3m— 3}, and we can write down their
modular matrices accordingly:

_ 27”(5m24 ;4) _ 1 —6ﬂi%

Twa =€ ., Sw —me .

As an example, if we choose m = 2, the modular matrices are

(D5)

1 0 0 0
0 0 0 ik
1 11 1
_% i l —11 :; (D7)
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