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Twisted bilayer graphene at charge neutrality: Competing orders of SU(4) Dirac fermions
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We study possible patterns for spontaneous symmetry breaking in a Dirac fermion model, which is applicable
to twisted bilayer graphene at charge neutrality. We show how a chiral SU(4) symmetry emerges and construct
the corresponding low-energy model that includes a Fierz-complete set of symmetry-allowed four-fermion
interactions. We employ an unbiased renormalization group treatment to identify the critical points that describe
transitions into different ordered phases. The resulting phase diagram depends on the number of fermion flavors
and we show that the coupling between ordering channels prevents many of the possible mean-field orders from
being accessible at relevant, small flavor numbers. We argue that, as a consequence, twisted bilayer graphene
is governed by a quantum Hall state or an SU(4) manifold of insulating spin-valley orders with emergent
Lorentz symmetry that contains intervalley coherent, spin Hall, and valley Hall states. We study how SU(4)-
breaking perturbations affect the accessibility and can additionally stabilize symmetry-broken (semi)metallic
states.
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I. INTRODUCTION

Spontaneous symmetry breaking of Dirac fermions plays
an important role in many systems, ranging from the chi-
ral phase transition in quantum chromodynamics to quantum
critical points in semimetals [1–4]. Interactions must be suffi-
ciently strong for such phase transitions to occur because the
density of states of massless Dirac fermions vanishes at charge
neutrality. Furthermore, if the phase transition takes place at
zero temperature and is continuous, fermionic quantum criti-
cal behavior is expected which does not possess any classical
analog [3].

As a well-known example, spontaneous symmetry break-
ing in graphene was intensely studied. However, interactions
in graphene are estimated to be slightly too small to induce a
phase transition [5].

The recent discovery of strongly correlated moiré mate-
rials [6,7] provides a new opportunity for the investigation
of quantum phase transitions in two-dimensional (2D) Dirac
systems, where the relative interaction can be tuned via a
twist angle [8–10]. This includes, for example, symmetrically
twisted few-layer graphene systems [11], or twisted �-valley
transition metal dichalcogenides [12,13]. In particular, the
most prominent moiré material—twisted bilayer graphene
(TBG)—also hosts Dirac fermions at charge neutrality. Al-
though the Dirac velocity vanishes in TBG at a so-called
magic angle, strong interactions are expected in its vicinity
where Dirac fermions remain present [14,15].
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Experiments on TBG report both insulating [16–21] and
semimetallic [6,7,22–27] behavior near charge neutrality with
the differences potentially coming from twist-angle disorder,
strain, or substrate alignment. In particular, ultralow strain
samples show the emergence of a gap [28]. Theoretically,
several ground states were proposed for TBG near charge
neutrality [29–35]. It was argued that different ordered states
lie close in energy because the interaction of the continuum
model for TBG possesses a U(4) symmetry, or even U(4) ×
U(4) in the chiral limit, which relates the ordered states
[30,36–38]. Symmetry-lowering effects of the full model then
determine the ground state on smaller energy scales, while
external perturbations (such as disorder, stain, or substrates)
can change the selection [39–43]. However, internal pro-
cesses, such as the mutual feedback between correlations
of different ordering channels, can be equally decisive in
this situation. The near degeneracy of ordered states that
was demonstrated in Hartree-Fock calculations [30–32,41–
44] highlights the need for unbiased treatments of competing
orders. Recently, Monte Carlo simulations [33,34,45,46] and
renormalization group (RG) calculations [35,47] addressed
this competition, but within different models for the nar-
row bands in TBG, which affects the delicate interplay of
orders.

In this paper, we present a complementary analysis that
investigates competing orders as instabilities of itinerant Dirac
electrons. Focusing on the Dirac spectrum and employing an
unbiased renormalization group approach allows us to draw
universal conclusions and assess relevant orders. Our rationale
comes from the observed signatures of a Dirac dispersion in
TBG, and the relative reduction of interaction effects due to
the vanishing density of states of Dirac electrons.

As a point of departure, we use an effective low-
energy model valid around charge neutrality that respects the
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symmetries and topology of the narrow bands of TBG in the
vicinity of the magic angle [48]. We argue that a chiral SU(4)
symmetry emerges in this low-energy Dirac fermion model,
which we generalize to an arbitrary number of flavors (Dirac
points) Nf . We study possible phase transitions based on all
symmetry-allowed local interactions via the perturbative RG.
To do so, we analyze the fixed-point structure of the RG equa-
tions for a Fierz-complete basis of the fermionic interactions.
Our analysis is valid beyond the concrete application to TBG
for other two-dimensional Dirac systems and thereby com-
plements, e.g., previous fermionic RG investigations of phase
transitions in graphene [49–56]. We classify possible quan-
tum phase transitions based on flavor and Lorentz symmetry
of their order parameter manifolds, and if they dynamically
generate a mass that gaps out the Dirac spectrum or if they
distort the spectrum but maintain (semi)metallicity.

We find that, although there are many accessible transitions
on the single-channel mean-field level, which is equivalent
to large flavor numbers, the corresponding fixed points can
disappear for small flavor numbers due to the coupling be-
tween different ordering channels. As a result, only a few
transitions remain accessible for small flavor numbers, which
is relevant to TBG. They include transitions with emergent
Lorentz symmetry to a quantum anomalous Hall (QAH) state
as well as a state with an SU(4) order parameter manifold that
contains spin Hall, valley (spin) Hall, and intervalley-coherent
states with a gapped spectrum. We also determine how re-
laxing SU(4) symmetry affects the possible phase transitions.
We show that the instabilities descending from the order
parameter manifold of insulating states remain accessible sep-
arately. In addition, we argue that perturbing SU(4) stabilizes
instabilities towards spin-(valley-)polarized, spin nematic, and
metallic intervalley-coherent states.

II. SU(4) DIRAC ELECTRONS

A. Dirac Fermion model of twisted bilayer graphene

Our starting point is a low-energy effective model for Dirac
fermions around charge neutrality in TBG [48] with the action
at zero temperature:

S0 =
∫

d3q

(2π )3
ψ†(−iω + ρxτzqx + ρyqy)ψ, (1)

where ψ is a 16-component spinor due to spin, sublattice,
valley, and minivalley degrees of freedom. We denote unity
(γ = 0) and Pauli (γ = x, y, z) matrices in sublattice space
with ργ and in valley space with τγ . Analogously, we use σγ

and μγ for spin and minivalley space below. The sublattice
and valley degrees of freedom form the Clifford algebra of the
Dirac spinors (see below for a Lorentz-invariant formulation),
while the kinetic part of the action S0 is diagonal in spin and
minivalley space.

The minivalley degree of freedom originates from the
Dirac points in the same valley of the two different graphene
layers, i.e., the two minivalleys per valley possess the same
chirality.

We generalize the minivalley degrees of freedom to an
arbitrary number of flavors for the Dirac fermions ψ → ψα

with α = 1, 2, . . . Nf . In the case of TBG NTBG
f = 2, i.e., Nf

counts the number of eight-component spinors [57]. The Dirac
fermion model (1) implements the emergent C2 symmetry of
the continuum model of TBG via RC2 = ρxτxμx and q → −q
and time reversal via � = σyτxμxK and q → −q. The three-
fold rotation C3 is promoted to a full U(1) rotational symmetry
Rrot = exp[−iϕρzτz] in the low-energy limit around charge
neutrality. Furthermore, since the hybridization between lay-
ers can be treated as a perturbation for states around the Dirac
cones [15], the spin-valley SU(2) × SU(2) × U(1) symmetry
of TBG is enhanced to an emergent SU(4) in the low-energy
limit, similar to the chiral limit [38,58]. It is generated by the
set of matrices

T = {σc, τzσγ , ρyτxσγ , ρyτyσγ } (2)

with c = {x, y, z} and γ = {0, x, y, z}. The generalization of
the flavor index leads to a unitary flavor symmetry acting via
a transformation Uf ∈ U(Nf ).

On the level of interactions, we include all symmetry-
allowed local four-fermion couplings according to the sym-
metries above. They will be generated by fluctuations, even
if zero in the microscopic Hamiltonian so that it is important
to include them for an unbiased analysis. In particular, this
means that we must include couplings that break the U(4) ×
U(4) symmetry of the interactions in TBG in the chiral limit
because it is partially broken by the dispersion [30,36–38].
We discuss effects that break chiral SU(4) symmetry further in
Sec. III F. We also retain the emergent flavor symmetry in the
interactions, i.e., different symmetry-breaking patterns within
minivalleys (which would translate to layer polarization or
translational symmetry breaking on the scale of the moiré
lattice) are degenerate. We then find that there are six distinct
couplings allowed by these symmetries so that the interaction
Lagrangian is given by

Lint = g1

Nf
(ψα†ψα )2 + v1

Nf

15∑
i=1

(ψα†Tiψ
α )2

+ g4

Nf
(ψα†ρzτzψ

α )2 + v4

Nf

15∑
i=1

(ψα†ρzτzTiψ
α )2

+ g2

Nf
(ψα†νψα )2 + v2

Nf

15∑
i=1

(ψα†ωiψ
α )2 (3)

where Ti ∈ T , ν = (ρxτz, ρy), and ωi = (ρxτzTi, ρyTi ). We as-
sume the long-range Coulomb tail to be screened by the
surrounding gates. The 64 matrices describing the couplings
in Eq. (3) form a complete basis set for 8 × 8 matrices.
Furthermore, we only included flavor-diagonal terms in Lint

because Fierz identities allow us to appropriately rewrite any
flavor-symmetry-allowed terms as a linear combination of the
ones considered in Eq. (3) (see Appendix A). Note that this in-
cludes terms with explicit minivalley dependence (ψ†Mμψ )2,
where M ∈ {Ti, ρzτz, ρzτzTi, ν,ωi}. Thus, the six couplings
form a Fierz-complete basis for interacting SU(4)×SU(Nf )-
symmetric Dirac fermions with Nf > 1. The inclusion of all
terms allowed by the Fierz identities is important for the
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TABLE I. Summary of possible orders introduced in Sec. II B
and their tensor structure specified by Pauli matrices in sublattice
ρ, valley τ , and spin σ space (c = x, y, z). We also list the corre-
sponding single-channel coupling in the limit of large flavor numbers
Nf and the critical values Nc

f in the SU(2) × SU(2) × U(1) case.
The dash indicates stability for the whole interval of Nf studied.
Horizontal lines group orders related by SU(4) symmetry Eq. (2).

Order Tensor structure Large-Nf channel Nc
f

Density 1 g1 1.55

IQH

(
ρxτz

ρy

)
g2 2.46

QAH ρzτz g4 –

SP σc v
(1)
1 3.66

SVP τzσc v
(2)
1 1.48

VP τz v
(3)
1 4.49

IVC-2 (ρyτx, ρyτy ) v
(4)
1 3.23

S-IVC-2 (ρyτxσc, ρyτyσc ) v
(5)
1 9.14

S-IQH

(
ρxτzσc

ρyσc

)
v

(1)
2 5.21

S-NEM

(
ρxσc

ρyτzσc

)
v

(2)
2 2.30

NEM

(
ρx

ρyτz

)
v

(3)
2 6.83

N-IVC

(
ρzτy

τx

)
,

(
ρzτx

τy

)
v

(4)
2 5.23

S-N-IVC

(
ρzτyσc

τxσc

)
,

(
ρzτxσc

τyσc

)
v

(5)
2 19.9

QSH ρzτzσc v
(1)
4 –

VSH ρzσc v
(2)
4 –

VH ρz v
(3)
4 –

IVC-1 (ρxτx, ρxτy ) v
(4)
4 –

S-IVC-1 (ρxτxσc, ρxτyσc ) v
(5)
4 2.75

correct identification of critical points [4,54]. For Nf = 1,
there are additional Fierz identities which reduce the number
of couplings to 3 (see Appendix A).

In the following we study the full effective action:

� = S0 +
∫

d3�xLint. (4)

We focus on particle-hole instabilities motivated by the ex-
perimental observations of semimetallic or insulating ground
states at charge neutrality in TBG. Pairing instabilities are, in
principle, also contained in our setup and can be analyzed via
the use of other Fierz identities that translate to the pairing
channel.

B. Ordered states

Taken on their own, each of the couplings can induce
an instability towards a state with spontaneously broken
symmetry if strong enough. The ordered states are charac-
terized by the condensation of the corresponding bilinears
φM = 〈ψα†Mψα〉 �= 0 with M ∈ {Ti, ρzτz, ρzτzTi, ν,ωi} (see
also Table I). Note that n = 〈ψα†ψα〉 is fixed by the den-
sity and does not break any symmetry. The condensation of
φρzτz corresponds to the spontaneous formation of a QAH

state and generates a gap in the spectrum. A finite φρzτzTi

also gaps out the Dirac fermions. Its SU(4) order parameter
manifold contains quantum spin Hall (QSH) ∼ρzτzσc, val-
ley Hall (VH), and valley spin Hall (VSH) ∼ρzσγ states, as
well as intervalley coherent order [29] ∼ρxτx,yσγ (IVC-1)
that anticommutes with the Dirac Hamiltonian. In contrast,
the SU(4) order parameter manifold described by φTi splits
the degeneracy of the Dirac spectrum, resulting in a metallic
state (except the splitting becomes on the order of the band-
width). It contains spin-polarized ∼σc, valley-polarized ∼τz,
and spin-valley-polarized ∼τzσc orders, as well as intervalley
coherent order ∼ρyτx,yσγ (IVC-2) that commutes with the
Dirac Hamiltonian. The IVC orders can be classified into
time-reversal symmetric T-IVC and nonsymmetric Kramers
K-IVC [30] states. This classification generally depends on
the projection in μ space. With their diagonal minivalley
configuration, IVC-1 is a T-IVC and IVC-2 is a K-IVC state.
Instabilities towards other IVC states with triplet minivalley
configuration μx,y,z can be probed via making use of the Fierz
identities (see Sec. III C). Finally, condensation of φν and
φωi spontaneously breaks rotation symmetry. This shifts the
position of the Dirac points away from the corners of the
Brillouin zone and preserves the semimetallic state. A finite
order parameter φν couples to the fermions in the same form
like a vector potential ∼(ρxτz, ρy) which leads to the integer
quantum Hall (IQH) effect [59]. The SU(4) order parameter
manifold φωi contains a spinful variant of this ∼(ρxτzσc, ρyσc)
(S-IQH), in addition to nematic ∼(ρx, ρyτz ) (NEM) and spin-
nematic ∼(ρxσc, ρyτzσc) (S-NEM) orders, as well as nematic
and spin-nematic intervalley coherent states (N-IVC and S-
N-IVC). The latter possess matrix order parameters built of
two vectors under rotation (ρzτyσγ , τxσγ ) and (ρzτxσγ , τyσγ )
which are related by valley U(1)v [60,61].

C. Lorentz-invariant SU(4)-symmetric model

As Dirac fermions are relevant in a variety of systems
besides TBG, we reformulate the action in an explicitly
Lorentz-invariant form and compare our results in both cases.
To this end, we rewrite L0 as

L0 = ψ̄γμqμψ (5)

where ψ̄ = ψ†γ0, γ1 = γ0ρxτz, and γ2 = γ0ρy. With the
requirement that the γ matrices satisfy the Euclidean Clif-
ford algebra {γμ, γν} = 2δμν , there are four choices of γ0 ∈
{ρzτz, ρz, ρxτx, ρxτy}. For γ0 = ρzτz, the γ matrices form
a reducible representation of the two-dimensional Clifford
algebra; for the other choices, they form reducible, unitar-
ily equivalent four-dimensional representations. To impose
Lorentz invariance on the interaction Lagrangian (3), we ad-
ditionally require g1 = −g2 =: g and v1 = −v2 =: v. This
yields

LL
int = g

Nf
(ψ̄αγμψα )2 + v

Nf

15∑
i=1

(ψ̄αγμTiψ
α )2

+ g4

Nf
(ψ̄αψα )2 + v4

Nf

15∑
i=1

(ψ̄αTiψ
α )2 (6)

235120-3



NIKOLAOS PARTHENIOS AND LAURA CLASSEN PHYSICAL REVIEW B 108, 235120 (2023)

for the 2D representation, or

LL
int = g

Nf
(ψ̄αγμψα )2 + v

Nf

15∑
i=1

(ψ̄αγμTiψ
α )2

+ g4

Nf
(ψ̄αγ35ψ

α )2 + v4

Nf

15∑
i=1

(ψ̄αγ35Tiψ
α )2 (7)

for the four-dimensional representations, where γ35 = iγ3γ5 is
formed by the two additional matrices γ3 and γ5 which anti-
commute with γμ, i.e., γ35 commutes with γμ. In analogy to
the discussion of the ordered states above, the chiral conden-
sates 〈ψ̄αψα〉 and 〈ψ̄αTiψ

α〉 (〈ψ̄αγ35ψ
α〉 and 〈ψ̄αγ35Tiψ

α〉)
spontaneously generate a mass in the fermion spectrum, while
the vector condensates 〈ψ̄αγμψα〉 and 〈ψ̄αγμTiψ

α〉 sponta-
neously break Lorentz symmetry.

III. RENORMALIZATION GROUP ANALYSIS

A. RG flow and beta functions

To study the possible ordering tendencies, we employ
a perturbative renormalization group scheme. Within the
RG, we successively integrate out modes above a cutoff
scale k and express the scale evolution of the couplings
λ ∈ {g1, g2, g4, v1, v2, v4} via the differential equations βλ =
k∂kλ. This defines an effective action �k at scale k, and for
k → 0, we recover the full effective action that includes all
quantum corrections. We show in Appendix B in terms of
a functional RG formulation [62–68] that the one-loop flow
equations are independent of the cutoff scheme. For example,
a Wilsonian scheme can be used that integrates over modes
within a momentum shell. We obtain the flow equations

βg1 = g1 − 4

Nf

[
g2

1(4Nf − 1) − 2g1g2 − g1g4

− 15g1(v1 + 2v2 + v4) − 4g2g4 − 60v2v4
]
, (8)

βv1 = v1 + 4

Nf

[
g1v1 + 2g2(v1 + 2v4) + g4v1 + 4g4v2

− 4Nf v
2
1 − 9v2

1 + 30v1v2 − v1v4

+ 16v2
2 + 24v2v4 − 8v2

4

]
, (9)

βg4 = g4 + 4

Nf

(
4g1g2 − 3g1g4 − g2

2 + 6g2g4

+ 12g2
4Nf − 3g2

4 + 90g4v2 − 45g4v1 − 45g4v4

+ 60v1v2 − 30v2
2

)
, (10)

βv4 = v4 + 4

Nf

[
4g1v2 − 3g1v4 + g2(4v1 − 4v2 + 6v4)

− 3g4v4 + 12Nf v
2
4 + 24v1v2 − 13v1v4

− 12v2
2 + 26v2v4 + 3v2

4

]
, (11)

βg2 = g2 − 4

Nf

[
g1(g2 − 2g4) − 4g2

2Nf + g2g4

+ 15v1 − 15v4) + 30v4(v2 − v1)
]
, (12)

βv2 = v2 − 4

Nf

[
g1v2 − 2g1v4 + 2g2v4 + g4(v2 − 2v1)

− 4Nf v
2
2 − 8v2

1 + 3v1(5v2 − 4v4) − 32v2
2

+ 13v2v4 − 8v2
4

]
(13)

where we rescaled the couplings kd−2l f λ → λ with space-
time dimension d = 2 + 1 and loop integral l f (see Ap-
pendix B). For Wilson’s momentum-shell cutoff, l f =
2πd/2/�[d/2] is the area of the unit sphere in d = 2 di-
mensions. For the Lorentz-invariant model, we again impose
g = g1 = −g2 and v = v1 = −v2. The Lorentz symmetry is
maintained along the flow, therefore βg = βg1 = −βg2 as well
as βv = βv1 = −βv2 .

B. Fixed points and stability

We are interested in fixed points of the RG equations be-
cause they are connected to the possible quantum phase
transitions that can be induced by strong couplings. Thus,
we look for solutions λ∗ = (g∗

1, . . . , v
∗
4 ) where all the beta

functions vanish:

βλi (λ
∗) = 0. (14)

To identify which solutions correspond to critical points, we
consider the linearized flow of the beta functions around a
fixed point and evaluate the stability matrix

Ri j = −∂βλi

∂λ j

∣∣∣∣
λ=λ∗

(15)

which describes how the scale evolution of the couplings is
attracted to or repelled from the fixed point. The eigenval-
ues of the stability matrix determine the critical exponents
of the corresponding second-order phase transition. They are
universal quantities which do not depend on the microscopic
details of the model. We are interested in stable fixed points
that can be accessed by tuning only one parameter because
they are associated to critical points. This means the spectrum
of the stability matrix must have all negative eigenvalues
except one, which defines a relevant repulsive direction in
coupling space. This largest critical exponent determines the
correlation-length exponent. The second largest exponent de-
scribes the corrections to scaling and decides over the stability
of the fixed point. Fixed points with more than one relevant
direction are considered multicritical or unstable. The trivial
Gaussian fixed point (λ = 0), which defines a noninteracting
theory in the IR, has a fully negative spectrum, reflecting the
need of strong couplings to induce a phase transition. Any
nontrivial solution describes an interacting fixed point with
finite values of the couplings. If the bare couplings lie beyond
the threshold set by the interacting fixed points, their flow
diverges along the relevant direction towards the infrared, in-
dicating the formation of an ordered state with spontaneously
broken symmetry (see Fig. 1).

C. Susceptibility analysis

The characterization of the possible ordered phases based
on the stable fixed points is nontrivial for finite flavor num-
bers. Since the fixed points’ coordinates generally have
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FIG. 1. Flow of couplings according to the beta functions βg4 , βv4 , and βv1 along a plane in coupling space illustrating the behavior
around the critical fixed points FPS, FPS−SU(4), and FPM−SU(4) (red) and the trivial noninteracting Gaussian fixed point (black) for the Lorentz
noninvariant case. If the bare values of the couplings are larger in magnitude than the values set by the critical fixed points, they flow to strong
coupling in the infrared, signaling a potential instability towards symmetry breaking.

nonzero values, the identification of the ordering tendencies is
complicated by multiple divergent couplings. In order to gain
further insight within this fermionic description, we calculate
the flow of susceptibilities. This is done by adding an infinites-
imal test field to the effective action that explicitly breaks the
symmetry along a specific ordering channel [69–71]:

�k → �k + hiψ
α†Miψ

α, (16)

where Mi ∈ {Ti, ρzτz, ρzτzTi, ν,ωi}. These terms represent the
coupling of fermions to an external field, which is set to zero
at the end. We define the corresponding susceptibilities as

χi = ∂2�k

∂h2
i

∣∣∣∣∣
hi=0

. (17)

In the vicinity of the fixed points, the fields and susceptibilities
scale according to

hi ∝ kβi , (18)

χi ∝ kγi (19)

with γi = 2βi + 1 [72–74] (see Appendix C). If γi < 0, the
corresponding susceptibility diverges. In d = 2 + 1 dimen-
sions, this means that β < − 1

2 . We associate the fixed point
with the ordering channel whose susceptibility shows the
strongest singularity.

We extract the exponents from the flow equations for the
infinitesimal fields

∂t hg1 = 2

Nf
(g1 + 2g2 + g4 − 8g1Nf + 15v1

+ 30v2 + 15v4)hg1 , (20)

∂t hv1 = − 2

Nf
(v1 + 8Nf v1 + 2v2 + v4 − g1 − 2g2 − g4)hv1 ,

(21)

∂t hg4 = − 6

Nf
(g1 − 2g2 + g4 − 8g4Nf + 15v1

− 30v2 + 15v4)hg4 , (22)

∂t hv4 = 6

Nf
(2g2 − g4 + v1 − 2v2 + v4 + 8Nf v4 − g1)hv4 ,

(23)

∂t hg2 = 2

Nf
(g4 + 8g2Nf − 15v1 + 15v4 − g1)hg2 , (24)

∂t hv2 = 2

Nf
(g4 + v1 + 8Nf v2 − v4 − g1)hv2 (25)

at the fixed-point solution. We can see that in the linear re-
sponse regime the introduction of a symmetry-breaking term
along a certain channel renormalizes only the respective field
with no feedback to the others, i.e., the flow equations are
decoupled so that we can evaluate them separately. Addition-
ally, we note that these equations are Lorentz invariant if we
again impose g = g1 = −g2 and v = v1 = −v2. Analogously,
to probe the susceptibilities for flavor-symmetry breaking, we
introduce infinitesimal fields ht

iψ
†Miμ jψ and calculate the

susceptibility exponents. In this case, the flow equations are
expressed via the triplet couplings λt

i defined by the interac-
tion terms (λt

i/Nf )(ψ†Miμψ )2 (see Appendix C). We obtain
the fixed-point values of λt

i through a Fierz transformation of
the fixed points in the flavor-diagonal basis (see Appendix A).
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FIG. 2. The couplings of the scalar (FPS−SU(4)) and vector (FPV−SU(4)) SU(4) fixed points for several values of the fermion flavor number
Nf . For general Nf , all fixed-point couplings are nonzero, demonstrating that different ordering channels are coupled. For large values of Nf

only one coupling is nonzero and a single-channel mean-field description is possible.

D. RG flow of the Lorentz-invariant system

We first analyze the RG flow of the Lorentz-invariant
system, i.e., we consider the case where g = g1 = −g2 and
v = v1 = −v2. Our results for the system without Lorentz
invariance and relaxed SU(4) symmetry are presented in the
next sections. We perform the fixed-point analysis described
above for several values of the fermionic flavor number Nf .
In the large-Nf limit, the RG analysis becomes equivalent
to a single-channel, mean-field treatment. But for finite Nf ,
the feedback between ordering channels is important and can
qualitatively change possible ordering tendencies as we show
below. We start with the large-Nf limit, where the beta func-
tions decouple and allow for an unambiguous characterization
of the possible ordered phases. We identify four stable fixed
points that in this limit are characterized by only one coupling
of the scalar (S) or vector (V) channels being nonzero:

FPS : g∗
4 = − 1

48 + O(1/Nf ), (26)

FPS−SU(4) : v∗
4 = − 1

48 + O(1/Nf ), (27)

FPV : g∗ = 1
16 + O(1/Nf ), (28)

FPV−SU(4) : v∗ = 1
16 + O(1/Nf ). (29)

Upon lowering Nf , the coupling between the different or-
dering channels starts to affect the fixed points and their
properties in several ways. With the exception of FPS, other
couplings become nonzero at the fixed points, necessitating
the susceptibility analysis for an unambiguous identification
of the corresponding instability. The scalar fixed point FPS is
located at

[g∗
4, v

∗
4 , g∗, v∗] =

[
− Nf

12(4Nf − 1)
, 0, 0, 0

]
(30)

for general Nf , and the vector fixed point FPV at

[g∗
4, v

∗
4 , g∗, v∗] = [g∗

4,V (Nf ), 0, g∗
V (Nf ), 0] (31)

with g∗
4,V (Nf ), g∗

V (Nf ), 0) � 0. We give explicit analytical
expressions in Appendix D. For FPS−SU(4) and FPV−SU(4),
the fixed-point values of all couplings become nonzero

for general Nf (see Fig. 2). We find λ∗
i,V−SU(4) � 0

for all λ ∈ {g, v, g4, v4}, while g∗
S−SU(4), v

∗
4S−SU(4) � 0, and

v∗
S−SU(4), g∗

4S−SU(4) � 0. As we described above, the location
of the fixed points determines the regime of strong coupling
where the flow becomes unstable, signaling an instability
towards spontaneous symmetry breaking. The flow to strong
coupling governed by FPS and FPS−SU(4) is shown in Fig. 1.

Importantly, we observe that not all of the fixed points
are accessible for any Nf . Specifically, we find critical values
of the flavor number Nc

f at which they either disappear or at
which they become multicritical. These changes occur via a
“collision” with other (multicritical) fixed points. In the first
case, the fixed point ceases to exist in the space of real-valued
couplings at the critical Nf , and instead a pair of complex
conjugate solutions moves into the complex plane. We find
that the fixed-point solution FPS−SU(4) exhibits this behavior
and disappears at Nc

S−SU(4) = 1.89. In the second case, the
second largest eigenvalue of the stability matrix θ2 changes
its sign at the critical value of the flavor number so that the
fixed point becomes unstable. The largest eigenvalue of the
stability matrix θ1 = 1 independent of the critical point and
Nf as expected for critical four-fermion models [54]. The
second largest critical exponent approaches θ2 → −1 for
large Nf , but generally varies as function of Nf . We show
the exponent θ2 for all four critical points in Fig. 3. The
quantum critical points labeled as FPS and FPV−SU(4) remain
accessible, i.e., θ2 < 0, for all values 1 < Nf < ∞, as does
FPS−SU(4) in the range where it exists Nf > 1.89. In contrast,
FPV becomes multicritical at Nc

V = 3.0 (see Appendix D for
analytical expression).

Furthermore, we underline the importance of including
the analysis of the susceptibilities (Sec. III C) in the proper
characterization of a fixed-point solution. We find divergent
susceptibilities at small values of Nf ≈ 2 for the same insta-
bilities as at large Nf governed by critical points FPS, and
FPS−SU(4). These both correspond to states with a gap in the
symmetry-broken regime. In the case of TBG, they describe
a QAH state, or a state with SU(4) order parameter mani-
fold connecting QSH, VH, VSH, and IVC-1 phases. In the
case of FPV−SU(4), no divergent singlet channel ∼μ0 exists
(Fig. 4). Instead we find an instability in the triplet channel,
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FIG. 3. Second largest critical exponent θ2 of the scalar (FPS, FPS−SU(4)) and vector (FPV, FPV−SU(4)) fixed points of the Lorentz-invariant
Dirac fermion model. The largest critical exponent θ1 = 1 (and is omitted for clarity). The sign of θ2 dictates the stability of the fixed-point
solution. It can be clearly seen that FPV becomes unstable at Nc

V = 3, where θ2 changes sign.

i.e., towards flavor symmetry breaking, ∼〈ψ†ρzτzμψ〉, which
also opens a gap. In the case of TBG, this describes a QAH
state with additional modulation on the moiré scale, which
includes degenerate layer polarized states ∼μz and moiré
density waves ∼μx,y due to the flavor symmetry.

E. RG flow of the Dirac fermion model for TBG

Since a physical system like TBG is a priori not Lorentz
invariant, we are interested in extending the above discussion
to the full Lagrangian spanned by all six couplings in Eq. (3)
and compare to what is captured in the Lorentz-invariant case.

FIG. 4. The exponents β that determine the divergence of susceptibilities Eq. (18) for the vector SU(4) (FPV−SU(4)) and scalar (FPS) fixed
points in the Lorentz-invariant case. If β < − 1

2 , the corresponding susceptibility diverges, signaling a phase transition as marked by the orange
dashed line. For the case of FPV−SU(4) the leading instability is in the triplet QAH channel.
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We thus look to find the fixed-point solutions that describe
quantum phase transitions for the group of beta functions in
Eqs. (8)–(13). We find in total seven fixed points that are
stable for some range of Nf , but generally display a varied
behavior as a function of the fermionic flavor number Nf . In
the large-Nf limit, the RG equations again decouple and we
can identify six of the seven stable fixed points corresponding
to the separate ordering channels

FPS : g4 = − 1
48 + O(1/Nf ), (32)

FPS−SU(4) : v4 = − 1
48 + O(1/Nf ), (33)

FPn : g1 = 1
16 + O(1/Nf ), (34)

FPSM : g2 = − 1
16 + O(1/Nf ), (35)

FPM−SU(4) : v1 = 1
16 + O(1/Nf ), (36)

FPSM−SU(4) : v2 = − 1
16 + O(1/Nf ), (37)

where all other couplings are of order O(1/Nf ), respectively.
We recover the fixed points FPS and FPS−SU(4) of the scalar
channels from the Lorentz-invariant case. The two remaining
Lorentz-invariant fixed points

FPV : g1 = −g2 = 1
16 + O(1/Nf ), (38)

FPV−SU(4) : v1 = −v2 = 1
16 + O(1/Nf ) (39)

are unstable for Nf → ∞. Instead, we find the four fixed
points FPn, FPSM, FPM−SU(4), and FPSM−SU(4) to be stable
at large Nf . FPn describes the density channel, which does
not correspond to any symmetry breaking. A divergence of
g1 signals the singular response of the chemical potential to
a density change at the Dirac point where the inverse com-
pressibility diverges. The semimetallic (SM) instabilities of
FPSM and FPSM−SU(4) correspond to the breaking of rotation
symmetry with or without an SU(4) order parameter manifold,
and FPM−SU(4) describes polarizing instabilities which yield a
metallic (M) state for small order parameters (see Sec. II B).

In a similar manner to the Lorentz-invariant case, the exis-
tence and the stability of the fixed points can change when Nf

becomes small, and a single-channel mean-field description
breaks down (see Appendix D for the evolution of fixed-point
couplings and critical exponents with Nf ). Exceptions are the
fixed point related to a QAH instability FPS given by Eq. (30),
and the fixed point related to the density channel FPn given
by g∗

1 = Nf /4(4Nf − 1), which both possess just one nonzero
coupling. A general overview of the fixed points’ behavior as
a function of Nf is provided in Fig. 5.

We find that FPS and FPn remain accessible for any 1 <

Nf < ∞. As in the Lorentz-invariant case, FPS−SU(4) exists
and is stable for 1.89 < Nf < ∞. This means that Lorentz
symmetry emerges in the vicinity of the associated phase
transition towards the insulating SU(4) order. In contrast,
the Lorentz-invariant fixed point FPV is always multicritical
if Lorentz invariance is not enforced. Interestingly, another
fixed point with emergent Lorentz symmetry becomes critical
when lowering Nf , which is not part of the stable large-Nf

fixed points. The Lorentz-invariant solution FPV−SU(4) col-
lides with the semimetallic SU(4) solution FPSM−SU(4) at Nc

f =

FIG. 5. Schematic overview which summarizes the varied be-
havior of the different fixed-point solutions as function of flavor
number Nf , where Nf = 2 in the Dirac fermion model of TBG.
Density (FPn) and semimetallic (FPSM) fixed points become mul-
ticritical for small Nf , the Lorentz-invariant vector fixed point
(FPV) is multicritical for any Nf , and the SU(4) vector fixed
point (FPV−SU(4)) is multicritical at large Nf (red dashed line).
Metallic (FPM−SU(4)), semimetallic (FPSM−SU(4)), and insulating
(FPS−SU(4)) SU(4) fixed points lie in the complex plane below a
critical flavor number (blue dashed line). Only the scalar fixed
point is stable for any Nf . It is associated with a QAH phase
transition.

13.6, leaving FPSM−SU(4) unstable and FPV−SU(4) stable at
smaller Nf . At slightly smaller Nf ≈ 12.89, FPSM−SU(4) and
FPM−SU(4) collide and vanish into the complex plane. Finally,
FPSM becomes multicritical at Nf ≈ 2.55. We also calculate
the exponents characterizing the divergence of susceptibilities
for the seven fixed points (see Appendix C). We find that all
the divergent channels can be connected to the large-Nf limit,
with the exception of FPV−SU(4), which is not stable at large
Nf . Furthermore, slightly before FPSM−SU(4) disappears, the
related leading instability changes to the triplet channel (see
Fig. 6 in Appendix C).

Therefore, a picture similar to the Lorentz-invariant case
arises in the Dirac fermion model of TBG at small Nf ≈ 2.
We obtain instabilities related to FPS FPV−SU(4) and FPS−SU(4).
These correspond to symmetry-broken phases with a gap
due to QAH states with (∼μ0) or without (∼μx,y,z) minival-
ley symmetry, or SU(4)-related VH, VSH, QSH, and IVC-1
states. Interestingly, there is neither an instability towards
polarizing orders (SP, VP, IVC-2) associated with FPM−SU(4)

nor one towards nematic orders associated with FPSM or
FPSM−SU(4) in the strict SU(4)-symmetric model.

If however, this symmetry is reduced, additional solutions
become accessible also in the small-Nf limit because the
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critical flavor number of the separate instabilities is lowered.
This is further elaborated on in the next section.

F. Relaxing SU(4)

As described in Sec. II A, the Dirac fermion model of TBG
possesses an emergent SU(4) symmetry, leading to a fourfold
degeneracy of the Dirac fermions at charge neutrality. Since
three out of the six quantum critical points are related to orders
containing an SU(4) symmetric manifold, we are interested in
studying whether these fixed-point solutions are robust under
a possible breaking of this symmetry. The breaking can occur
on the level of the interactions due to high-energy corrections
above the UV cutoff of the Dirac fermion model, which lower
the symmetry from SU(4) to SU(2) × SU(2) × U(1), i.e.,
independent spin rotations in both valleys.

We thus split the initial manifold into five new channels
that are invariant by the lowered symmetry

T (1) = {σc},
T (2) = {τzσc},

T (3) = τz,

T (4) = {ρyτx, ρyτy},
T (5) = {ρyτxσc, ρyτyσc}

and study the Lagrangian that accounts for the new interaction
terms. The above channel separation means that five new cou-
plings are to be introduced for each term ∝ vi that contained
an SU(4) manifold, yielding in total 18 interaction terms in
the lower-symmetry Lagrangian:

L′
int = g1

Nf
(ψα†ψα )2 +

∑
i, j

v
(i)
1

Nf

(
ψα†T (i)

j ψα
)2

+ g4

Nf
(ψα†ρzτzψ

α )2 +
∑
i, j

v
(i)
4

Nf

(
ψα†ρzτzT

(i)
j ψα

)2

+ g2

Nf
(ψα†νψα )2 +

∑
i, j

v
(i)
2

Nf

(
ψα†ω

(i)
j ψα

)2
(40)

where ω
(i)
j = (ρxτzT

(i)
j , ρyT (i)

j ). We derive the flow equa-
tions for the new set of couplings (see Appendix E) and
investigate how the fixed-point structure changes.

To study the robustness of the SU(4) symmetry, we eval-
uate the eigenvalues of the stability matrix at the coupling
coordinates of the SU(4) symmetric quantum critical points.
We find that the fixed points related to FPS, FPn, and FPSM
retain the same behavior as in the previous cases since they
are not related to any SU(4) manifold. Furthermore, we con-
sider the stability matrix for Nf = 2, 14, 20 for the SU(4)
fixed points FPM−SU(4), FPSM−SU(4), and FPS−SU(4), which all
become multicritical. The number of relevant directions is
increased to 4 for FPS−SU(4) and FPSM−SU(4) and to 5 for
FPM−SU(4). They are primarily along couplings of the channel
they descend from, i.e., along v

(i)
2 for FPSM−SU(4), along v

(i)
1

for FPM−SU(4), and along v
(i)
4 for FPS−SU(4).

As such, we observe that the emergent SU(4) symmetry of
the Dirac fermion model is not robust against perturbations.
Mechanisms which induce a breaking of the SU(4) symmetry

select a specific ground state out of the SU(4) order parameter
manifolds.

To determine possible selections, we follow the Nf evolu-
tion of the 18 single-channel solutions that occur as quantum
critical points at large Nf in this case. The result is summa-
rized in Table I. In total, out of the 18 large-Nf stable fixed
points we find that seven remain critical down to small Nf ≈
2. Besides FPS and FPn, fixed-point solutions characterizing
the transition to QSH, VH, VSH, and spinless IVC-1 orders
are stable. These originate from the FPS−SU(4) fixed-point
solution in the SU(4) symmetric case. Lorentz invariance is
again emergent at these solutions. Furthermore, a fixed point
that originates from inaccessible FPM−SU(4) is now stable for
Nf = 2 in the SU(2) × SU(2) × U(1) case. It is related to
the transition to a spin-valley polarized state. Interestingly,
the critical Nc

f for several other fixed points that describe
transitions to orders previously related by SU(4) symmetry is
also considerably lowered. The effect is the strongest for spin
polarization, IVC-2, and N-IVC order. Their critical Nf as part
of the SU(4) order parameter manifold Nc

f ≈ 13 is lowered
to Nc

f ≈ 3.66, 3.2, and 5.2, respectively. In this sense, these
ordering tendencies are stabilized by perturbations that break
SU(4).

IV. CONCLUSION

In the present paper we studied competing orders in the
Dirac fermion model of TBG at charge neutrality in a univer-
sal, unbiased way. As such, our considerations generally apply
to Dirac fermions with approximate SU(4) symmetry in 2 + 1
space-time dimensions.

We determined a Fierz-complete set of all symmetry-
preserving, local four-Fermi interactions, which we could
classify in eighteen, six, or four different channels in the case
of SU(2) × SU(2) × U(1), chiral SU(4), or Lorentz-invariant
SU(4) symmetry, respectively. We calculated the perturbative
RG flow of the couplings and investigated their fixed-point
structure with the aim of identifying quantum critical solu-
tions that are associated with instabilities towards different
ordered states. We diagnosed the instabilities by a divergence
in the corresponding susceptibilities.

The model contains a control parameter in the form of
the fermion flavor number. This allowed us to investigate the
interplay of multiple interaction channels, which becomes im-
portant in the small-Nf regime relevant to TBG. We connected
the results to the large-Nf limit, where the RG equations de-
couple and reduce to a single-channel mean-field approach.

We found a rich landscape of critical fixed points, which
display a varied behavior as a function of Nf . Importantly,
we showed that the interchannel feedback makes many of
the single-channel mean-field solutions unstable at small Nf ,
either because the solutions disappear or because they become
multicritical. We note that, while the critical values of Nf

where this happens cannot be determined quantitatively on
the one-loop level, the qualitative findings on which solutions
become unstable are usually robust.

We showed that the instabilities that gap out the Dirac
spectrum, and thus can gain much condensation energy, are
particularly stable at any Nf and symmetry setups. They corre-
spond to quantum anomalous Hall, quantum spin Hall, valley
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(spin) Hall, and time-reversal symmetric intervalley coherent
states in the singlet sector, or a QAH together with moiré
density waves or minivalley polarization in the triplet sector.
These solutions possess emergent Lorentz symmetry and thus
can already be described via a Lorentz-invariant version of
the Dirac fermion model of TBG. The fixed point associated
with QAH order remains stable through the entire range of
1 < Nf < ∞, as well as upon breaking SU(4) symmetry. The
fixed point related to a “triplet QAH” instability is only stable
below Nf < 13.6 with SU(4) symmetry. Order parameters of
QSH, VH, VSH, and IVC-1 form a degenerate manifold in the
SU(4)-symmetric case since they are related by symmetry.

The fixed point of the SU(4) manifold FPS−SU(4) disappears
at Nf ≈ 1.89 and we found it to be unstable when SU(4) is
broken. However, the separate solutions associated with QSH,
VSH, VH, and gapped IVC that descend from this channel in
the SU(2) × SU(2) × U(1) case remain stable in the entire
range 1 < Nf < ∞. The only exception is the fixed point that
describes a phase transition to a spinful, gapped IVC state,
which disappears at Nf ≈ 2.75.

In addition, we found that relaxing SU(4) symmetry sta-
bilizes several orders which generically do not gap out the
Dirac spectrum. In particular, the critical flavor number of
spin-(valley-)polarized, metallic intervalley coherent, and spin
nematic ordering tendencies is strongly reduced. Among
them, a spin-valley-polarized state is stable at Nf = 2.

Overall, our results provide an unbiased assessment of
possible instabilities of multiflavor Dirac fermions motivated
by TBG at charge neutrality. In TBG, massless Dirac fermions
with reduced velocity are observed for small twist angles
[75–79]. By varying the twist angle, the Fermi velocity
changes from zero at the magic angle θ ≈ 1◦ [14] to the one
of graphene when the layers effectively decouple θ � 20◦
[77]. As a result, dimensionless interactions can be tuned
from the weakly to the strongly interacting regime via the
twist angle. Indeed, strongly correlated behavior was reported
for magic-angle TBG [6,7,16–27,80–82]. Thus, a quantum
phase transition of Dirac fermions can be expected at charge
neutrality as function of the twist angle. The instabilities
we found that gap out the Dirac spectrum potentially real-
ize the sought-after chiral phase transition in a 2D Dirac
material [1–4,49,50]. The corresponding quantum critical
behavior falls into (generalized) Gross-Neveu universality
classes [83–99]. Interestingly, we also found several critical
points whose behavior around a quantum phase transition was
not yet studied.

With respect to selecting the ground state in TBG, we
argued that it is crucial to account for the competition between
ordering tendencies because several symmetry-broken states
lie close in energy. In this context and in light of recent
experiments [28,100], it is interesting to note that the leading
instability is not necessarily the one expected based on
symmetries in the mean-field picture [30–32,41–44] due to
interchannel renormalizations of the interaction. It will be
enlightening to extend our unbiased treatment by including
the breaking of additional symmetries either spontaneously
or externally in future studies. In particular, it was argued
that strain plays an important role and selects the so-called
incommensurate Kekulé spiral (a time-reversal symmetric
IVC phase with incommensurate wave vector q �= 0) as the

ground state away from charge neutrality [28,42,43,100,101].
Furthermore, the near degeneracy of symmetry-broken
states also suggests an investigation of phases of
coexistence [102–106].
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APPENDIX A: FIERZ IDENTITIES

In principle, the generalized flavor symmetry permits

terms of the form
∑N2

f −1
i=1 [�†(M ⊗ κi )�]2 in the interact-

ing Lagrangian, where � = (ψ1, . . . , ψNf )T is a collective
8Nf -component spinor, M is an 8 × 8 matrix acting in spin-
valley-sublattice space, and κi are generators of SU(Nf ),
which replace the Pauli matrices μc of minivalley space for
general Nf . To make the flavor index explicit, we can use the
completeness relation

∑
i κ

αβ
i κ

γ δ
i = Nf δαδδβγ − δαβδγ δ and

rewrite

N2
f −1∑

i=1

[�†M ⊗ κi�]2 = − (ψα†Mψα )(ψβ†Mψβ )

+ Nf (ψα†Mψβ )(ψβ†Mψα ) (A1)

with eight-component spinors ψα of flavor α. Further-
more, we can connect the terms nondiagonal in flavor
(ψα†Mψβ )(ψβ†Mψα ) to the flavor-diagonal ones via Fierz
identities using that the 64 matrices M form a basis for 8 × 8
matrices. The general form of a Fierz identity is

ψ†aMX ψbψ†cMX ψd =
∑

Y

FXY ψ†aMY ψdψ†cMY ψb. (A2)

The above equation effectively means that we can write any
fermionic bilinear as a linear combination of others provided
we know the coefficients FXY . To see how diagonal and non-
diagonal flavor terms are related, we need to set a = b and
c = d . Thus, the results we provide in the text can be trans-
lated to a basis which contains off-diagonal flavor terms.

The Fierz identities can be condensed in the form of a ma-
trix whose entries are exactly the coefficients FXY . By labeling
the four-Fermi terms based on the six possible matrix channels
M, we can define

Xs/t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1s/t

T i
s/t

ρzτzs/t

ρzτzT i
s/t

νs/t

ωs/t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

where Ms ≡ (ψα†Mψα )2 and Mt ≡ (ψα†Mψβ )(ψβ†Mψα ),
and Eq. (A2) can be cast in matrix form

FXt = Xs (A4)
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with

F = −1

8

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
15 −1 15 −1 15 −1
1 1 1 1 −1 −1
15 −1 15 −1 −15 1
2 2 −2 −2 0 0

30 −2 −30 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A5)

Note that F−1 = F . Using the completeness relation and the
Fierz matrix, we can also rewrite Xs using only triplet terms

Yt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ψ†1κψ )2

(ψ†T iκψ )2

(ψ†ρzτzκψ )2

(ψ†ρzτzT iκψ )2

(ψ†νκψ )2

(ψ†ωκψ )2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A6)

via

Xs = 1

Nf

(
1 − 1

Nf
F

)−1

FYt . (A7)

In the special case where Nf = 1, the Fierz matrix relates
flavor-diagonal terms and the number of independent cou-
plings can be reduced to 3, which is the degeneracy of the
eigenvalue 1 of the Fierz matrix F .

For the Lorentz-invariant case, where the number of inde-
pendent couplings is reduced to 4, the Fierz identity is given
by

FLX L
t = X L

s , (A8)

XL =

⎡
⎢⎢⎢⎢⎣

γμs/t

γμT i
s/t

1s/t

T i
s/t

⎤
⎥⎥⎥⎥⎦, (A9)

and

FL = −1

8

⎡
⎢⎢⎣

−1 −1 3 3
−15 1 45 −3

1 1 1 1
15 −1 15 −1

⎤
⎥⎥⎦. (A10)

APPENDIX B: DERIVATION OF RG EQUATIONS

Our starting point is the Wetterich equation [107]

∂t�k = − 1
2 Tr

{(
�

(2)
k + Rk

)−1
∂t Rk

}
(B1)

where ∂t = k d
dk and �

(2)
k is the matrix of functional deriva-

tives of the effective action with respect to the fields,
defined as

�
(2)
k = �δ

δ�T (−p)
�k

δ←

δ�(q)
(B2)

with � = (ψ,ψ†T
)T . The essence of Eq. (B1) is that it de-

scribes the evolution of an effective action as a function of a

scale variable k ∈ [0,�] with � being a UV cutoff. This evo-
lution is encoded in the regulator function Rt , which defines
the way fluctuations in the interval [k,�] are integrated out.
At k = 0, all fluctuations are integrated out, which yields the
full quantum effective action and the complete solution to the
problem.

Based on the discussion of Sec. II A we make an ansatz for
the scale dependent action by introducing a scale dependence
on all interactions and the regulator function. We neglect the
wave-function renormalization coefficient as diagrams that
contribute to the anomalous dimension in a purely fermionic
one-loop approximation vanish in the regime of pointlike
interactions. To extract the beta functions for the scale depen-
dent couplings, we first redefine the scale derivative to only
act on the regulator and rewrite Eq. (B1) as

∂t�k = − 1
2 ∂̃t Tr

{
ln

(
�

(2)
t + Rk

)−1}
. (B3)

We split the inverse full propagator into a field-independent
part �

(2)
0 and ��k which incorporates the effects of fluctua-

tions. We expand the logarithm around this point:

∂t�k = −∂̃t

⎡
⎣1

2
Tr

(
��k

�
(2)
0

)
− 1

4
Tr

(
��k

�
(2)
0

)2

+ · · ·
⎤
⎦. (B4)

We then insert our ansatz and compare right and left hand
sides of Eq. (B4) to identify the beta functions for the running
couplings.

This is analogous to a one-loop, Wilsonian RG scheme
for a specific choice of the regulator function. However, our
analysis will turn out to be independent of the choice of the
regulator. Following the procedure detailed above the right
hand side of Eq (B4) evaluates to

∂t�k = −∂̃t

∫
p

∑
i, j

2λiλ j[(ψ
†MiGkMjψ )(ψ†MjGkMiψ )

+ 2(ψ†Miψ )(ψ†MjGkMiGkMjψ )

− Tr(GkMiMj )(ψ
†Miψ )2 − (ψ†MiGkMjψ )2],

(B5)

where p labels the internal momentum integration variable,
Mi, j are any of the 64 matrices considered in the interacting
Lagrangian, and Gk is the scale dependent fermionic propaga-
tor defined as

Gk = (
�

(2)
0 + Rk

)−1 =
⎡
⎣ 0 iω+qxρxτz+qyρy

q2(1+r(k))

iω+qxρxτz+ρT
y qy

q2(1+r(k)) 0

⎤
⎦
(B6)

where r(k) is a dimensionless function encoding the regulator
scheme Rk = (iω + qxρxτz + qyρy)r(q2/k2). Evaluating the
matrix products in Eq. (B5) yields the beta functions for the
six couplings.

The quantity l f defined as

l f = −1

3
k2−d ∂̃t

∫
d3 p

2π3

1

[1 + r(p2/k2)]2 p2
(B7)
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FIG. 6. The exponents β that determine the behavior of the susceptibilities for all critical fixed points of the SU(4) symmetric Dirac fermion
model of TBG as function of flavor number Nf . Values of β < − 1

2 can lead to second-order phase transitions. All of the fixed-point solutions
exhibit a leading divergence in a singlet channel with the exception of FPV−SU(4), that has a divergent susceptibility in the triplet QAH channel.

is the threshold function. By rewriting our couplings as λ̄i =
λi/l f , the threshold function is absorbed in the rescaling and
thus the beta functions become regulator independent.

APPENDIX C: SUSCEPTIBILITIES

As mentioned in the main text, to gain insight into the or-
dered phases related to the quantum critical points, we analyze
the divergence of the test-vertex susceptibilities. We start from
an effective action

�k → �k + rhiψ
α†Miψ

α + χih
2
i . (C1)

The quantities r and χ will flow according to

∂t ri = ∂

∂hi

�δ
δψμ†

∂t�k
δ←

δψν

∣∣∣∣
hi=0,ψμ†=0,ψν=0

, (C2)

∂tχi = ∂2(∂t�k )

∂h2
i

∣∣∣∣
hi=0,ψμ†=0,ψν=0

, (C3)

where the flow of �k is given by Eq. (B1). We perform an
expansion of the effective action, while noting that the field-
independent part now gets a contribution from the inclusion
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FIG. 7. The exponents β determining the susceptibilities of the scalar SU(4) FPS−SU(4) and vector FPV fixed points in the Lorentz-invariant
case as function of flavor number Nf . If β < −1/2 the susceptibility of the corresponding order diverges. The exponents for the two other
critical fixed points FPS and FPV−SU(4) are shown in the main text.

of the linear vertex term. Keeping only terms that contribute
to the flow of the above quantities we get

∂t ri = −l f Ci jλ jri, (C4)

∂tχi = l f

4
r2

i , (C5)

where Ci j is a matrix containing all constant prefactors for
each term that appears in the beta functions and l f is given by
Eq. (6). Equation (C2) is explicitly given by

∂t ri = − ∂̃t
2λ j

dim Mi
r�Tr[MiMjG0M�G0Mj]

− Tr[MiMj]Tr[MjG0M�G0]. (C6)

We rescale the couplings λ̄ = kd−2λl f , with d being the space-
time dimension of the model. At the fixed-point solutions,
λ̄i = λ̄∗

i , we can solve the differential equations to get the
explicit dependence as a function of k:

ri = r0

(
k

�

)Ci j λ̄
∗
j

. (C7)

We define βi ≡ Ci j λ̄i. Then, the dependence of the suscepti-
bility can be written as

χi = χ0
k2β+d−2

�2β
. (C8)

We thus relate the two exponents via γi = 2βi + d − 2. Set-
ting d = 3, we get the condition for a divergent susceptibility
used in the text βi < − 1

2 . To determine the tendency for
breaking of flavor symmetry, we repeat this analysis in the
triplet basis, i.e., we introduce test vertices rt

i h
t
iψ

†Mi ⊗ κ jψ

and use the Fierz identities to express the fixed-point cou-

plings via combinations of triplet couplings λt
i

Nf
(ψ†Mi ⊗ κψ )2.

Replacing Mi → Mi ⊗ κ j in Eq. (C3), we find that ∂t rt
i can

be obtained from ∂t ri by replacing singlet via triplet couplings
λi → λt

i and a relative sign between the two terms on the right
hand side in Eq. (C3). Explicitly we obtain

∂t hgt
1
= − 2

Nf

(
gt

1 + 2gt
2 + gt

4 + 8gt
1Nf + 15vt

1

+ 30vt
2 + 15vt

4

)
hgt

1
, (C9)

∂t hvt
1
= 2

Nf

(
vt

1 − 8Nf v
t
1 + 2vt

2 + vt
4 − gt

1 − 2gt
2 − gt

4

)
hvt

1
,

(C10)

∂t hgt
4
= 6

Nf

(
gt

1 − 2gt
2 + gt

4 + 8gt
4Nf + 15vt

1

− 30vt
2 + 15vt

4

)
hgt

4
, (C11)

∂t hvt
4
= − 6

Nf

(
2gt

2 − gt
4 + vt

1 − 2vt
2 + vt

4 − 8Nf v
t
4 − gt

1

)
hvt

4
,

(C12)

∂t hgt
2
= − 2

Nf

(
gt

4 − 8gt
2Nf − 15vt

1 + 15vt
4 − gt

1

)
hgt

2
, (C13)

∂t hvt
2
= − 2

Nf

(
gt

4 + vt
1 + 8Nf v

t
2 − vt

4 − gt
1

)
hvt

2
. (C14)

The treatment described above is condensed in Fig. 4 in the
main text and Figs. 6 and 7 in this Appendix for the Lorentz-
invariant model [Eq. (6)] and full SU(4) model [Eq. (3)],
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FIG. 8. An example of a complex conjugate collision of the
scalar SU(4) fixed point FPS−SU(4) with another multicritical fixed
point leading to the creation of a pair of real valued fixed-point
solutions. The points correspond to the coupling values for different
Nf .

respectively. We reiterate the importance of this analysis to
identify which of the stable fixed points can describe a quan-
tum phase transition. Specifically, as can be seen in Fig. 6
none of the singlet susceptibilities of FPV−SU(4) diverges in
the regime of Nf where it is stable. However, we identify a
divergent susceptibility for FPV−SU(4) that is associated with
a triplet QAH state 〈ψ†ρzτzμψ〉, i.e., a QAH state with ad-
ditional modulation (μx,y) or polarization (μz) on the moiré
scale (see Fig. 6).

APPENDIX D: FIXED-POINT ANALYSIS

Generally, due to the large number of couplings consid-
ered, the fixed-point solutions do not allow for an analytic
form as a function of Nf . However, in the case where one or
more couplings are zero, the expressions simplify consider-
ably, permitting analytic expressions for the quantum critical
points. Specifically this holds for FPS, FPn, and FPV, with the
respective expressions

FPS : [g∗
4, v

∗
4 , g∗, v∗] =

[
− Nf

12(4Nf − 1)
, 0, 0, 0

]
, (D1)

FPn : [g∗
4, v

∗
4 , g∗

1, g∗
2, v

∗
1 , v

∗
2 ] =

[
0, 0,

Nf

4(4Nf − 1)
, 0, 0, 0

]
, (D2)

FPV : [g∗
4, v

∗
4 , g∗, v∗]

=
[

Nf
[−7 + 7Nf − 4N2

f + (1 + 4Nf )
√

4 + Nf (14 + Nf )
]

4(−1 + 4Nf )
(
5 + 4Nf + 8N2

f

) , 0,
3N2

f

4 + 2Nf + 16N2
f + 2

√
4 + Nf (14 + Nf )

, 0

]
. (D3)

Figure 8 shows the disappearance of physical solutions into
the complex plane related to FPS−SU(4), which constitutes one
of the two possibilities that renders solutions inaccessible.

Figure 9 shows the behavior of the other two stable fixed
points of the Lorentz-invariant model and Fig. 10 shows the
evolution of the couplings for the fixed points in the full
SU(4) symmetric model. These complement Fig. 2 of the main

text. Importantly, in Fig. 10, we can observe the recovery of
the Lorentz-invariant solution FPS−SU(4) in the non-Lorentz-
invariant case. Furthermore, FPV−SU(4), while accessible for
all values of Nf in the Lorentz-invariant case, becomes mul-
ticritical in the case of the full SU(4) model [Eq. (3)] at
Nc

f ≈ 13.89 as mentioned in the main text. As such, it does
not describe a phase transition in the interval of Nf where it is
stable.

FIG. 9. The couplings of the scalar (FPS) and vector (FPV) SU(4) fixed points for several values of the fermion flavor number Nf . As
mentioned in the main text, for general Nf , several fixed-point coupling values are nonzero so that different ordering channels are coupled. For
large values of Nf only one coupling is nonzero and a single-channel mean-field description is possible. Out of the four stable, Lorentz-invariant
fixed-point solutions, FPV does not emerge as a quantum critical point in the non-Lorentz-symmetric model.
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FIG. 10. Coupling values as a function of the flavor number Nf of the potentially critical fixed points in the SU(4) symmetric Dirac fermion
model for TBG. The red, dashed line indicates the critical value Nc

f = 13.6 for which FPV−SU(4) becomes multicritical. Fixed points FPi are
associated with semimetallic (SM), metallic SU(4) [M-SU(4)], semimetallic SU(4), vector SU(4) [V-SU(4)], density (n), and scalar SU(4)
[S-SU(4)] condensates.

APPENDIX E: FLOW EQUATIONS FOR THE CASE OF SU(4) SYMMETRY RELAXATION

We provide the beta functions for the 18 couplings in the case of lower symmetry here:

∂t g1 = g1 − 4

Nf

[
g2

1(4Nf − 1) − g1
(
2g2 + g4 + 3v

(1)
1 + v

(2)
1 + 3v

(3)
1 + 2v

(4)
1 + 6v

(5)
1 + 6v

(1)
2 + 2v

(2)
2

+ 6v
(3)
2 + 4v

(4)
2 + 12v

(5)
2 + 3v

(1)
4 + v

(2)
4 + 3v

(3)
4 + 2v

(4)
4 + 6v

(5)
4

)
− 4

(
g2g4 + 3v

(1)
2 v

(1)
4 + v

(2)
2 v

(2)
4 + 3v

(3)
2 v

(3)
4 + 2v

(4)
2 v

(4)
4 + 6v

(5)
2 v

(5)
4

)]
, (E1)
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∂tv
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