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Honeycomb antidot artificial lattice as a prototypical correlated Dirac fermion system
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We study theoretically the electronic properties of the artificial quantum dot honeycomb lattice defined in a
two-dimensional electron gas, focusing on the possibility of achieving a regime in which electronic correlations
play a dominant role. At first, we establish a noninteracting model compatible with recently studied experimen-
tally devices. According to the values of the obtained electron-electron interaction integrals, we postulate that the
inclusion of inherent electron-gas self-screening is indispensable to reconstruct the experimental observations.
Applying the Thomas-Fermi type of screening, we show that the radius of the antidot is crucial to achieve a
correlated state in which phenomena like antiferromagnetic ordering and interaction-induced insulating state
appear. We estimate the conditions for which the electronically correlated state in an artificial honeycomb lattice
can be realized.
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I. INTRODUCTION

There is a long-standing debate about the role of electron-
electron interactions in two-dimensional Dirac fermion
systems, particularly in graphene [1–3], two-dimensional
material consisting of carbon atoms assembled in a two-
dimensional honeycomb lattice. Graphene can be considered
as an archetypical example of a system in which massless
fermionic quasiparticles are believed to be strongly renormal-
ized by the presence of electronic interactions [1]. However,
this renormalization influences the Fermi velocity and thus
keeps the semimetallic character of the system instead of
inducing the Mott insulator phase. It should be emphasized
that the experimental realization of the fermion Dirac system,
i.e., the one in which the quasiparticle energy spectrum at
certain range of momenta is linear, is not limited to graphene
only. This unusual feature is present in the surface states
of topological insulators, Weyl semimetals [4], or moiré su-
perlattices resulting from stacked layers of transition metal
dichalcogenides [5]. Nonetheles, the structural simplicity of
graphene suggests that honeycomb lattice models can be
treated as the simplest platform for studying the role of elec-
tronic correlations in Dirac fermion systems. In particular, the
possible opening of the gap leading to the emergence of a Mott
insulating phase may be of interest. Although unscreened
long-range interactions in two-dimensional systems can play a
competitive role with respect to Mott localization [2,6–8] the
short-range Hubbard interactions U are believed to be respon-
sible for the formation of a gap in strongly correlated systems.
It takes place when the kinetic energy scale given by the
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hopping amplitude |t | is noticeably smaller than U . In the
absence of long-range interactions, the gap opening in the
Hubbard model for the honeycomb lattice is supposed to
arise for U/|t | � 3.8–4.2 [8–10]. This quantum phase tran-
sition from a semimetal to an antiferromagnetic insulator
at half-filling has been noted in a number of theoretical
studies [2,6–13]. The open questions regarding the inter-
play between electron-electron interactions and the features
of Dirac fermion 2D systems in honeycomb lattices in-
spired us to investigate whether physical realization of a
highly tunable system of this kind is possible. Namely, one
may ask if fabrication of a set of probes/devices for which
enhancement/reduction of effects driven by electronic corre-
lations is achievable in this view. Since quantum effects are
tractable also at nanoscale now a days, and carrier trapping
centers such as quantum dots can be designated as artificial
atoms, these atoms can be assembled to form a collective
regularly patterned 2D electronic system. In this spirit, the
electronic properties of honeycomb systems can be conve-
niently studied using the so-called quantum simulators such
as artificial lattices of quantum dots (ALDs) defined in a
two-dimensional electron gas (2DEG). This approach pro-
vides the possibility of tuning the properties of the system
by controlling the size of the dots and the spacing between
them, as well as the depth of their confinement potential
[14]. The emergence of Dirac systems in ALD has been ex-
perimentally demonstrated by means of photoluminescence
measurements in a nanodevice constituted in the so-called
antidot (AD) architecture [15]. The AD approach provides
the opportunity to form quasi-2D bulk systems, contrary to
quantum dot assemblies fabricated by electrostatic gating,
where the number of trapping centers typically does not ex-
ceed a dozen. Nevertheless, the photoluminescence spectra
presented by Du et al. [15] indicate the presence of the spectral
dublet related to excitations associated with van Hove singu-
larities, which maps accurately on the model of noninteracting
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electrons. Thus, at least for the AD radius and lattice spac-
ing that was examined, this device cannot be regarded as
a strongly correlated system. Therefore the natural question
arises [14], if tuning of these two parameters may result
in forcing ALD to be in the correlated state, characterized,
e.g., by formation of the Mott gap, emergence of antiferro-
magnetic (AF) order, etc. The artificial honeycomb lattices
formed in 2DEG have been theoretically studied in view of
their electronic properties by a priori assuming an idealized
confinement similar to graphene [16–18] or ADs [14,19,20].
These valuable pioneering papers provide evidence of the
influence of electron-electron interactions on the ALD band
structure in the framework of density functional theory [18],
possible mechanism of pairing [17], or the stability of the
Dirac cone with respect to the shape of the confining potential
[16] or disorder [21].

In this work, we investigate conditions for realization of a
correlated state in an artificial Dirac lattice in realistic struc-
tures. For concreteness, we take the device as recently realized
by Du et al. [15] as a starting point and investigate the elec-
tronic properties of 2DEG ALD, establishing the conditions
under which those systems transit into the correlated phase.
We present the AD-ALD model elaborated within multiscale
simulations. Namely, first, we construct the mean-field model
exploiting the Schrödinger-Poisson scheme. Subsequently, we
utilize the resulting single-particle picture for construction of
the Wannier basis by means of the projection method and
subsequently calculate the electron-electron interaction am-
plitudes. We discuss the role of electronic screening, which we
include by applying the Thomas-Fermi model with the screen-
ing length characteristic for GaAs-based 2DEG. Inclusion of
screening is indispensable for the reconstruction of experi-
mental finding, as bare (nonscreened) amplitudes would imply
a strongly correlated system for the lattice spacing and AD
radius for which a semimetallic character has been reported
[15]. Eventually, we elaborate the interacting Hamiltonian in
the second quantization formulation and solve it for the half-
filled case by means of the variational Monte Carlo (VMC)
method. These simulations provide evidence of the transition
from the semimetallic state to the AF phase and indicators of
the emergence of a Mott gap with an increase in AD diameter.

II. MODEL AND MEAN FIELD APPROACH

A. Device and AD periodic potential

We consider an artificial honeycomb lattice defined in a
GaAs/AlGaAs heterostructure [15] [Fig. 1(a)]. ADs are as-
sembled in a triangular lattice [Fig. 1(b)] spanned by vectors
R1 = (L, 0) and R2 = (L/2, L

√
3/2) where L = |R1| = 70

nm. The points related to Ri j = i × R1 + j × R2 are asso-
ciated with maxima of potential Vr0 (r) resulting from the
patterned etching of the top layers of GaAs/AlGaAs. Here, we
model the periodic potential assuming a Gaussian contraction,
which is given as

Vr0 (r) =
∑
i, j

V0 exp

[
−

( ||Ri j − r||
r0

)2
]
, (1)

where r = (x, y), V0, and r0 are related to the maximum height
of the potential and the radius of the antidot, respectively. The

FIG. 1. (a) Cross-section of the considered heterostructure.
(b) Two dimensional plot of electrostatic potential induced by etch-
ing in 2DEG. Filled blue circles indicate examplary locations of
potential minima.(c) The electrostatic potential profile in 2DEG
along the direction marked as dashed line in (b). Arrows refer to the
potential minima.

reasoning of the choice of this particular form of Vr0 (r) is
as follows. Firstly, the Gaussian functional form is believed
to properly describe the trapping potential that comprises a
single quantum dot with diameter less than ∼100 nm in 2DEG
formed in GaAs/AlGaAs heterostructures [22,23]. As the es-
timated radius of the etched antidots in the experiment [15]
is r0 ≈ 20 ± 5 nm, and thus we inspect the values of r0 in a
similar range, the translationally invariant Gaussian contrac-
tion multiplied by positive value of V0 can be considered as a
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reasonable model. Here, r0 ≈ L/3 and the local minima in the
landscape of Vr0 (r) presented in Fig. 1(c) correspond to dots
that form a graphenelike lattice with distance between nearest
neighbors L

√
3/3 ≈ 40.41nm. Specifically, our approach also

exhibits an important characteristic of formerly elaborated
potential in a similar context [21]—which is of the form
V (r) ∝ V0(r0)

∑
i cos(Gi · r)—i.e., both models predict for-

mation of minima corresponding to the honeycomb structure
that become deeper with increasing r0. This feature is essential
for both the formation of a stable honeycomb pattern and the
enhancement of the trapping leading to stronger localization
of the carriers.

The potential amplitude V0 in Eq. (1) is determined by
means of the standard Schrödinger-Poisson approach used
separately for two cross-sections depicted in Fig. 1(a) by
dashed lines. Assuming translation symmetry in the x-y plane,
�(r) = φn(z) exp(ikxx + ikyy), the Schrödinger equation can
be reduced to the 1D form(

−1

2

d

dx

1

m∗
⊥(z)

d

dx
+ Vr0 (z) + h̄2k2

2m∗
‖

)
φn(z) = Enφn(z), (2)

where k2 = k2
x + k2

y , m∗
⊥(‖) is the effective mass in the direc-

tion perpendicular (parallel) to the layers and the potential
Vr0 (z) is the sum of two components: (i) Vband(z) related to
the discontinuity of the conduction band at the GaAs/AlGaAs
interfaces and (ii) the electrostatic potential Ve(z) that includes
the electron-electron interaction and the electric field from the
gate. The latter can be determined at the mean-field level from
the Poisson equation given by

ε0
d

dz
εr (z)

d

dz
Ve(z) = −ρ(z), (3)

with the charge density ρ(z) = ρd (z) + ρe(z), where ρd (z) is
the doping profile and ρe(z) is the electron distribution. The
electron density is obtained by

ρe(z) = 2
∑

n

|φn(z)|2 f2D(En − μ), (4)

where the factor 2 accounts for the spin degeneracy, T is the
temperature, μ is the chemical potential and f2D is the Fermi-
Dirac distribution integrated over the kx and ky components of
the wave vector,

f2D(En, μ) = m∗
‖kBT

2π
ln

(
1 + exp

(
−En − μ

kBT

))
. (5)

Equations (2) and (3) are solved numerically using the finite
difference method with Dirichlet boundary conditions. The
existence of 2DEG in the main quantum well results from the
Si delta doping located 30 nm above. The value of nd is chosen
to correspond to the electron concentration in 2DEG at the
level of nel ≈ 4.5 × 1010 cm−2, i.e., about two electrons per
unit cell, as provided in the experiment [15]. Then, for a cho-
sen nd the self-consistent energy profile V2(z) is determined
for the cross-section with the etched region [see Fig. 1(a)] and
the potential amplitude V0 is estimated based on the adiabatic
approximation according to the formula

V0 ≈ E1
2 − E1

1 , (6)

FIG. 2. The potential profiles V1(z) and V2(z). Note, that V2(z)
(etched case) is evaluated for Si doping obtained for the un-
etched case [24]. The solid black line indicates the carrier density
ρe(z) computed for potential V1(z), which corresponds to nel =∫

z∈2DEG ρe(z)dz ≈ 4.5 × 1010 cm−2.

where E1
2 and E2

1 are energies related to the lowest
lying states for the etched and nonetched cases, respec-
tively. The procedure is repeated until self-consistency
is reached, which we consider to occur when the
potential variation between two consecutive iterations
is less than 10−7 eV. Calculations have been carried
out for the material parameters corresponding to GaAs
(AlGaAs): m∗

⊥(GaAs) = 0.067, m∗
⊥(AlxGa1−xAs) = 0.067 +

0.083x, m∗
‖ (GaAs) = m∗

‖ (AlxGa1−xAs) = 0.067, εr (GaAs) =
13.18, εr (AlxGa1−xAs) = 13.18 + 3.12x and the conduction
band minima Ec = Eg/2, where the energy gap Eg(GaAs) =
1.43 eV, Eg(AlxGa1−xAs) = 1.43 + 1.247x. We set x = 0.3
and T = 4 K.1

The resulting potential profiles V1(z) (nonetched case) and
V2(z) (depth of etching 35 nm) are presented in Fig. 2. The
local maximum of the AD potential is estimated to be V0 ≈
600 meV according to Eq. (6). We confirm the reliability of
our procedure by comparing the calculated Fermi energy μ

1Note that we excluded the bottom layer of n-doped AlGaAs as
detailed information regarding the character of doping has not been
provided [15].

FIG. 3. The Fermi energy as a function of the electron concen-
tration for the unpatterned 2DEG calculated within Schrödinger-
Poisson scheme and for the ideal 2DEG (red circles and black
solid line, respectively) compared to the experimental data (blue
diamonds).
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FIG. 4. (a) Cross-section of the potential Vr0 for different values
of r0. Increase in r0 results in deeper local minima corresponding to
the formation of a graphenelike lattice. (b) The depth of the local
minima VAG as a function of r0.

as a function of nel. In Fig. 3, we present μ(nel ) obtained
for the potential profile V1(z), as well as for the available
experimental data [15] and the dependence corresponding to
the ideal 2DEG model. The Fermi energy for the considered
concentration range is 2 meV � μ � 2.5 meV. Remarkably,
the energies evaluated within Schrödinger-Poisson scheme are
in almost perfect agreement with those obtained for the ideal
2DEG with values only about 5% lower than the experimental
ones. The estimated value of V0 is finally applied to Eq. (1),
which defines the planar 2D potential for a given parame-
ter r0. We focus on AD radii 15 nm � r0 � 21 nm. These
values provide Vr0 which exposes local maxima at Rlmax =
p/2 × R1 + q/2 × R2 and minima at Rlmin = u × R1 + v ×
R2 where p, q ∈ Z and u, v ∈ {p/3, 2q/3} [Fig. 4(a)]. In par-
ticular, the points defined by the vectors Ruv

lmin correspond to
the honeycomb lattice. The depth of the local minima VAG =
Vr0 (Rlmax) − Vr0 (Rlmin ) depends on r0 (where AG stands for
artificial graphene). For the lower range of r0 considered, VAG

is only of the order of a few microelectronvolts, while for
r0 = 20 nm VAG ≈ 26 meV, as derived from the data shown
in Fig. 4(b). Thus it may be expected that a sufficiently large
r0 enforces a stronger confinement of electrons and, in turn,
their localization in honeycomb trapping centers, giving the
opportunity for emerging strongly correlated state. Eventually,
we identify the monotonical increase of VAG with respect to r0

in qualtitative agreement with predictions performed for the
gated (electrostatical) potential provided by Tkachenko et al.
[21], thus, finding out our approach as realiable.

B. Artificial lattice: mean-field approach

The elaboration of Vr0 (z) eventually allows us to perform
an analysis of the electronic properties of the artificial honey-
comb lattice formed. First, we provide a mean-field approach

in which we decouple the modulated 2DEG from the rest of
the system. It is done by factorizing a single-electron wave
function �n(r, z) = ψn(r)φ1(z). Within this assumption, to
estimate whether the distribution of electronic density (at
a concentration of two electrons per elementary cell) for
the estimated potential is honeycomblike, we solve again
the Schrödinger-Poisson problem,this time, in x-y plane for
ψn(r), i.e.,[

− h̄2

2m∗
||
∇2

r + Vr0 (r) + Vc(r)

]
ψn(r) = Enψ (r), (7a)

∇1
r Vc(r) = −ρr (r)

ε0εr
, (7b)

ρr (r) = 1

d

Nel/2∑
n,σ

|ψnσ (r)|2, (7c)

where Nel = 2 is the number of electrons in the unit cell and
σ = {↑,↓} stands for the Sz spin component. The factor 1/d
in Eq. (7)c refers to mean electron concentration (per spin)
with respect to z direction in 2DEG. Eventually the estimated
total mean field 2D potential at given r0 is modeled as a sum of
Vr0 (r) and Vc(r) resulting from the self-consistent numerical
solution of Eqs. (7a)–(7c), that is,

Ṽ (r) ≡ Vr0 (r) + Vc(r). (8)

Eventually, Vr0 is used to solve the two-dimensional mean
field model defined in Eqs. (7a)–(7c). In our calculations,
we take a single unit cell and assume periodic boundary
conditions. A computational procedure is performed on the
triangular mesh consisting of 70 × 70 nodes. We consider the
half-filled case, that is,

∫
	

ρr (r)dr = 2, where 	 is an area of
the unit cell.

This self-consistent mean-field (MF) approach reveals a
meaningful renormalization of the density distribution com-
pared to that of the free electron (noninteracting) case.
Namely, the inclusion of Coulomb interactions leads to the
more uniform smearing of carriers throughout 	, as can be
deduced from Fig. 5, the cross-sections of electron density
reveal higher values at maxima and lower ones at minima
when compared to the MF solution. Particularly, this tendency
is meaningful for the lower values of r0, as VAG increases with
radius of AD.

III. WANNIER BASIS AND SINGLE-PARTICLE
HAMILTONIAN

The task of constructing the Wannier basis is crucial in
view of the reliable determination of both the single-particle
Hamiltonian in tight-binding approximation (TBA) and the
electron-electron interaction amplitudes. In the considered
system, the minima of the trapping centers are expected to
be shallow, specifically for the semimetallic case, and the dis-
tance between the neighboring dots in the honeycomb lattice
is ∼r0. Here, the Wannier functions are obtained by appli-
cation of the Projection Method [25] adapted to a 2D case.
This method is based on projecting smooth trial functions
gn(r) centered at positions that are supposed to correspond
to the maxima of the electronic density onto Bloch states
represented by ψn,k(r) (where n refers to the band index).
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FIG. 5. Cross-sections of the resulting electronic density along
R1 + R2 vector for the three representative values of r0.

Subsequently, the procedure that provides unitary transforma-
tion is carried out, which eventually results in well-localized
Wannier states when {gn(r)} are correctly guessed. Namely,
we obtain ψn,k(r) by numerical diagonalization of the single-
particle mean-field Hamiltonian Ĥ0 defined as

Ĥ0 = − h̄2k2

2m∗
||

+ Ṽ (r). (9)

Next, we take the auxiliary basis {|φnk〉} defined as

|φnk〉 =
∑

m

|ψmk〉 〈ψmk|gn〉 , (10)

where the summation index m enumerates the considered
bands, to construct the Löwdin-orthonormalized Bloch-like
states [25]

|ψ̃nk〉 =
∑

m

|φmk〉
(
S−1/2

k

)
mn, (11)

where (Sk )mn = 〈φmk|φnk〉. Eventually, Wannier states {wnRi j }
are obtained by applying the standard Fourier transform, i.e.,

|wnRi j 〉 = 1

2

L2
√

3

(2π )2

∫
BZ

dk exp(−ik · Rij) |ψ̃nk〉 . (12)

For each considered r0, the numerical representation of
the Hamiltonian given in Eq. (9) is implemented in KWANT

package [26] and diagonalized in the momentum space for the
particular wave vector k. We probe 32 × 32 equally spaced
points from the first Brillouin in the unit cell spanned by

vectors G1 = 2π
L (1,−

√
3

3 ) and G2 = 2π
L (0, 2

√
3

3 ) that conform
to the standard relation Gi · R j = 2πδi j . We choose Gaussian
trial functions gn(r),

gn(r) ≡ 1

2πσ 2
exp

⎡⎣−
(∣∣r − Rn

lmin

∣∣
σ

)2
⎤⎦ (13)

with n ∈ {α, β}, where α and β correspond to two min-
ima present in the confining potential surface at Rα

lmin =
L(1/2,

√
3/6) and Rβ

lmin = L(1,
√

3/3), respectively. Thus we

FIG. 6. 2D plot of Wannier functions wαR00 (x, y) for r0 = 16 (a),
18 (b), and 20 nm (c). In (d), their cross-sections along x = 35 nm
[dashed vertical lines in (a)–(c)] are presented as a function of y.
The disappearance of local minima with an increasing value of r0

can be identified in terms of isoline inspection (a)–(c), which is
accompanied by an increase in maximal amplitude at the localization
center (a)–(d).

construct the Wannier basis properly describing the two low-
est bands of the system. The presented results correspond to
σ = 40 nm, although our test calculations have not revealed
any significant differences for σ , which are 20 and 60 nm. The
integration manifold in Eq. (10) has been chosen to be the area
corresponding to 5 × 5 unit cells to ensure the proper decay of
gn(r) for the assumed value of σ .

In Figs. 6(a)–6(c), we show representative plots of the
Wannier functions for n = α and different values of the pa-
rameter r0. Note that they preserve the three-fold rotational
symmetry C3 as desired. The same feature holds for wβRi j (r)
since it is reproducible from wαRi j (r) by means of the follow-
ing transformation:

wβRlm (r) = T̂Rl−i,m− j ÔRi j+R2−R1wαRi j (r), (14)

where T̂ is the translation by the vector Rl−i,m− j and Ô is
operator of reflection with respect to the direction given by
Ri j + R2 − R1. Therefore we disregard the analysis for the
case n = β as the one with n = α is fully representative;
however, we emphasize that Eq. (14) holds (within numerical
precision) also from the perspective of our numerical calcu-
lations. The validity of the procedure has been confirmed by
inspecting the orthogonality, which, by construction, should
be fulfilled exactly. We have found that this requirement is
met within the numerical precision.

From the data contained in Fig. 6 one may conclude that the
spatial extent of the resulting Wannier states shrinks with in-
creasing r0, which can be regarded as a natural consequence of
mutual enforcement of trapping. However, since these states
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FIG. 7. The single-particle amplitudes as a function of r0 up to
the fifth-nearest neighbor. The hoppings referring to Z � 5 play a
marginal role in view of the resulting band structure for each of the
examined r0.

are obtained with electron-electron interactions at the level of
the mean-field approach, we do not find it trivial, since the
confining role of the local minima in Vr0 is compatible with
respect to Vc as comes from Fig. 5. Furthermore, in addition
to enhanced localization, the nodal lines that reside in the
vicinity of the location of the nearest neighbor (nn) centers
and the three local minima enclosed by them disappear for r0

approaching 20 nm.
In the next step, evaluated Wannier functions are sub-

sequently utilized for the construction of TBA Hamiltonian
given explicitely in second quantization formalism as

ĤTB =
∑
μν,σ

tμν ĉ†
μ,σ ĉν,σ , (15)

The μ, ν ∈ {(i, j), n} in Eq. (15) are defined by relation Rμ ≡
Ri j , where n number kind of Wannier function, ĉ†

μ,σ (ĉμ,σ )
creates (annihilates) an electron of spin σ associated with
appropriate wμ(r), and,

tμν ≡ 〈wμ(r)| − h̄2

2m∗
||
∇2

r + Ṽ (r)|wν (r)〉. (16)

For the sake of clarity, we introduce the following notation,

tμν ≡ tI (μ,ν) : I (μ, ν) = Z ∈ {0, 1, 2, 3, . . . }, (17)

where I (μ, ν) maps the pair of position-orbital indices into the
proper natural number Z labeling Zth as the nearest neighbor
corresponding to the pair (μ, ν).

The notation is completed by assigning

tμμ = t0 ≡ ε0, (18)

as is the convention commonly used.
In Fig. 7, we present values of single-particle amplitudes

up to Z = 5 as a function of r0. When the size of the trapping
center shrinks, the value of ε0 increases. The opposite holds
for |t1|, which is, however, of the order of 10−1 meV in the
entire examined range of r0. The hopping values t2 are positive
and of an order of magnitude lower than |t1|. Note that we have
computed the hopping integrals up to Z = 17 and found their
rapid decay with increasing Z , that is, |tZ�5| � 10−3 meV for
each value of r0.

FIG. 8. Dispersion relations for the two lowest bands obtained
for r0 = 15 nm. MF and TB refer to Ĥ0 and ĤTB, respectively.
The values of ε1,2(k) resulting from the diagonalization of ĤTB in
a momentum space are in good agreement with those that come from
the solution of the eigenproblem for Ĥ0. Bands represented by dotted
black lines correspond to the free-electron approach.

Finally, the obtained sets {ti}r0 are utilized to formulate
ĤTB for each value of r0. In Fig. 8, we present a spectrum for
r0 = 15 nm that gives ε1, 2(k) which is in good agreement
with experimental evidence [15]. That is, the formation of
the Dirac cone in the vicinity of K can be clearly identified.
Notably, the difference �εM ≡ ε2(M) − ε1(M) is of particu-
lar interest, since as M = (π, π/

√
3)/L it can be confronted

against the energies of van Hove singularity peaks in the
photolouminescence spectra. As comes from Fig. 8, �εM ≈
1 meV is close to the experimental value ∼0.9 meV. Namely,
ε1,2 resulting from both approaches are nearly identical, which
validates the procedure covering Wannier basis elaboration,
as well as the subsequent calculation of hopping parameters
presented in the further part of the paper.

The dispersion relation obtained by the free electron
approach provides a significantly different �εM , which is
∼0.6 meV. Also, in this case, both bands are narrower com-
pared to the MF approach. We do not find perfect agreement of
�εM-� ≡ ε1(M) − ε1(�) ≈ 0.6 meV with respect to the value
≈1 meV provided by Du et al. However, from the data con-
tained in their work it is difficult to extract the precise value
of ε(�) for carrier concentrations that result in the presence
of ALD. Also, since they indicate that the emergence of the
honeycomb lattice results from the filling of the lower band,
resulting in the occupation of states for which ε(kF) is slightly
below ε(M), we consider this disagreement to be a minor
issue.

Importantly, with increasing r0 we observe a decreasing
value of �εM , as well as a narrowing of the entire band
structure, reflecting a stronger confinement of electrons in
trapping centers. Therefore it may be expected that at some
r0 the enhancement of carrier localization causes electron-
electron interactions to dominate over kinetic energy and,
consequently, drives the system to the strongly correlated
regime. To clarify this presumption, we further study the inter-
action amplitudes, construct a full electronic Hamiltonian, and
find its approximate ground state by means of VMC method
for the selected sets of interactions.
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IV. INTERACTING PICTURE

A. Electronic interactions and Hamiltonian

The determination of Wannier functions and ĤT BA allows
to evaluate the complete electronic Hamiltonian Ĥ,

Ĥ = ĤTB + Ĥe-e, (19)

where Ĥe-e contains electron-electron interaction terms. Al-
though the finite width of 2DEG affects ĤTB only by the
additive constant (related to confinement in the z direction),
it is not the case for the interacting part [27]. Thus Ĥe-e takes
the following form:

Ĥe-e = 1

2

∑
μ,ν,
γ ,τ

∑
σ,σ ′

Vμνγ τ ĉ†
μ,σ ĉ†

ν,σ ′ ĉl,τ,σ ′ ĉγ ,σ , (20a)

Vμνγ τ = 〈w̃μ(r, z)w̃ν (r′, z′)|V̂e-e|w̃γ (r, z)w̃τ (r′, z′)〉,
(20b)

w̃μ(r, z) ≡ wμ(r)φ(z). (20c)

Note, that we take φ(z) = φ1(z), i.e., the lowest energy state
obtained within Schrödinger-Poisson scheme as described in
Sec. II A. The electron-electron interaction operator V̂e-e is
taken in the Yukawa potential form, to account for the screen-
ing effects among electrons in 2DEG (see Section Results),
that is,

V̂e-e =
e2 exp

(
− qTF

√
|r − r′|2 + (z − z′)2

)
4πε0εr

√
|r − r′|2 + (z − z′)2

, (21)

where e is the electron charge and qTF is the estimated length
of the Thomas-Fermi wave vector.

Evaluation of microscopic parameters (tμν,Vμνγ τ ) eventu-
ally leads to formulation of the Hamiltonian Ĥ, which can
be diagonalized only by approximate methods. Here, we ex-
ploit the Variational Monte Carlo technique [27] as will be
presented at the end of this section.

The leading elements of the electron-electron interaction
tensor Vμνγ τ provided in Eq. (20) can be obtained numerically.
However, to perform this task, the length of the Thomas-Fermi
wave vector qTF in Eq. (21)—which tunes the magnitude of
screening—needs to be reasonably estimated.

The screening, directly related to the density of the elec-
tron gas, together with the local confinement of the carriers,
may play a key role in the tuning of the magnitude of
electron-electron interactions [28]. In our case, the Wigner-
Seitz radius rnD

s (where D stands for dimensionality) at nel ≈
4.5 × 1010 cm−2 is r2D

s ≈ 2.66 when treating the system as
strictly two-dimensional, and r3D

s ≈ 2.36 when one consid-
ers it as quasi-two-dimensional, that is, as being a layer
of width d = 25 nm. Here, both values of rs are acciden-
tally close to each other. As they are ∼2.5, one concludes
that electron-electron interactions and kinetic energy are of
similar magnitude [1,29]. Thus, disregarding the modulation
described by Vr0 for a while, the system may be safely con-
sidered to be the one in which the influence of Coulomb
interactions between carriers is moderate with respect to its
electronic properties, namely 1 � rs � 10. The system falls
into the class of the so-called intermediate regime [29] with

respect to the relation between electron-electron interactions
and their kinetic energy.

Also, as for r0 = 15 nm Vr0 exhibits only shallow local
minima and the resulting density profiles are characterized by
the nearly homogeneous distribution of electrons (excluding
areas of ADs) with relatively weak local maxima located
at honeycomb lattice sites, it seems reasonable to assume
metallic-like screening for this case. Therefore increasing r0

should also affect the screening length. However, assuming its
value as that in the non- or weakly confinig regime, one only
overestimates the magnitude of qTF and when interactions
become significantly greater than hopping amplitudes, one
may deduce that the strongly correlated regime is achieved.
Therefore such a strategy provides only an overestimation of
the minimal values of r0 for which ALD should exhibit typical
phenomena for the strongly correlated system.

We inspect the values of 1/qTF ≡ λTF ∈ [2 nm, 10nm]—
where λTF is the Thomas–Fermi length, which is supported
by the following estimations. First, we may consider the
qTF resulting from the ideal 2DEG approach assuming m∗ =
0.067mel and εr ≈ 13, that is, the specific values of the ef-
fective mass and dielectric constant of the GaAs material,
respectively. In this case, since qTF does not depend on the
carrier concentration, λTF = a∗

B/2 ≈ 5 nm, where a∗
B is the ef-

fective Bohr radius. On the other hand, taking the 3D approach
and n3D

el = 4.5 × 1010/d cm−2, one is left with λTF ≈ 9 nm,
thus a value nearly twice higher than for the 2D case. Even-
tually, λTF can be estimated on the basis of a quasi-2D model
(slab) of 2DEG elaborated by Moreno and Méndez-Moreno
[30]. Their approach leads to λTF ≈ 2 nm for the slab width
of d = 25 nm, i.e., a value substantially lower than that of the
ideal two-dimensional electron gas. As the formulation of a
general description of screening and its role in a quasi-two-
dimensional system is a complex problem that is beyond the
scope of this work, we examine the values of λTF, relying on
the estimations presented above.

We compute interaction amplitudes of the form Vμνμν , that
is, we take into account the on-site Hubbard interaction U ≡
V0,0 [applying the same rule of indexing as for hoppings—see
Eq. (17)], as well as intersite interactions K0,Z with Z up
to 5. The calculation procedure has been carried out using
the Cuba library [27,31] designed for the integration of mul-
tivariable functions. In Fig. 9, we present values of U as a
function of radius r0 for the selected screening lengths λTF.
According to the increasing localization of Wannier functions
with r0, the on-site repulsion amplitudes also increase. For
example, for λTF = 2.5 nm and r0 = 15 nm U ≈ 0.6 meV,
while for the same screening length but for r0 = 21 nm, we
obtain U ≈ 1.3 meV. Importantly, for λTF � 5 nm, the ratio
U/|t1| � 3.8 for r0 = 15 nm, as can be seen in Fig. 10, which
may suggest that the system is in the vicinity of the transition
point between the semimetallic and antiferromagnetic Mott
insulator (AFMI) phases [8]. However, since we identify the
radius r0 = 15 as the one that corresponds to the experimental
setup for which there is no evidence of AFMI formation [15],
we conclude that λTF should be considered as � 5 nm in the
framework of the elaborated model.

Note that since |t1| is one order of magnitude greater than
t2 for the entire range of r0, the estimate of critical radius
rc

0 for which AFMI possibly emerges by inspecting U/|t1| is
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FIG. 9. The amplitudes of Hubbard U on-site interaction as a
function of r0 for the selected values of λTF.

justified, since in this view the electronic properties of the
system should be similar to those of the Hubbard model on
the honeycomb lattice. Thus, taking λTF = 2 nm, we find that
the transition should occur at rc

0 � 20 nm.
Next, we examine the intersite amplitudes K0,Z . We find

that for λTF � 5 nm, they are at least two orders of magnitude
smaller than the corresponding U for each considered r0.
Therefore the interplay between U − K is unlike to cause the
formation of a charge density wave (CDW), which is believed
to compete with the semimetallic and AFMI phases when the
magnitude of intersite interactions is significant [6]. Even-
tually, according to the values of the dominating interaction
amplitudes, we expect a transition between the semimetallic
and AFMI phases when the value of r0 increases. We illustrate
this trend by the results obtained from our VMC calculations
for λ = 2.5 nm as presented below.

B. Ground state of interacting Hamiltonian by means
of VMC method

We formulate a minimalistic model for the interacting
electrons on honeycomb lattice described by the Hub-
bard Hamiltonian with hoppings extending up to the 5th
nn. Namely, we take into account only the on-site U

FIG. 10. The ratio between Hubbard on-site repulsion U and
the absolute value of t1. The dashed area corresponds to Uc/|t1| ≈
3.8–4.2 for which the AFMI phase is supposed to emerge when
considering the Hubbard model on the honeycomb lattice [8,9].

FIG. 11. Cross-sections of electron density distribution obtained
in the framework of VMC method for the three increasing values of
r0 (a). The maximal values ρMAX

r as a function of r0 resulting from
free electron, mean field and variational Monte Carlo approaches (b).

interactions, as the intersite interactions are—as mentioned—
at least of two orders of magnitude weaker. Calculations have
been carried out for the lattice consisting of N = 12 × 12 unit
cells, that is, for 288 sites within imposed periodic bound-
ary conditions. The simulations have been carried out using
the mVMC software [32] with the help of self-elaborated,
reusable and generic Hamiltonian input generator [33]. The
trial state is in Pfaffian form, i.e., product of antiparallel spin
pairing terms, supplied with the on-site Gutzwiller and inter-
site long-range Jastrow projectors, which are responsible for
capturing the electronic correlation effects [27]. Variational
parameters corresponding to pairings, Gutzwiller and Jastrow
projectors are chosen with periodicity defined by a supercell
consisting of 2 × 2 unit cells. According to the spin polariza-
tion of the system, we impose the constraint

∑2N
i 〈Ŝz

i 〉 = 0,
that is, the total z component of the spin is zero.

In the following, we present the calculations obtained for
λTF = 2.5 nm, emphasizing that it can be regarded as over-
estimated for the strongly confined regime. However, as will
become clear, it allows us to reveal typical features of the
strongly correlated system when r0 > 17 nm.

For the sake of completeness, we first present the spatial
distribution of electronic density which can be calculated for
a given position r as

ρr (r) =
∑
i, j

∑
σ

wi(r)w j (r)〈â†
i,σ â j,σ 〉, (22)

where i, j number lattice sites. In Fig. 11(a), we show the
evolution of ρr (r = MR1 + MR2) with respect to the mag-
nitude of antidot radius. The resultant shapes are similar to
those collected from MF and free-electron approaches, that
is, electron localization enhancement when r0 increases. This
tendency is also clearly visible when the maximal value of
density ρMAX

r is plotted against r0 as comes from Fig. 11(b).
Note that ρr obtained in terms of VMC cannot be expected
to be identical to that coming from the MF solution since λTF

should depend on r0 (as discussed previously). Also, VMC
is supposed to be more realiable when the value of U/|t1|
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FIG. 12. The double occupancy 〈d̂〉 as a function of the AD
radius r0 (main figure) and with respect to U/|t1| and t2/t1 in the
inset figures. Estimated statistical errors are smaller than the size
of the symbol. The dashed area in lower-left inset corresponds to
Uc ≈ 3.8–4.2, i.e., estimated critical value for which the AFMI state
emerges.

becomes higher, i.e., when the role of electronic correlations
becomes important. Notably, both approaches give similar
results up to r0 ≈ 17 nm, above this radius VMC predicts
that carriers are less confined when compared to MF, however,
this can be considered as the increasing effect of electrostatic
repulsions which in this regime should be better captured
by the VMC method. Although we find some anomalies of
ρMAX

r computed by means of VMC in the vicinity of r0 ≈ 17
nm they are of the order of statistical error. Thus analysis
based only on inspection of electronic densities cannot be
considered as sufficient in view of identification of possible
emergence of correlations-driven phenomena. Therefore first
we extend the analysis by calculating the average double
occupancy defined as

〈d̂〉 ≡ 1

2N

2N∑
i=1

〈n̂i↑n̂i↓〉, (23)

where n̂iσ is the particle number operator associated with the
site labeled by i and σ = {↑,↓} is the spin component z of the
electron that resides at the site i. In Fig. 12, we show 〈d̂〉 as a
function of r0. Its value decreases with increasing AD radius.
This behavior is driven by the mutual enhancement of U , as
well as the narrowing of the occupied band. We performed
auxiliary calculations for r0 = 17.15, 17.25, and 17.5 nm to
identify an abrupt drop in 〈d̂〉 in the vicinity of r0 ≈ 17 nm,
which is the characteristic indicator of the transition to the
insulating state driven by electronic correlations.

The emergence of an AFMI state is also supported by the
analysis of the spin-spin correlation functions. Namely, we
investigate the AF spin order parameter provided by Sorella
et al. [8], but defined for the z component of Ŝi, i.e.,

m2
sz ≡ 1

4N2

〈[ ∑
i j

(
Ŝz

i,α − Ŝz
j,β

)]2〉
. (24)

In Fig. 13, we present m2
sz analogously to the double oc-

cupancies shown in Fig. 12. It is clearly visible that the AF
order for r0 � 17 nm is marginal since m2

sz ∝ 10−3. However,

FIG. 13. The spin order parameter m2
sz defined in Eq. (24) as

a function of the AD radius (main figure). The insets contain m2
sz

dependencies on U/|t1| and t2/t1. The dashed area in upper-left
inset corresponds to Uc ≈ 3.8–4.2, i.e., estimated critical value for
which the AFMI state appears with increasing value of U . Estimated
statistical errors are smaller than the size of the symbols.

for r0 > 17 nm, we observe its radical increase, namely, for
r0 = 18 nm, which is the next case considered, it is ∼0.14.

Recapitulating, when r0 is translated into the ratio U/|t1|
(see the insets in Figs. 12 and 13), simultaneous anoma-
lous behavior of both 〈d̂〉 and m2

sz can be observed for r0 =
17.15–17.25 nm. These values of r0 correspond to U/|t1| =
4.13–4.38, the range that nearly overlaps with 3.8–4.2, i.e.,
critical values for which the transition to AFMI takes place,
as estimated in the framework of quantum Monte Carlo
approaches [8–10].

V. SUMMARY AND CONCLUSIONS

In this paper, we studied the antidot honeycomb lat-
tice model in view of the importance of electron-electron
interactions. Within the assumed form of the quantum dot po-
tential and the multilevel computational scheme, we provided
evidence of the possibility of the formation of an antiferro-
magnetic Mott insulator. Our modeling scheme reveals that
the radius of the antidot is crucial in this context. In addition,
the inclusion of metallic screening among electrons seems to
be essential for the strength of the electron-electron interac-
tions, specifically when the radius of the antidot is small. Note
that we did not have to take into account the screening of
the metallic gates that induce the periodic potential [27,28,34]
since the honeycomb structure here results from the triangular
etching pattern of the upper layers. In particular, the modeled
system differs from that studied by Tkachenko et al. [21],
since electrostatical modulation of potential in the experimen-
tal setup considered [15] is achieved by spatial redistribution
of charges (ions) provided by the mentioned etching. The
size of the electrode that is responsible for the tuning of the
chemical potential (carrier concentration) is negligible with
respect to the lattice size, and thus, in practice, the electrode
does not participate in screening. Also, we do not take into
account any kind of scattering centers, such as ionic impurities
or any other kind of disorder in the system. This assump-
tion relies on the fact that the AD architecture allows one to
substantially reduce the role of disorder, however, the quality
of the samples may affect the properties of the system [21]
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from this point of view. We disregard these effects, since the
heterostructure fabrication technology develops now, and even
low carrier concentration samples may exhibit high electron
mobility. Therefore the whole screening considered here has
its origin in the metallic nature of 2DEGs [35]. In this spirit
our supporting VMC analysis reveals possible mapping of
interacting electrons in AD honeycomb lattice to the Hubbard
model. Our study provides a straightforward way to exploit
the devices that are currently fabricated for the realization of
strongly correlated artificial Dirac systems. The experimental
confirmation of our predictions would open up the opportu-
nity for a better understanding of the electronic properties of
graphenelike systems in a controllable manner. Furthermore,

we indicate that in addition to the correlation effects studied
here, the AD honeycomb lattice formed in 2DEG may also
serve as a simulation platform for the strain-induced opening
of the gap in honeycomb systems [36,37], since strain can be
emulated by the distorted QD assembly. Thus the proposed
modeling scheme may also be considered useful from this
point of view.
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