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Dissipative Callan-Harvey mechanism in 2 + 1-dimensional Dirac system:
Fate of edge states along a domain wall
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The Callan-Harvey mechanism in the 2 + 1-dimensional (2 + 1-D) Jackiw-Rebbi model is revisited. We
analyzed Callan-Harvey anomaly inflow in the massive Chern insulator (quantum anomalous Hall system)
subject to an external electric field. In addition to the conventional current flowing from the bulk to the edge
due to parity anomaly, we considered the dissipation of the edge charge due to the interaction with an external
bosonic bath in 2 + 1 D and due to an external bath of photons in 3 + 1 D. In the case of a 2 + 1-D bosonic
bath, we found the new stationary state, which is defined by the balance between the Callan-Harvey current
and the outgoing flow caused by the dissipation processes. In the case a of 3 + 1-D photon bath, we found a
critical electric field below which this balance state can be achieved, but above which there is no such balance.
However, if one considers a more realistic model with a momentum-dependent mass βp2, the edge state merges
into the bulk when the momentum is large, leading the system to the balance. Furthermore, we estimated the
photon-mediated transition rate between a 2 + 1-D bulk and 1 + 1-D topological edge state of the order of
1 ns−1 at room temperature.
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I. INTRODUCTION

An anomaly in quantum field theory (or quantum anomaly)
occurs when a symmetry of the classical action is broken
by quantum effects. One of the most important quantum
anomalies is the chiral anomaly, also known as the Adler-Bell-
Jackiw anomaly [1,2] or axial anomaly. It is related to the
breaking of the conservation law of an axial vector current,
which is associated with chiral symmetry, by quantum fluc-
tuations. In odd-dimensional space-time, the chiral anomaly
does not exist and is replaced by the so-called parity anomaly:
if fermions are coupled to a gauge field, parity symmetry is
broken by quantum corrections. These quantum anomalies
evoked great research interest in elementary particle physics
and in condensed matter physics. The chiral anomaly is impor-
tant to understand the pion decay into two photons (π → γ γ )
and also the chiral magnetic effect in Dirac materials [3].
In contrast, the parity anomaly is essential in the quantum
anomalous Hall effect (QAHE) [4], which is defined as quan-
tized Hall conductivity in the absence of a magnetic field
[5]. In both scenarios, anomalies confirm the deviation from
classical physics. Thus, their presence adds to the long list of
successes of quantum theory.

Parity anomaly and chiral anomaly show some certain
connection when one considers a finite-size fermionic system
with boundaries [6]. We take a cylinder-shaped bulk system
in 2 + 1 D with two 1 + 1-D edges [7] as an example and
consider two scenarios to review such a connection. The first
scenario is the work done by one of the authors [8]. Due
to the parity anomaly in the 2 + 1-D bulk, an out-of-surface

magnetic field pumps the charge to the bulk states [9], but the
total charge density ntot = nbulk + nedge is constant and zero. It
demonstrates the Callan-Harvey mechanism [6]: it is the edge
states that compensate the charge deficit of the bulk under
the magnetic field [8]. The second scenario is in the absence
of the magnetic field, but in the presence of an electric field
parallel to the edges, which induces a Hall current in the bulk,
perpendicular to the edge, due to the parity anomaly. This bulk
current pumps charge from one edge across the bulk to the
other edge, and the charge accumulates at the edges, which
changes the chemical potentials between them. This is an-
other example demonstrating the Callan-Harvey mechanism
[6,10]: From the viewpoint of the bulk, the current “stops”
at the edge, which breaks charge conservation. At the same
time, the electric field generates charges at the edge because
of the 1 + 1-D chiral anomaly. One has to consider the two
subsystems together; only then does the charge conservation
law hold for the whole system. Importantly, this cancels the
gauge anomaly [11] that would otherwise occur.

Now one may ask the following questions: What is the
fate of this surplus charge at the edge? Will the charge ac-
cumulation be boundless? We know that such an edge mode
propagates in a single direction and is protected by topology.
Backscattering is forbidden, which makes the edge mode
robust to impurities [12]. However, the accumulation cannot
happen infinitely; when all the edge states are occupied, one
expects relaxation to the bulk bands. In reality, however, the
edge states and the bulk states interact with each other. One
expects that if the edge chemical potential is higher than
the energy gap of the bulk, say μ > m0v

2, relaxation occurs:
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the electrons at the high-energy (occupied) edge states tend
to relax into the low-energy (empty) bulk states, and dissipate
energy to the environment. Such an interplay has been inves-
tigated in quantum Hall systems [13,14].

In the present work, we study the interplay between edge
states and bulk states in QAHE systems by introducing
electron-photon interactions [15]. In addition to the edge-to-
bulk relaxation process, there is another excitation process
transferring the charge from an edge state to the bulk. Even
before the edge chemical potential exceeds the gap energy,
i.e., μ < m0v

2, the edge state can be excited into bulk states
by absorbing a photon from the thermal fluctuations. Such an
excitation is the leading-order contribution to the transition,
pushing the electrons to leave the edge. Our present work will
focus on such an excitation process and we will calculate its
rate using the Lindblad formalism.

The paper is organized as follows. In Sec. II, the
Jackiw-Rebbi model is introduced and the Callan-Harvey
mechanism is explained. We also introduce the setup of the
paper and recapitulate the eigenstates (the wave functions) of
the noninteracting 2 + 1-D Jackiw-Rebbi model. In Sec. III,
we investigate a toy model of QED3 with a planar photon and
calculate the transition rate of the edge modes in the frame-
work of the Lindblad approach. In Sec. IV, the interaction
with a real 3 + 1-D photon is studied. Section V provides the
conclusion and outlook.

II. CALLAN-HARVEY MECHANISM

In this section, we introduce the Callan-Harvey mechanism
[6], in the 2 + 1-D Jackiw-Rebbi model [16], and the eigen-
states of the noninteracting theory to lay the foundation of the
next sections.

In order to explain the Callan-Harvey mechanism, we start
with a quite general 2 + 1-D fermion (electron) ψ in the
background of an Abelian gauge field Aμ (μ ∼ 0–2) with the
action

S1 =
∫

d3zψ̄ (γ 0iD0 + vγ j iD j − mv2)ψ (1)

in which zμ = (t, x, y) with μ ∈ {0, 1, 2}, Dμ = ∂μ − ieAμ,
and j ∈ {1, 2}. We assume μ = 0 is for the time component
and μ = 1, 2 or j for the spatial components. The Dirac
matrices γ μ are given by γ 0 = σz, γ 1 = iσy, and γ 2 = −iσx;
ψ̄ = ψ†γ0, v is the velocity of the fermions, and the mass term
m = m(x) has the following domain-wall structure:

m(x) =
{

m0, x > 0

−M, x < 0.
(2)

The mass parameters here, m0 and M, are positive. The action
given by Eq. (1) with the domain-wall mass is called the
Jackiw-Rebbi model [16]. In the original work of Jackiw and
Rebbi, they considered the special case where m0 = M.

Callan and Harvey considered the effective Chern-Simons
action of such a fermion theory with a domain-wall mass. The
Chern-Simons action can be obtained by integrating out the
fermions and its form is given by [6]

SCS = e2

2π h̄

∫
d3x C εμνρAμ∂νAρ, (3)

FIG. 1. The setup of the system. As explained in the main text
of Sec. II, the fermion mass changes sign at x = 0, and therefore
the Chern number is 1/2 at the x > 0 region and −1/2 at the x < 0
region. In the presence of a uniform electric field in the y direction
(green arrows), the Hall currents (blue arrows) in the two regions
flow in opposite directions. Therefore, there will be charge accumu-
lation at the edge. The red arrows denote the edge current.

with the Chern number C = sgn[m(x)]/2. In the following,
the Planck constant h̄ will be omitted by setting h̄ = 1. This
effective action varies by a boundary term under gauge trans-
formations in the presence of the domain wall. This is an
example of a gauge anomaly. Fortunately, a zero mode living
on the domain wall was found to produce a chiral anomaly,
which precisely cancels the aforementioned gauge anomaly.
In this sense, the bulk and the boundary exist in mutual depen-
dence of each other. In the 1990s, Chandrasekharan explicitly
proved such a cancellation [10].

This anomaly cancellation can also be understood at the
level of the fermionic theory, i.e., before integrating the
fermions to obtain the effective Chern-Simons theory, given
by Eq. (3). Consider a 2 + 1-D Dirac fermion with constant
mass term m. The coupling of the fermion to the gauge field
induces the parity anomaly in the electric current [17],

e jμ = C e2

2π
εμνρ∂νAρ, (4)

with C = sgn(m)/2. If the mass term is given by Eq. (2),
then the Hall conductivity σH = sgn(m)e2/4π changes its
sign from the x > 0 region to the x < 0 region. Now we
apply an electric field in the y direction, which induces Hall
bulk currents in the x direction. Due to the sign change of
the fermion mass, the Hall currents in the x < 0 region and
x > 0 region flow in opposite directions (see Fig. 1). It leads
to charge accumulation at the edge region, x ∼ 0. These cur-
rents are called Goldstone-Wilczek currents [10] or anomaly
inflow [18,19]. If one neglects the edge mode, the fermions
seem to disappear at the boundary which breaks the charge
conservation and leads to a gauge anomaly.

One can also take the viewpoint of the edge states. Ac-
cording to the so-called bulk-edge correspondence, the fact
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that the difference in Chern number between the two sides of
the domain wall �C = C(x > 0) − C(x < 0) = 1

2 − (− 1
2 ) =

1 implies that there is one (massless) chiral mode along the
edge. If one considers the interface between a Chern insulator
with C = 1 and the vacuum (C = 0), then the difference in
Chern number is still 1, which also implies one chiral edge
mode. The main results of the two cases are essentially the
same. The dispersion relations for both the bulk and edge
modes are shown in Fig. 2(a). The chiral mode is described
by 1 + 1-D massless Dirac equation, and the chiral anomaly
in 1 + 1 D tells us ∂μ jμ = ∂μ jμ5 = eE/2π . (The first equality
holds because there is only one chiral mode, left handed or
right handed.) If one looks at the edge theory itself, the charge
conservation is broken: the charge number may increase with
time [6]. Therefore, one has to consider the edge and the bulk
theory as a whole, and then one will find that the total charge
of the whole system is conserved: the bulk loses charge and
the edge (the domain wall) gains the same amount of charge
in turn.

However, what is the fate of this extra charge? A similar
charge pumping process was studied before in the context of
the QAHE under out-of-plane magnetic fields [8,20], but the
relaxation or dissipation process was not taken into account.
One expects some type of relaxation or transition process
which transfers the surplus electrons at the edge to the bulk
[see Fig. 2(a)]. Such a relaxation process can be mediated
by an electron-boson coupling, for example, via a photon or
phonon [15]. In the present work, such electron-photon inter-
actions are investigated. Since the speed of light, c, is much
bigger than the Fermi velocity v, i.e., c � v, the edge-state
electron can be excited into bulk states via absorbing one
photon, at leading order in perturbation theory [see the red
arrow in Fig. 2(a)]. At next-to-leading order, the edge-state
electron can absorb one photon first and then emit another
photon. Such a Compton scattering or Raman process may
also transfer the fermion from an edge state to the bulk [see
the green arrows in Fig. 2(a)].

In the following, we construct the eigenstates (wave func-
tions) of the noninteracting theory, i.e., e = 0 in Eq. (1),
and from now on we always assume 0 < m0 � M, i.e., the
vacuum gap is much bigger than the massive Chern insulator
gap. Equivalently, the theory can be described in terms of the
Hamiltonian

H = −vi∂xσx − vi∂yσy + m(x)v2σz. (5)

The spinor ψ has two components, and thus the equa-
tion Hψ = Eψ includes two coupled first-order differential
equations.

Since there is no y dependence in the Hamiltonian (5),
the momentum along the y direction is conserved, such that
the partial derivative −i∂y can be replaced by a constant
p2. Therefore, we assume ψ (t, x, y) = �(x)e−iEt+ip2y, and
then the spinor � = (ξ1, ξ2)T satisfies the following equa-
tion for x > 0:(

m0v
2 −vi∂x − ivp2

−vi∂x + ivp2 −m0v
2

)(
ξ1

ξ2

)
= E

(
ξ1

ξ2

)
. (6)

In order to solve the above differential equations, we trans-
form them into a second-order differential equation for

FIG. 2. The energy spectra for electron systems and the edge-
to-bulk transition processes. The blue and black lines describe the
unoccupied and occupied states, respectively. Zigzag lines represent
ingoing or outgoing photons. (a) A semi-infinite electron system with
one edge or domain wall. There is only one chiral mode, whose
occupied states are depicted by the straight blue line. The red ar-
row depicts the leading-order excitation process, which absorbs one
photon. The green arrows are related to the second-order relaxation
process, which includes an absorption of a low-energy photon (green
zigzag line) and an emission of a high-energy photon (blue zigzag
line). (b) The schematic diagram of transitions in a finite-size system
with two edges. The two straight blue lines represent the occupied
edge states. The red and purple arrows denote the absorption and
emission processes, while the red and purple zigzag lines denote the
ingoing and outgoing photons, respectively.

component ξ1,

∂2
x ξ1 + [

(E/v)2 − (m0v)2 − p2
2

]
ξ1 = 0. (7)

The other component ξ2 can be expressed by ξ1 as

ξ2 = (−iv∂x + ivp2)ξ1

E + (m0v)2
. (8)
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There is one edge state (bound state) localized around x = 0,
which is given by

�(e)(x) = √
m0v

(
1
i

)
e−m0vx, (9)

with the energy E = vp2. The bulk states (continuous states)
are

�p1,p2 (x) = a

(
1

vp1+ivp2

E+m0v2

)
eip1x + b

(
1

−vp1+ivp2

E+m0v2

)
e−ip1x. (10)

The coefficients a and b are normalization constants
and can be found by the normalization condition∫

�†
p1,p2

(x)�p′
1,p2 (x)dx = δ(p1 − p′

1). The result is given by

a = −E + m0v
2 − vp2 − ivp1

2
√

2πE (E − vp2)

and b = E + m0v
2 − vp2 + ivp1

2
√

2πE (E − vp2)
. (11)

III. INTERACTION WITH A PLANAR PHOTON (QED3)

In this section, we consider a 2 + 1-D Dirac fermion in-
teracting with a 2 + 1-D photon. It is a toy model for the
interaction between the electrons in a two-dimensional plane
and the photons. While electrons can be confined to the two-
dimensional plane in the laboratory, photons only exist in
three-dimensional space. 3 + 1-D photons will be considered
in the next section. It is instructive, however, to start with
QED3, i.e., the case where both electrons and photons live in
the two-dimensional plane. Furthermore, we take into account
that the Fermi velocity for electrons in solids is much smaller
than the speed of light, i.e., v � c.

The action is given by

S2 = S1 + 1

2

∫
d3z

⎡
⎣Ȧ0

2 − c2
∑
i=1,2

(∂iA0)2

⎤
⎦, (12)

where S1 is given in Eq. (1) and A0 is the temporal component
of the photon field. The spatial components A1 and A2 are
neglected in the following because of the small Fermi veloc-
ity [21]. The interaction term eψ†ψA0 is responsible for the
transitions from edge states to bulk states, and the coupling
strength e is the electron charge in 2 + 1 D, which has the
dimension 1/2 and scales as E1/2, where E is energy.

Since the speed of light is much bigger than the Fermi
velocity, c � v, a transition process from an edge state to
a upper-band bulk state with lower energy cannot happen at
the first order, i.e., a high-energy edge state cannot decay
into a low-energy upper-band bulk state, by emitting only
one photon. On the contrary, an electron at the edge state
can absorb one photon and be excited into a bulk state with
a higher energy [see the red arrow in Fig. 2(a)]. Due to the
photon absorption, a finite (nonzero) temperature is necessary
for such a process to occur. This is the main focus of this
section. The leading-order contribution to a real relaxation
process (from a high-energy initial state to a low-energy fi-
nal state) comes from the second order, which is similar to
Compton scattering in quantum electrodynamics. It is de-
picted by the green arrows in Fig. 2(a). The corresponding

process can be described by the effective Hamiltonian Heff =
λψ†ψA2

0, where λ = e2/E∗, and E∗ is a characteristic energy
related to the virtual intermediate state [shown by the green
dashed line in Fig. 2(a)]. However, it is a high-order process
suppressed by the higher power of the coupling constant.

The time evolution of the density matrix ρ is governed by
the equation ρ̇ = −i[HI , ρ], where HI = eψ†ψA0 is the inter-
action term of the Hamiltonian in the interaction picture. In the
Born approximation, the total density matrix ρ is assumed to
be factorized into ρ = ρS ⊗ ρB, where ρS is the density matrix
of the electron system and ρB is the density matrix of the bath
or the bosons (photons). Tracing out the degree of freedom
of the bath environment, the evolution of the electron system
ρS = TrB(ρ) can be formulated by [22]

ρ̇S = −
∫ t

0
dsTrB[HI (t ), [HI (s), ρ(s)]] (13)

= −
∫ ∞

0
dsTrB[HI (t ), [HI (t − s), ρS (t ) ⊗ ρB]], (14)

in which the Markov approximation has been applied in the
second equation. We only consider the first-order contribution
in perturbation theory and assume that multiparticle excita-
tions are suppressed. Taking the average value on the edge
state |ke〉 (the state means adding one edge state to the Fermi
sea |ke〉 ⊗ |FS〉, but the Fermi sea |FS〉 will not be mentioned
below for simplicity), one obtains the time evolution of the
occupation probability of the state |ke〉, which is given by
〈ke|ρ̇S|ke〉 = −I1 + I2 + H.c. with

I1 =
∫ ∞

0
dsTrB〈ke|HI (t )HI (t − s)ρS (t ) ⊗ ρB|ke〉 (15)

and

I2 =
∫ ∞

0
dsTrB〈ke|HI (t )ρS (t ) ⊗ ρBHI (t − s)|ke〉. (16)

Here, I1 is the rate of the electron leaving from the edge
state |ke〉 to bulk states, while I2 is the rate of the electron
coming to the state |ke〉. These rates are related to the pho-
ton number distribution law. The rate or the speed of the
latter process (photon emission) is higher than the former
one (photon absorption). Furthermore, at exact zero temper-
ature, the photon-absorption process cannot happen at all, but
the emission process can still happen.

In the present work, we consider nonzero temperature
T only in the photon sector of the theory, such that the
related thermal energy is much smaller than the bulk gap,
kBT � 2m0v

2. Therefore, if the chemical potential of the edge
state μ � m0v

2, the temperature is not large enough to ef-
ficiently supply a photon for the excitation of the edge state
into a bulk one. On the other hand, if the chemical potential
of the edge state μ > m0v

2 and we consider the edge state
with momentum ke such that v

√
k2

e + (m0v)2 − vke ∼ kBT ,
the excitation process to the bulk can indeed happen, even at
a small temperature of the photon bath, kBT � 2m0v

2. We
consider this process as a main contribution to the relaxation
of the edge states, neglecting other possible processes. As
was mentioned above, the “Compton-like” relaxation depicted
by the green arrows in Fig. 2(a) is suppressed by the second
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power of the interaction constant. Furthermore, we neglect the
backward relaxation I2.

In order to devise the arguments in favor of this approx-
imation, we consider a finite-width system, e.g., a ribbon,
with two edges (domain walls). Figure 2(b) shows the energy
occupation state and transition processes for the two-edge
system. There are two edge states now denoted by the straight
dashed lines and straight blue lines in Fig. 2(b). If the electric
field is parallel to the edges, the Hall current is perpendicular
to the edges and drives the charge from one edge to another.
Therefore, the chemical potential of one edge will decrease
(depletion process) and the chemical potential of the other
edge will increase (accumulation process). Because the two
edges are far from each other, direct transition from one edge
to another is difficult, if not completely impossible. Direct
calculation of the transition amplitude from edge to edge
gives the estimation of the order of exp(−m0vL), with Lx

the distance between the two edges, i.e., the width of the
ribbon, and m0 is the fermion mass in the bulk. In contrast,
the transition amplitude from the edge to the bulk is of the
order of 1/

√
m0vL. If Lx is large enough (m0vL � 1), both

amplitudes are small, but the former is much smaller than the
latter, and thus we neglect the direct transitions from one edge
to another. The I1 relaxation processes happen in both edges,
leading to the appearance of holes in the lower band in the
bulk. It opens the possibility for the direct transitions from
the upper to lower band in the bulk via the photon emission
depicted by the purple arrows in Fig. 2(b). These processes
are of the order of 1. It means that they are much faster than
all edge-bulk transitions and they keep the upper band of the
bulk almost empty, thus suppressing the inverse bulk-to-edge
transitions denoted by I2. Thus we conclude that the time of
the whole edge-to-bulk relaxation is determined by the com-
paratively slower process I1 shown by red arrows in Fig. 2(b).
We make a comment here: The estimation above concerns a
transition amplitude between a single initial state and a single
final state. The total transition rate should be obtained by
taking the modular square of the amplitude and integrating
over all final states. After integration, the above-mentioned
edge-to-bulk transition rate will no longer depend on Lx.

In order to further calculate I1, we neglect the off-diagonal
elements of the density matrix and insert a complete set of
states between the two HI operators (many-particle excitations
are neglected). Then the rate I1 can be reformulated into

I1 =
∫ ∞

0
dsTrB〈ke|HI (t )|p〉

× d2 p

(2π )2
〈p|HI (t − s)ρS (t ) ⊗ ρB|ke〉

= e2
∫

d2 p

(2π )2
Wke (p) r(ke, t ), (17)

where |ke〉 is the edge state with momentum ke, |p〉 is the
bulk state with momentum p = (p1, p2), and the function
r(ke, t ) is defined by < k′

e|ρS (t )|ke >= r(ke, t )δ(k′
e − ke). The

quantity

Wke (p) =
∫ +∞

0
ds

∫ +∞

0
dx

∫ +∞

0
dx′

∫∫
dydy′eiEs

× fp(x) f ∗
p (x′)ei(p2−ke )(y−y′ )G(s, x − x′, y − y′),

(18)

where fp(x) = �(e)†�p(x) is the inner product of the
spinors, and G(s, x − x′, y − y′) = TrB[ρBφ−(s, x − x′, y −
y′)φ+(0, 0, 0)] is the correlation function of the photon field.
The field A0 is decomposed into A0 = φ+ + φ−, with φ+
the positive-frequency component including the annihilation
operators and φ− the negative-frequency component including
the creation operators. The other combination TrB[ρBφ+φ−] is
neglected by virtue of the rotating wave approximation [22].

The photon correlation function G can be calculated by
mode expansion and the result (in Gaussian units) is

G(t, x, y) =
∫

c2d2q

(2π )22ωq
nB(ωq)eiωqt−iq·r, (19)

where nB(ω) = 1/(eβω − 1) is the Bose-Einstein distribution
function for the photon bath, β = 1/(kBT ), ωq = c

√
q2

1 + q2
2 ,

q = (q1, q2), and r = (x, y). Therefore, we found

Wke (p) =
∫

d2q

(2π )2ωq
|Fp,q1 |2Lyδ(p2 − ke + q2)δ[E (ke)

− Ep + ωq]nB(ωq), (20)

where E (ke) = vke, Ep1,p2 = v
√

p2
1 + p2

2 + (m0v)2 ,Fp,q1 =∫ +∞
0 fp(x)eiq1xdx, and

|Fp,q1 |2 = v2 p1q1

πEp(Ep − vp2)

[
m0v

(q1 − p1)2 + (m0v)2

− m0v

(q1 + p1)2 + (m0v)2

]
. (21)

For simplicity, the function m0v
q2+(m0v)2 is replaced by πδ(q), and

then function Wke (p) can be evaluated as

Wke (p) = Lyδ[E (ke) − Ep + ωp1,ke−p2 ]

× v2 p2
1nB(ωp1,ke−p2 )

πEp(Ep − vp2)ωp1,ke−p2

. (22)

Therefore, the transition rate of the edge state |ke〉 to the bulk
states is given by

�(ke) = e2
∫

Wke (p)
d2 p

(2π )2
. (23)

Its integrand includes the delta function δ[E (ke) − Ep +
ωp1,ke−k], with ωp1,p2 = c

√
p2

1 + p2
2 . If the Fermi velocity v

is much smaller than the speed of light, c, i.e., v/c ∼ 1/100,
then it is safe and convenient to replace Ep in the integrand by
E0,ke . After integrations, we obtain the result of the transition
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FIG. 3. (a) The black curve (marked by label 1) shows the mo-
mentum dependence of the excitation rate �1(ke)/e2 of the edge state
|ke >. It is computed according to Eq. (24), with v/c = 0.01. The
horizontal axis is ke/(m0v). The red curve (marked by label 2) is the
distribution function R(ke)/R(0) in the saturation state, i.e., Eq. (26),
with the electric field Ey = 2×10−5em0v related to the red dotted line
in (b). (b) The saturation momentum K∗

e obtained from Eq. (25) as
a function of electric field Ey, in the step-function approximation for
the edge-state occupancy.

rate per unit length �1(ke) = �(ke)/Ly as follows:

�1(ke) = e2v2�E

πc2E0,ke

nB(�E ), (24)

with �E = E0,ke − E (ke). When ke → +∞, �E → 0+ and
�1(ke) goes to zero as ∼kBT/ke. The ke dependence of func-
tion �1(ke) is shown by curve 1 in Fig. 3(a).

Now let us analyze the consequences of such an excitation
process and consider the evolution of the occupancy of the
edge states. Suppose, at time t = 0, the chemical potential of
the whole system is at μ = 0 [Fig. 2(a)] and one turns on the
electric field in the y direction, Ey. On the one hand, because of
the electric field, there is a constant rate of electrons flowing
toward the edge and accumulating there. On the other hand,
the accumulated electrons at the edge are excited via thermal
fluctuations and transferred to the bulk. If we assume that at a
time t the edge states are occupied up to the momentum Ke(t ),
what is its behavior at the later times t → ∞? Is it possible
for the system to reach a saturation? A “saturation” means a
balance between the inflow current towards the edge and the
excitation process depleting the edge. The excitation rate from
the edge to the bulk,

∫ Ke

0 �1(ke)dke, is small in the beginning
(for small t) because Ke is small, i.e., Ke(t ) ∼ 0. Therefore,
the accumulation process is stronger than the depletion and
Ke starts to increase. When Ke increases, the rate of depletion
also increases. If the depletion rate coincides with the accumu-
lation rate, the process reaches equilibrium and Ke saturates.
In order to calculate the saturation momentum K∗

e , we equate
the two rates (number of particles per unit time and per unit

length), ∫ K∗
e

0
�1(ke)dke = σH Ey/e. (25)

Finite values of K∗
e can be found as a function of Ey, which

is shown in Fig. 3(b). Asymptotically, K∗
e (Ey) scales as

∼exp(Ey/em0v), for large Ey.
Above, we assumed the distribution function on the edge

r(ke) to be a step function: r(ke) = 1 when ke〈Ke and r(ke) =
0 when ke〉Ke. Such an assumption is simple, but is not en-
tirely realistic. In order to approach reality, we lift such an
assumption and allow the distribution function r(ke, t ) to take
any value between zero and one. We are going to find such
a distribution function at the saturation (t → +∞). Suppose
�t is a very short time interval and k′

e = ke + E�t ; then
we have r(k′

e, t + �t ) = r(ke, t )[1 − �1(ke)�t]. It means that
the momentum of the edge-state fermions is changed by the
electric field Ey during the time interval and, in the meantime,
the fermions leave the edge (via the excitation process) at the
rate �1. In the stationary state, r(ke, t + �t ) = r(ke, t ), which
does not depend on time and can be denoted by the function
R(ke). Therefore, we obtain R′(ke)Ey = −�1(ke)R(ke), from
which we find the function R(ke) as the final distribution along
the edge,

R(ke)/R(0) = exp

[
−

∫ ke

0
�1(k′)dk′/Ey

]
, (26)

which is shown by curve 2 in Fig. 3(a).
In a more realistic half Bernevig-Hughes-Zhang (BHZ)

model [23] (see the Appendix for its formulation), there is a
quadratic momentum term (βp2) in the fermion mass, which
is related to the band curvature or an effective mass of a
semiconductor. The solution of the edge state with the β

term is given in the Appendix, using perturbation with the
small parameter b = βm0. From Eq. (A10), one observes that
if b � 1 and p2/(m0v) � 1, then the edge state �p2 (x) still
decays like e−m0x and is localized around the edge (x = 0).
When p2 increases, the edge state �p2 (x) broadens and grad-
ually merges to the bulk states. As mentioned above, from
Eq. (25), one can find the saturation momentum K∗

e . If the
external electric field is very small, e.g., Ey < 10−5em0v, then
K∗

e /m0v � 1. In the case of b � 1, our main conclusion will
not change substantially. However, when Ey is sufficiently
large, the value of K∗

e obtained from Eq. (25) is large and
then the edge states �Ke (x) with Ke ∼ K∗

e can be very broad
and behave similarly to bulk states. In this case, there will
be an increased probability of direct edge-to-bulk and edge-
to-edge (through the bulk) transitions, which will influence
the final stationary state. We leave the study of this effect for
future work.

IV. INTERACTION WITH 3 + 1-D PHOTONS

In this section, we consider a realistic model where the
2 + 1-D electrons interact with 3 + 1-D photons. The corre-
sponding action is given by

S3 = S1 + 1

2

∫
d4x

[
Ȧ0

2 − c2
3∑

i=1

(∂iA0)2

]
, (27)
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where d4x = dt dx dy dz. The 2 + 1-D electron system is lo-
cated on the z = 0 plane.

The deduction in the previous section about the evolution
of the density matrix and the transition rate can be repeated
straightforwardly. However, the photon correlation function
G in Eq. (19) has to be modified because of the different
dimensionality. As for the 3 + 1-D photon, the corresponding
correlation function G(s, x − x′, y − y′) is defined as

G(s, x − x′, y − y′) = TrB[ρBφ−(s, x, y, 0)φ+(0, x′, y′, 0)],

(28)

where the z component of the spatial coordinates is fixed to
be 0 because the photons interact with the fermions only at
the z = 0 plane. The result of G can be obtained by mode
expansion,

G(t, x, y) =
∫

d3q

(2π )32ωq
nB(ωq)eiωqt−iq1x1−iq2x2 , (29)

where q = (q1, q2, q3), and ωq = c
√

q2
1 + q2

2 + q2
3 . Corre-

sponding to Eq. (22), the function W for the 3 + 1-D photon
will be given by

Wke (p) = Ly

∫
dq3

2π
δ[E (ke) − Ep + ωp1,ke−p2,q3 ]

× v2 p2
1nB(ωp1,ke−p2,q3 )

πEp(Ep − vp2)ωp1,ke−p2,q3

. (30)

From the function Wke (p), we obtained the transition rate of
the edge state ke to the bulk,

�1(ke) = (e2/Ly)
∫

Wke (p) d2 p/(2π )2,

and its result is given by

�1(ke) = 4αv2�E2nB(�E )

3c2E0,ke

, (31)

with α = e2/c and �E = E0,ke − vke. Then, as in the previous
section, one can figure out the charge accumulation at the edge
and the stationary distribution law of the edge electrons in
momentum space, which is shown in Fig. 4.

From Eq. (31), one notices that when ke → +∞, �1(ke)
goes to zero as 1/k2

e , implying that
∫ +∞

�1(ke)dke is a finite
number. As in the previous section, the saturation momentum
K∗

e can be specified by Eq. (25) according to the assump-
tion of the step-function edge-state distribution. However, if
the electric field Ey is larger than the critical field E (c)

y =∫ +∞
0 �1(ke)dke/(σH Ly), then the saturation momentum K∗

e
will be infinite. It means all the edge states will be occupied if
the electric field is strong enough. This “electron avalanche”
phenomenon is due to our low-energy effective model which
is not regularized by the high-energy part of the dispersion
relation as it always appears in real materials. If K∗

e is very
large, the higher momentum part of the band structure should
be taken into account. As discussed at the end of the previous
section, in the presence of βp2 in the mass term, an edge state
will merge into a bulk state for very large momentum ke.

We will now discuss the realization of such an effect in
the laboratory and estimate the orders of magnitude for the

FIG. 4. (a) The black curve (marked by label 1) is the excita-
tion rate �1(ke), as a function of momentum ke, given by Eq. (31).
ns: nanosecond. The parameters are given as follows: the bulk gap
� = 2m0v

2 = 0.1 eV, Fermi velocity v = 0.01c, and temperature
kBT = �/4. The red curve (marked by label 2) is the the occupation
function R(ke)/R(0) in the saturation state, with Ey = 0.75 V/m. It
is obtained from Eq. (26), with the �1(ke) function given by Eq. (31).
(b) The saturation momentum K∗

e in the step-function assumption for
the edge occupation vs electric filed Ey. One observes that there is a
critical electric field, around 1.5 V/m, above which the value of K∗

e

diverges.

physical quantities. In the last section, we considered half
infinite planar systems and infinitely long ribbon-shaped sys-
tems. The former one has only one boundary, while the latter
one has two boundaries. However, both of them are hard to
realize in experiment. Instead of these infinite-size systems,
we consider a cylinder with finite length or an annulus as
more realistic examples. Both of them are finite size and have
one hole and two edges. If the magnetic field going through
the hollow part of this kind of a system varies with time,
the electric field parallel to the edges appears automatically.
Due to this electric field, the Hall current is perpendicular to
the edges and drives the charge from one edge to another.
Therefore, the chemical potential of one edge will decrease
(depletion process) and the chemical potential of the other
edge will increase (accumulation process), exactly as shown
in Fig. 2(b). In the more realistic half of the BHZ model with
a small β term (βp2), the edge states merge into the bulk
when p2 is large. The edge states from two different edges
connect with each other through the bulk states. Therefore,
under large Ey field [when Ey〉1.5 V/m; see Fig. 4(b)], the
edge state around one edge will gradually transform into bulk
state and then into the edge state around another edge. We
believe that this process could lead to the saturation of K∗

e . In
order to avoid this broadening effect for the edge states, we
should consider only Ey〈1 V/m.

At last, we estimate the orders of the main quantities,
such as the transition rate �1(ke) and the critical electric field
E (c)

y . We show, in Fig. 4, the edge-to-bulk transition rate as
a function of the wave vector of the edge state ke, in the
absence of the β term. One can see that the transition rate
is of the order of ns−1 (nanoseconds) and it decreases with the
increase of the wave vector ke. For a massive Chern insulator
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with gap �= 0.1 eV, at temperature given by kBT = �/4,
i.e., T ∼ 250 K, the rate at which edge-state electrons tran-
sition into the bulk (per unit length of the edge) is about
3×1014 m−1 s−1. If the size of a sample is 1 μm, the rate is
3×108 s−1. It means the lifetime of an edge state will be about
3 ns. The critical electric field is about 1.5 V/m, which does
not depend on the size of the sample.

V. CONCLUSION AND OUTLOOK

In the present work, we revisited the Callan-Harvey mech-
anism in the Jackiw-Rebbi model with a space-dependent
domain-wall mass. Due to the parity anomaly, the electric
field, which is parallel to the domain wall (the edge), drives
the electrons to the edge. As the electrons accumulate along
the edge, they start to transfer into the bulk states via ther-
mal fluctuation. We studied the time evolution of the surplus
charge at the edge in the Lindblad formalism, and the transi-
tion rate from the edge to the bulk was calculated. In such a
transition process, photon absorption is necessary. Therefore,
at zero temperature, the transition process does not occur in
our electron-photon interaction model and the charge accu-
mulation at the edge will be boundless. At finite (nonzero)
temperature, we studied the stationary state at late times
t → + ∞. In the planar photon (QED3) case, the stationary
state exists for arbitrary electric field. In such a stationary
state, the edge states are occupied up to some certain char-
acteristic momentum K∗

e . In the 3 + 1-D photon case, there is
a critical electric field strength E (c) below which the stationary
state exists, but above which the stationary state does not exist
and the charge accumulation will be boundless. However, in
the more realistic half of the BHZ model, the fermion mass
is given by m = m0 − βp2 and the edge states merge into
the bulk when momentum p2 is large (see the Appendix). If
we apply an electric field parallel to the edge in a very low
temperature (few thermal photons to make the edge-to-bulk
transition), the highest occupied momentum Ke will grow
continuously with time and the occupied edge state �Ke will
gradually evolve from a highly localized edge state into a
broad bulk-state-like edge state. Let us call this process the
“broadening effect.” The broadening effect can be fast if the
electric field is large and induce the direct bulk-to-bulk relax-
ation, which leads to the saturation of K∗

e . However, on the
other hand, if the electric field is weak and the temperature is
not very low, then the photon-assisted edge-to-bulk transition
will win over the broadening effect and the situation will be
similar to the one with β = 0.

Our present study investigated the effects of electron-
photon interaction on the edge states and improved the
physical picture of the Callan-Harvey mechanism with dis-
sipation processes. It has not only scholarly interest from
quantum field theories, but also might have potential appli-
cations in condensed matter (optical relaxation in topological
materials) and potential applications in engineering. For ex-
ample, the optical processes depicted in Fig. 2(b) might make
such a system into a new light source: in the presence of
an electric field, the system absorbs two low-energy photons
from the thermal bath (the environment), and then emits one
high-energy photon, with the energy ∼� the band gap. Fur-
thermore, if one replaces the (low-energy) thermal photons

[the red zigzag lines in Fig. 2(b)] by incident photons with the
same energy, then the incident photons trigger the relaxation
[the purple zigzag line in Fig. 2(b)], and vice versa.
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APPENDIX

In this Appendix, the half of the BHZ model will be solved
analytically, including the p2 term in the fermion mass. The
Hamiltonian is defined on the semi-infinite plane x > 0 and is
given by

Ĥ = −vi∂xσx + vp2σy + m̃v2σz, (A1)

where m̃ = m0 − β(−∂2
x + p2

2) and β is small. From the equa-
tion Ĥ �(x) = E �(x), with � = (ξ1, ξ2)T , we obtain the
equation for ξ1,

E2ξ1 = v2
(−∂2

x + p2
2

)
ξ1 + v4

[
m0 − β

(−∂2
x + p2

2

)]2
ξ1. (A2)

It is a fourth-order differential equation and the corresponding
characteristic equation (∂x → q) is

E2 = v2(−q2 + p2
2) + v4

[
m0 − β(−q2 + p2

2)
]2

, (A3)

from which q can be solved through replacing v2(−q2 + p2
y )

by Q̃. The equation for Q̃ is a second-order algebraic equation,

E2 = Q̃ + (m0v
2 − βQ̃)2, (A4)

from which Q̃ can be explicitly solved,

Q̃ =
−(1 − 2b) ±

√
(1 − 2b)2 − 4β2

(
m2

0v
4 − E2

)
2β2

, (A5)

with b = βm0v
2, a small dimensionless quantity. From

v2(−q2 + p2
2) = Q̃, one can obtain the four roots for q. For

later convenience, we introduce q+, q− > 0 which satisfy

q2
± = p2

2 + 1 − 2b

2β2v2
±

√
(1 − 2b)2 − 4β2

(
m2

0v
4 − E2

)
2β2v2

. (A6)

We employ the boundary condition �(0) = 0 for the solution
of Eq. (A2) and the edge state requires the asymptotic con-
dition � → 0 when x → ∞. Therefore, from Eq. (A2), we
obtain the edge-state solution,

ξ1 = a1(e−q+x − e−q−x ), (A7)
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with parameter a1 to be determined later. Similarly, we also
obtain ξ2,

ξ2 = a2(e−q+x − e−q−x ), (A8)

with parameter a2 to be determined later. After inserting
Eqs. (A7) and (A8) into the eigenequation (E − Ĥ )�(x) = 0,
we obtain the ratio a1/a2 and find that the relation between E
and p2 is encoded in

E + (
m0 + βq2

− − βp2
2

)
v2

q− + p2
= E + (

m0 + βq2
+ − βp2

2

)
v2

q+ + p2
.

(A9)

If we apply perturbation in terms of power of b � 1, then we
obtain E = vp2(1 + b) + O(b2). Furthermore, from Eq. (A6),

we obtain

q− = m0v
√

1 + 2b − 4b(p2/m0v)2 + O(b2), (A10)

and q+ = m0v[1/b − b + O(b)]. After inserting the result of
q± into Eqs. (A7) and (A8), one finds that the solutions
of the edge states are consistent with Eq. (10), in the limit
b → 0. We also notice that in Eq. (A7), when p2 increases, the
value of q− decreases and therefore the edge-state wave func-
tion ∼e−q−x broadens, which implies a continuous crossover
from the edge state to the bulk state. If p2 increases from
p2 = 0, the edge state �p2 gradually evolves into bulk states
[24,25].
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