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We consider an isotropic spin-degenerate interacting uniform D-dimensional electron gas (DDEG) with D > 1
within the Luttinger-Ward (LW) formalism. We derive the asymptotically exact semiclassical/infrared limit of
the LW functional at large distances, r � λF , and large times, τ � 1/EF , where λF and EF are the Fermi wave-
length and the Fermi energy, respectively. The LW functional is represented by skeleton diagrams, each skeleton
diagram consists of appropriately connected dressed fermion loops. First, we prove that every D-dimensional
skeleton diagram consisting of a single fermion loop is reduced to a one-dimensional (1D) fermion loop with the
same diagrammatic structure, which justifies the name dimensional reduction. This statement, combined with the
fermion loop cancellation theorem (FLCT), agrees with results of multidimensional bosonization. Here we show
that the backscattering and the spectral curvature, both explicitly violate the FLCT and both are irrelevant for a
1DEG, become relevant at D > 1 and D > 2, respectively. The reason for this is a strong infrared divergence of
the skeleton diagrams containing multiple fermion loops at D > 1. These diagrams, which are omitted within
the multidimensional bosonization approaches, account for the noncollinear scattering processes. Thus, the
dimensional reduction provides the framework to go beyond predictions of the multidimensional bosonization.
A simple diagrammatic structure of the reduced LW functional is another advantage of our approach. The
dimensional reduction technique is also applicable to the thermodynamic potential and various approximations,
from perturbation theory to self-consistent approaches.
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I. INTRODUCTION

Rigorous theoretical description of interacting electrons is
an extreme theoretical challenge fostering the development
of new approaches in interacting quantum field theories. Ex-
actly solvable interacting models provide a valuable insight
into possible structure of strongly correlated electron mat-
ter, yet they normally rely on assumptions atypical of the
realistic physical systems. Among the most celebrated ex-
amples, there are various exactly solvable models with large
number N � 1 of the electron flavors [1–6] or large number
D � 1 of spatial dimensions [7–10]. Another direction of
theoretical research is to extend the one-dimensional (1D)
bosonization technique [11–16] to higher dimensions. One
way to do this is via so-called weakly coupled wire con-
structions [17–26] where a D-dimensional electron system is
represented as an array of weakly coupled Luttinger liquids.
The problem of this approach is that the electron hopping
is strong only along the wire direction and must be treated
as a small perturbation along other directions. Coherent zero
sound modes in Fermi liquids [27] provide a solid basis for
the bosonization of a D-dimensional electron gas (DDEG)
[28–32]; this approach is also known as the Fermi surface
(FS) bosonization. The multidimensional bosonization was
equivalently formulated within the functional integral ap-
proach [33–39] and via the Ward’s identity [40–44], following
the recipe of Ref. [14] for the 1DEG. Explicit multidimen-
sional bosonization solutions were found for the case of linear
fermion spectrum near the FS and for forward-scattering
interaction [28–44], these results are supported by the fermion

loop cancellation theorem (FLCT) that is approximately valid
under the aforementioned conditions [41,45,46]. However,
the backscattering is known to cause infrared nonanalytici-
ties in the thermodynamic potential [35–39,47–50], indicating
its importance for the low-energy physics in a DDEG. The
electron spectral curvature is shown to be qualitatively im-
portant in both 1DEG [51–53] and 2DEG [54,55] for the
semiclassical/infrared asymptotics of some correlation func-
tions and the low-temperature transport properties. Here we
consider both the forward- and the backscattering interactions
as well as a general electron dispersion, which allows us to go
beyond the FLCT, which is no longer valid if backscattering
and/or electron spectral curvature are present.

In this paper we propose a powerful theoretical tool,
the dimensional reduction procedure, that complements the
existing multidimensional bosonization approaches [28–44].
The dimensional reduction is a purely geometrical proce-
dure of integrating out compact dimensions that emerge in
the semiclassical/infrared limit of large distances, r � λF ,
and large times, τ � 1/EF , here λF and EF are the Fermi
wavelength and the Fermi energy, respectively. We apply
the dimensional reduction to the whole Luttinger-Ward (LW)
functional [56–59] describing an isotropic spin-degenerate
uniform DDEG with D > 1 (this procedure is trivial in the
D = 1 case).

The dimensional reduction procedure is based on the obser-
vation that the fermionic correlations exhibit a 1D character
at large distances r � λF . This fact, first pointed out in
Ref. [28], rests entirely on the existence of the FS: a surface
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of constant energy, the Fermi energy EF , in the momentum
space that separates particle and hole continua at zero tem-
perature T = 0. Here we consider isotropic spin-degenerate
DDEG, so the FS is a sphere of radius kF , kF = 2π/λF is the
Fermi momentum. A spherical FS results in the equivalence
of all points on the FS due to the same character of quantum
fluctuations in the vicinity of each point on the FS. Such an
equivalence, thus, identifies the reduced (1 + 1)-dimensional
phase space (ω, q) that is orthogonal to the FS, where ω � EF

is the electron frequency, and q = p − kF � kF with p be-
ing the electron momentum. The spatial dimensions that are
orthogonal to this (1 + 1)-dimensional space are compacti-
fied for the large-distance fermion correlations with r � λF ,
which results in the 1D-like long-distance asymptotics of the
electron Green’s function; see Refs. [50,60,61]. The purpose
of dimensional reduction is to integrate out pure geometric
effects of these compactified dimensions with the angular
measure δθ ∼ √

λF /r � 1 per each of the (D − 1) compact
dimensions at the level of the whole LW functional.

We previously applied the dimensional reduction to a
perturbative treatment of nonanalytic corrections to the free
energy of an interacting DDEG with arbitrary momentum-
dependent spin splitting [50] and found full agreement of our
general result with previously known special cases [47–49].
Moreover, a recent analytic calculation of the interaction
corrections to the 2kF spin susceptibility of a 2DEG [62]
that employs the dimensional reduction fully agrees with the
previous numerical study [63]. This supports the validity of
our approach, which we extend far beyond the perturbation
theory in this paper. We also stress that the dimensional reduc-
tion automatically simplifies all calculations because many
degrees of freedom are integrated out universally [50,62].
Earlier in Ref. [61], we also applied the dimensional reduction
to a special case of the resonant exchange scattering in a
DDEG within a self-consistent Born approximation where we
neglected both forward scattering and the interaction vertex
corrections. In this paper we apply the dimensional reduction
to the whole LW functional with arbitrary interaction in the
semiclassical/infrared limit. We stress that this procedure is
asymptotically exact in this limit. The analytically derived
and parameter-free semiclassical/infrared limit of the LW
functional may be then further exploited for numerical ap-
proximations such as DMRG [64] and GW [65–67], as well
as for various analytic approximations [50,61,62].

Importantly, in the limit when the FLCT is valid
[41,45,46], our approach agrees with multidimensional
bosonization results [33–44]: the random phase approxima-
tion (RPA) then becomes asymptotically exact within the
semiclassical/infrared limit. In this paper we consider a
general setting that includes the spectral curvature and the
backscattering interaction, such that the FLCT is no longer
exact. We find that skeleton diagrams containing multiple
fermion loops are strongly divergent in D > 1. We show that
this divergence is sufficient to make the backscattering inter-
action relevant in D > 1 and the spectral curvature relevant
in D > 2. The multiloop skeleton diagrams also represent the
noncollinear scattering contribution that is missing in the mul-
tidimensional bosonization approach [33–44]. Such diagrams,
which are also poorly studied, might be important for strong
correlation effects in interacting DDEGs.

This paper is organized as follows. In Sec. II we in-
troduce the LW functional of the interacting DDEG. The
general semiclassical/infrared asymptotic limit of the fermion
Green’s function and self-energy, as well as the dressed inter-
action and the polarization operator are derived in Sec. III. The
general structure of the dimension-reduced LW functional is
presented in Sec. IV. The dimensional reduction of all skele-
ton diagrams containing a single fermion loop is performed
in Secs. V, VI, and VII. The infrared-divergent multiloop
skeleton diagrams representing the noncollinear scattering
contributions are considered in Sec. VIII, where general di-
agrammatic rules for the dimension-reduced LW functional
are formulated. We compare our theory with predictions of
the multidimensional bosonization in Sec. IX, where we also
demonstrate the relevance of the backscattering and the spec-
tral curvature in higher dimensions. Conclusions are given in
Sec. X. Technical details are outlined in Appendices.

II. LUTTINGER-WARD FORMALISM

In order to describe interacting uniform DDEG, we employ
the LW formalism [56], also known as the Baym-Kadanoff
formalism [57], within the double Legendre transform formu-
lation [58,59],

A[G, �,V,	] = −Tr ln
(
G−1

0 − �
) − Tr{�G}

+ 1
2

[
Tr{	V } + Tr ln

(
V −1

0 − 	
)]

+ 
[G,V ], (1)

where A[G, �,V,	] is the LW functional that depends on
four bilocal fields G, �, V , 	; G0 and V0 are the bare electron
Green’s function and the bare interaction, respectively; Tr
stands for the trace over all spin, time, and space indices. The
functional 
[G,V ] is represented as an infinite sum of the
two-particle irreducible, also known as skeleton, diagrams:
cutting any two fermion or any two interaction lines must
not disconnect a skeleton diagram. Skeleton diagrams obey
standard diagrammatic rules with the following numerical
prefactor:

(−1)n+1+F

2n
N�, (2)

where n is the number of interaction lines V , F the number of
fermion loops, and N� corresponds to the number of topolog-
ically inequivalent graphs derived from the skeleton diagram
by cutting a single fermion line. We note that N� is a divisor
of 2n, the integer 2n/N� is called the symmetry factor of a
skeleton diagram. The exact electron Green’s function G, the
self-energy �, the dressed interaction V , and the polarization
operator 	 correspond to the saddle-point solutions of the LW
functional given by Eq. (1),

δA
δ�

= 0 ⇐⇒ G = (
G−1

0 − �
)−1

, (3)

δA
δ	

= 0 ⇐⇒ V = (
V −1

0 − 	
)−1

, (4)

δA
δG

= 0 ⇐⇒ � = δ
[G,V ]

δG
, (5)

δA
δV

= 0 ⇐⇒ 	 = −2
δ
[G,V ]

δV
. (6)
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In this paper we do not introduce separate notations for the
saddle-point solutions and the bilocal fields due to clear con-
text: the bilocal fields are used within the LW functional,
while the saddle-point solutions correspond to the physical
correlation functions that satisfy Eqs. (3)–(6). It is clear from
Eq. (5) that N� in Eq. (2) is the number of topologically in-
equivalent dressed self-energy diagrams generated by a given
skeleton diagram of 
[G,V ]. The functional derivative in
Eq. (5) generates each self-energy diagram precisely 2n/N�

times, which cancels the symmetry factor in Eq. (2). Similarly,
one can check that Eq. (6) generates all diagrams for the
polarization operator with correct prefactors.

In general, the full set of saddle-point solutions satisfying
Eqs. (3)–(6) contains spurious unphysical solutions [68,69]
due to the strong nonlinearity of the saddle-point equations.
It has been argued in Refs. [70–72] that the spurious solutions
can be removed completely by demanding correct analytic
properties of the physical Green’s function and the dielectric
function,

G(z, p) =
∫ ∞

−∞

ρe(ω, p) dω

z − ω
, ρe(ω, p) � 0, (7)

V (z, q)

V0(z, q)
− 1 =

∫ ∞

0

ρV (ω, q)

z2 − ω2
d (ω2), ρV (ω, q) � 0, (8)

where ρe(ω, p) � 0, ρV (ω, q) � 0 are positive-definite elec-
tron and interaction spectral functions, respectively, p is the
electron momentum, q is the interaction momentum, z is a
complex frequency, Im(z) 	= 0. The Matsubara representation
corresponds to z = iωn, ωn is a fermionic (bosonic) Matsubara
frequency in context of the electron Green’s function (interac-
tion). Equation (8) follows from the Kramers-Kronig relation
for the dielectric function [73].

In this paper we consider a spherical spin-degenerate FS
of radius kF , the Fermi momentum. According to Ref. [50],
the results of this paper can be straightforwardly generalized
to the case of a nonspherical FS with arbitrary (yet, small
enough) momentum-dependent spin splitting. An important
condition here is that each spin-split component of the FS is a
smooth manifold with nonzero Gauss curvature at each point,
see Ref. [50]. In case if the FS contains points of zero Gauss
curvature, an additional analysis is required due to anoma-
lously large contributions of these points to the long-range
asymptotics of the electron Green’s function at particular “res-
onant” directions, see, e.g., Ref. [60]. The general results of
our paper are applicable to interacting DDEGs with regular
FS, i.e., any FS (not only spheres) of strictly positive (or
strictly negative) Gauss curvature.

We set throughout the reduced Planck constant and the
Boltzmann constant to one, h̄ = kB = 1.

III. LONG-DISTANCE AND LOW-ENERGY
ASYMPTOTICS OF G, �, V , AND �

The correlation functions in this paper are expressed
in space-time representation rather than momentum-
frequency representation. Here we concentrate on the
semiclassical/infrared limit that is commonly driven by
strong correlation effects: r � λF and τ � 1/EF , where
λF = 2π/kF is the Fermi wavelength, EF is the Fermi energy.

Any nontrivial infrared physics is characterized by the
low-energy singularities of correlation functions. A singular-
ity here is used in a broad sense and it does not necessarily
imply the divergence, it can be any kind of discontinuity, e.g.,
a branch-cut nonanalyticity. The singularities of interacting
DDEG are naturally associated with the FS, a manifold in
the D-dimensional momentum space separating occupied and
empty electron states. The correlation effects are expected to
be especially dramatic near the FS where the electron occupa-
tion can fluctuate strongly even at zero temperature T = 0. In
this paper we assume existence of the FS as a manifold cor-
responding to the leading singularities of the electron Green’s
function and self-energy [74,75]. For simplicity, we also as-
sume that the FS is a D-dimensional sphere of radius kF . Here,
we stress that the self-energy singularities emerge even within
the Fermi liquid ground state, and that those singularities are
responsible for various nonanalytic responses [35–39,47–50].

The singularities near the FS result in the following leading
contribution to the semiclassical/infrared asymptotics of the
electron Green’s function, e.g., see Refs. [50,60–62]:

G(τ, r) ≈ eikF r−iϑ

(λF r)
D−1

2

g(τ, r) + e−ikF r+iϑ

(λF r)
D−1

2

g(τ,−r), (9)

g(τ, x) ≡ T
∑
ωn

∫ ∞

−∞

dq

2π
eiqx−iωnτ G(iωn, q), (10)

ϑ = π

4
(D − 1), (11)

where λF = 2π/kF is the Fermi wavelength, D > 1 is the
spatial dimension, G(iωn, q) the electron Green’s function in
frequency-momentum representation with ωn = πT (2n + 1),
n integer, being the fermionic Matsubara frequency, T the
temperature, and q = p − kF the distance from the momen-
tum p to the FS. The function g(τ, x), being a 1D Fourier
transform of G(iωn, q), represents the effective 1D dual of the
original D-dimensional Green’s function G(τ, r). Importantly,
the two terms in Eq. (9) originate from small vicinities of two
points on the spherical FS with the outward normal being
collinear to the coordinate vector r, see Ref. [50]. Each of
the (D − 1) dimensions that are tangential to the FS at these
points are effectively compactified within the small angular
measure δθ ∼ √

λF /r � 1 at r � λF , which results in the
power-law prefactor in Eq. (9). The phase factor e±iϑ in
Eq. (9) represents the semiclassical phase ϑ contributing π/4
per compactified tangential dimension. A similar asymptotics
has been derived in Ref. [50] for any nonspherical FS with
strictly positive (or strictly negative) Gauss curvature, which
allows for a straightforward extension of the results of this
paper for all such regular FS.

At this point it is useful to introduce the chiral index dis-
tinguishing between “left” and “right” components of the 1D
dimension-reduced Green’s functions, by the following rule:

gR(τ, x) = g(τ, x), gL(τ, x) = g(τ,−x). (12)

So far, the chiral index just allows for more compact represen-
tation of Eq. (9),

G(τ, r) ≈
∑
ν=±1

eiν(kF r−ϑ )

(λF r)
D−1

2

gν (τ, r), (13)

235116-3



MISEREV, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 108, 235116 (2023)

where ν = +1 (ν = −1) corresponds to ν = R (ν = L) chi-
rality. In case D = 1, Eq. (13) coincides with the expansion
of 1D Green’s function over the left and right movers, e.g.,
see Ref. [16]. According to the origin of two terms in Eq. (9)
discussed earlier, the chiral index in D > 1 spatial dimensions
just counts all points on the FS with the outward normals that
are collinear to r. For any regular FS there are exactly two
such points at any direction of r, see Ref. [50].

Exactly the same logic can be applied to the self-energy
�(τ, r) whose leading long-range asymptotics also originates
from the FS singularity, i.e., it also exhibits the asymptotic
decomposition of the form of Eq. (13),

�(τ, r) ≈
∑
ν=±1

eiν(kF r−ϑ )

(λF r)
D−1

2

sν (τ, r), (14)

s(τ, x) ≡ T
∑
ωn

∫ ∞

−∞

dq

2π
eiqx−iωnτ�(iωn, q), (15)

sR(τ, x) = s(τ, x), sL(τ, x) = s(τ,−x), (16)

where ϑ is the semiclassical phase defined in Eq. (11), s(τ, x)
is the 1D Fourier transform of the exact self-energy �(iωn, q),
with, again, ωn being the fermionic Matsubara frequency, and
q = p − kF , the distance from the momentum p to the FS. The
chiral components sν (τ, x) of the effective 1D self-energy are
defined similar to the chiral components gν (τ, x) of the effec-
tive 1D Green’s function, see Eq. (12). According to Eqs. (12)
and (16), the 1D Green’s function and the 1D self-energy then
satisfy the following identities:

g−ν (τ,−x) = gν (τ, x), s−ν (τ,−x) = sν (τ, x). (17)

Singularities of the dressed interaction V (τ, q) originate
from the forward scattering V q∼0(τ, q) associated with long-
range electron-electron interactions and collective plasmonic
effects, and from the backscattering V 2kF (τ, q), which charac-
terizes self-consistent resonant 2kF scattering,

V (τ, q) ≈ V q∼0(τ, q) + V 2kF (τ, q), (18)

where q = q − 2kF � kF , τ � 1/EF is the imaginary time.
Equation (18) represents the harmonic expansion of the
dressed interaction in momentum space, the regular contri-
butions are neglected. The singularities originating from the
higher-order harmonics, 4kF , 6kF , etc., in Eq. (18) require
high-energy virtual transitions with the excitation energy ∼EF

and, therefore, are suppressed. For example, the higher-order
harmonics in 1D are subleading for weak enough interaction
[16,76]. In this paper we omit the higher-order harmonics for
simplicity only, the dimensional reduction that we develop in
this paper allows one to incorporate such effects straightfor-
wardly.

Taking the D-dimensional Fourier transform of Eq. (18),
we find the spatial asymptotics of the dressed interaction,

V (τ, r) = V1(τ, r) +
∑

σ=±1

e2iσ (kF r−ϑ )V2(τ, σ r), (19)

V1(τ, r) =
∫

dq
(2π )D

eiq·rV q∼0(τ, q), (20)

V2(τ, x) =
[

2

λF |x|
] D−1

2

eiϑ sgn(x)
∫ ∞

−∞

dq

2π
eiqxV 2kF (τ, q), (21)

FIG. 1. Chiral matrix elements of (a) dressed 1D interaction
vαβ

μν (ξ ), (b) dressed 1D polarization operator Pαβ
μν (ξ ), see Eqs. (27)

and (28), where ξ = (τ, x) and α, β, μ, ν ∈ {L, R} are the chiral
indices.

where ϑ is the semiclassical phase given by Eq. (11), sgn(x)
returns the sign of x, V1(τ, r), V2(τ,±r) are slowly varying
functions, changing on a scale much larger than λF at r � λF .
Equation (20) represents the D-dimensional Fourier transform
of the forward-scattering singularity. The integration over q =
q − 2kF in Eq. (21) is extended to the whole real line R due to
fast convergence on the scale q ∼ 1/r � kF . Notice that the
asymptotics of the backscattering term in Eq. (19) takes the
form that is similar to the Green’s function and the self-energy
asymptotic expansions, see Eqs. (13) and (14). Indeed, the
backscattering singularity of the dressed interaction is located
on the (D − 1)-dimensional sphere of radius 2kF , i.e., we
could just use Eq. (13) with rescaling kF → 2kF , λF → λF /2
and corresponding 1D Fourier transform of V 2kF (τ, q) instead
of g(τ, x). From now on, it is convenient to extend the domain
of V1(τ, r) to the whole real line R via the following symmet-
ric extension:

V1(τ, x) = V1(τ, |x|). (22)

A similar harmonic expansion can be applied to the polar-
ization operator 	 in the semiclassical/infrared limit r � λF ,
τ � 1/EF ,

	(τ, q) ≈ 	q∼0(τ, q) + 	2kF (τ, q), (23)

	(τ, r) ≈ P1(τ, r)

(λF r)D−1 +
∑

σ=±1

e2iσ (kF r−ϑ )

(λF r)D−1 P2(τ, σ r), (24)

P1(τ, r) = (λF r)D−1
∫

dq
(2π )D

eiq·r	q∼0(τ, q), (25)

P2(τ, x) = |2λF x| D−1
2 eiϑ sgn(x)

∫ ∞

−∞

dq

2π
eiqx	2kF (τ, q). (26)

The power-law prefactor in Eq. (24) is introduced for conve-
nience, the functions P1,2(τ, x) vary substantially only on a
scale much larger than λF at |x| � λF .

Finally, we introduce the chiral indexing convention for the
1D interaction matrix elements as well as for the 1D polariza-
tion operator via the following identifications, see Figs. 1(a)
and 1(b):

vνν
μμ(τ, x) = V1(τ, x), vν−ν

−νν (τ, x) = V2(τ, νx), (27)∑
μ,ν

Pνν
μμ(τ, x) = P1(τ, x), P−νν

ν−ν (τ, x) = P2(τ, νx), (28)

where μ and ν are fixed everywhere except in the expression
for P1(τ, x). Here, P1(τ, x) is represented by the sum of four
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matrix elements for convenience: in such a representation the
chiral indexing acquires its full pseudospin properties. We em-
phasize that only the combinations of the chiral components
of the effective 1D interaction and 1D polarization operator
given in Eqs. (27) and (28) are physical. All other chiral matrix
elements that are not shown in Eqs. (27) and (28) necessarily
vanish in any translation-invariant system due to the momen-
tum conservation: According to our convention, two different
chiral fermion species carry momenta kF n and −kF n along
a certain direction n, so the momentum conservation in the
DDEG necessarily imposes the conservation of total chiral
index in the dimension-reduced effective theory. Emergence
of other chiral components of the effective 1D interaction and
the 1D polarization operator that break the total chiral index
conservation, corresponds to the momentum conservation in
the original DDEG only modulo 2kF , which is equivalent
to the emergence of a 2kF density wave order. This constitutes
the equivalence between the spontaneous translational sym-
metry breaking of the interacting DDEG and the spontaneous
chiral symmetry breaking of the corresponding dimension-
reduced low-energy theory that we construct in this paper.
A proper discussion of the symmetry breaking requires the
Hartree (or condensate) term in Eq. (1), see Ref. [59]. We
delegate the discussion of ordered states to our future study.

IV. GENERAL STRUCTURE OF
DIMENSION-REDUCED LW FUNCTIONAL

The asymptotic expansions of G, �, V , and 	 allow
us to restrict the functional space of the LW functional
A[G, �,V,	], see Eq. (1), to corresponding one-dimensional
functions g, s, v, P via the linear maps given by Eqs. (13),
(14), (19), and (24),

Ã[g, s, v,P] = 1

CD
A[G[g], �[s],V [v],	[P]], (29)

CD = π
D
2

λD−1
F �(D/2)

= AD−1

2λD−1
F

, (30)

where the constant factor CD is introduced for convenience,
�(x) stands for the Euler gamma function, and AD−1 is
the surface area of the (D − 1)-dimensional unit sphere,
see Eq. (A3). As the saddle point of the exact LW func-
tional A[G, �,V,	] is expressed in terms of the effective
one-dimensional functions via the linear maps derived in
Sec. III, the same saddle point is also contained in the
dimension-reduced LW functional Ã[g, s, v,P]. Possible ul-
traviolet divergences of the infrared theory are naturally cut
off by the Fermi momentum kF , and the Fermi energy EF

[50,61,62]. The goal of this paper is to simplify Eq. (29).
The first three terms of Eq. (1) yield similar 1D contribu-

tions to Eq. (29), see Appendix A for details,

−Tr ln
(
G−1

0 [g0] − �[s]
)

CD
= −Sp ln

(
g−1

0 − s
)
, (31)

−Tr{�[s] G[g]}
CD

= −Sp{s g}, (32)

1

2CD
Tr{	[P]V [v]} = 1

2
Sp{vP}, (33)

where Sp stands for the 1D trace that includes the integra-
tion over the imaginary time τ and the effective single space
coordinate x, and also the summation over chiral and spin
indices. Here G0[g0] implies the same asymptotic expansion
as for G[g], see Eq. (13). The effective dimension-reduced
LW functional Ã[g, s, v,P] can then be represented in the
following form:

Ã[g, s, v,P] = −Sp ln
(
g−1

0 − s
) − Sp{sg}

+ 1
2 [Sp{Pv} + Ã[P]] + 
̃[g, v], (34)

Ã[P] ≡ 1

CD
Tr ln

(
V −1

0 − 	[P]
)
, (35)


̃[g, v] ≡ 
[G[g],V [v]]

CD
, (36)

where Ã[P] describes the polarization effects in the
dimension-reduced theory, 
̃[g, v] is represented by
the dimension-reduced skeleton diagrams that are derived in
the subsequent sections.

The saddle-point equations of Ã[g, s, v,P] allow us to find
the 1D duals of the D-dimensional correlation functions,

δÃ[g, s, v,P]

δs
= 0 ⇐⇒ g = (

g−1
0 − s

)−1
, (37)

δÃ[g, s, v,P]

δg
= 0 ⇐⇒ s = δ
̃[g, v]

δg
, (38)

δÃ[g, s, v,P]

δv
= 0 ⇐⇒ P = −2

δ
̃[g, v]

δv
, (39)

δÃ[g, s, v,P]

δP = 0 ⇐⇒ v = −δÃ[P]

δP . (40)

Here we emphasize that Eqs. (37)–(40) can be obtained di-
rectly from Eqs. (3)–(6). However, the dimensional reduction
of the LW functional itself allows us to simplify the deriva-
tions significantly. From Eq. (37) we see that the relation
between g and s is still given via the standard Dyson equa-
tion of the form of Eq. (3). The functional 
̃[g, v] plays the
role of the generating functional for the 1D self-energy s and
the 1D polarization operator P . In this context, g, s, and P
can still be represented as a sum of Feynman diagrams with
fully dressed interaction lines. However, the relation between
v and P can no longer be described via a corresponding
diagrammatic series, which is clearly seen from the following
fact:

v 	= (
v−1

0 − P
)−1

. (41)

This can be directly verified using Eqs. (35) and (40) with the
relation between 	 and P given in Sec. III. The violation of
Wick’s theorem of this kind was reported in Ref. [19] in the
context of weakly coupled 2D and 3D arrays of 1D Luttinger
liquids.

In practice, it may be convenient to use Eqs. (37)–(39)
that can still be represented in diagrammatic form with all
interaction lines dressed. However, instead of Eq. (40), one
may use the original Eq. (4) with the identifications V [v]
and 	[P] introduced in Sec. III. In the following sections,
we derive the effective dimension-reduced representation of

̃[g, v].
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(a)

(b) (c)

FIG. 2. Skeleton diagrams with a single fermion loop. (a) The
first-order skeleton diagram with the two-vertex fermion loop.
(b) The only second-order skeleton diagram contains the fermion
loop with N = 4 vertices. (c) Arbitrary skeleton diagram with a
single fermion loop and N interaction vertices; here r1,..., rN−1 are
the relative D-dimensional spatial coordinates of the loop, r0 is the
absolute loop coordinate. Here, N must be even as each interaction
(wavy) line must connect two separate vertices on the loop. The
directed solid lines correspond to G.

V. FIRST-ORDER SKELETON DIAGRAM

The only skeleton diagram in 
[G,V ] containing a closed
fermion loop with N = 2 interaction vertices is the first-order
skeleton diagram, see Fig. 2(a),


1[G,V ] = −1

2

∫
dz V (z)tr{G(z)G(−z)}, (42)

where z = (τ, r), tr stands for the spin trace. The truncation of

[G,V ] by this diagram constitutes the GW approximation
[65–67]. Substituting the long-distance asymptotics of the
Green’s function, Eq. (13), and the harmonic decomposition
of the dressed interaction, Eq. (19), into Eq. (42), we find


1[G[g],V [v]]

CD
= −

∫
dτ

∫ ∞

0
dr

∑
ν1,ν2

ei(kF r−ϑ )(ν1+ν2 )

× tr{gν1 (τ, r)gν2 (−τ, r)}

×
⎡
⎣V1(τ, r) +

∑
σ=±1

e2iσ (kF r−ϑ )V2(τ, σ r)

⎤
⎦,

(43)

where ν1, ν2 are the chiral indices, CD is given by Eq. (30),
the trivial angular integration has already been performed.
We note that the factor rD−1 in the D-dimensional integra-
tion measure dr = AD−1rD−1 dr, AD−1 is given by Eq. (A3),
cancels with the power-law factor 1/rD−1 coming from the
asymptotics of two Green’s functions in Eq. (42). The infrared
physics at large scale, r � λF , comes from the sector where
the fast oscillatory phase in Eq. (43) is compensated. This

FIG. 3. The third-order skeleton diagram with two three-vertex
fermion loops. The vertex coordinates, z = (τ, r), are labeled in
accord with Eq. (63). Here, z1,2 and z′

1,2 are the relative coordinates
of the unprimed and primed loops, z0 is the absolute coordinate of
the unprimed loop, the absolute coordinate of the primed loop is set
to zero.

condition is satisfied at ν2 = −ν1 for the forward-scattering
contribution and at ν2 = ν1 = −σ for the backscattering term


1[G[g],V [v]]

CD

= −
∫

dτ

∫ ∞

0
dr

[
V1(τ, r)

∑
ν

tr{gν (τ, r)gν (−τ,−r)}

+
∑

ν

V2(τ,−νr) tr{gν (τ, r)g−ν (−τ,−r)}
]
, (44)

where we relabeled ν1 → ν and used Eq. (17). Using that the
transformation ν → −ν with r → −r does not change the
expression in square brackets in Eq. (44), we can extend the
integration over r to the real line R. Using further the chiral
indexing, see Eqs. (27) and (28), we find that Eq. (44) can be
represented in its pure 1D form,


̃1[g, v] ≡ 
1[G[g],V [v]]

CD

= −1

2

∑
μ,ν

∫
dξ vμν

νμ (ξ )tr{gν (ξ )gμ(−ξ )}, (45)

where ξ ≡ (τ, x), x ∈ (−∞,∞), τ ∈ (0, 1/T ), T is the tem-
perature, and μ, ν ∈ {L, R} are the chiral indices. It is clear
that 
̃1[g, v] represents the same skeleton diagram as in
Fig. 2(a) with the natural identification G → g and V → v.

VI. SKELETON DIAGRAMS WITH A SINGLE FERMION
LOOP: FORWARD SCATTERING

In this section we perform the dimensional reduction of
skeleton diagrams consisting of a single fermion loop with
an arbitrary number N of interaction vertices, see Fig. 2(c).
All interaction lines in this section represent only the forward
scattering V1, see Eq. (19), the backscattering is considered in
next section. As each interaction line must connect two sep-
arate vertices, then N must be an even number. The fermion
loops with odd number of vertices are possible if a skeleton di-
agram contains more than one fermion loop, see, for instance,
Fig. 3. Skeleton diagrams with multiple fermion loops are
considered in Sec. VIII. As the time indices are not involved
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in the dimensional reduction procedure, we do not indicate
them for brevity of expressions. Due to the translation invari-
ance, all two-point functions depend only on the difference of
coordinates. In case of a single-loop diagram all interaction
lines must connect two vertices on the same loop. Therefore,
any single-loop diagram is independent of the absolute loop
coordinate r0, see Fig. 2(c). The integration over r0 yields the
volume of D-dimensional space. As we work here with the
effective LW functional per unit volume, we can choose an
arbitrary value for r0, usually we set r0 to zero. Thus, the only
nontrivial integrations must be performed over the relative
loop coordinates r1, . . . , rN−1, see Fig. 2(c).

First, let us take the integral over r1,


N =
∫

(. . . )
∫

dr1 V1(r1 − r1′ )tr{G(r1)G(|r1 − r2|) . . . },
(46)

where 
N denotes a skeleton diagram in Fig. 2(c) that consists
of a single fermion loop with N/2 interaction lines, tr stands
for the spin trace taken along the fermion loop. Only the terms
that depend on r1 are highlighted in Eq. (46). The coordinate
r1′ 	= r1 represents another vertex connected by the forward-
scattering line with r1. Here it is only important that r1′ is fixed
during the integration over r1. Substituting asymptotics of the
electron Green’s functions, see Eq. (13), into Eq. (46), we find


N =
∫

(. . . )
∫ ∞

0
dr1 rD−1

1

∑
ν1,ν2

e−iν1(kF r1−ϑ )

|λF r1| D−1
2

×
∫

dn12
eiν2(kF |r1−r2|−ϑ )

(λF |r1 − r2|) D−1
2

V1(r1 − r1′ )

× tr{gν1 (−r1)gν2 (|r1 − r2|) . . . }, (47)

where we integrate over directions of r1 relative to r2, i.e.,
dr1 = rD−1

1 dr1 dn12. Notice that for G(r1) we used Eq. (13)
with ν = −ν1 and accounted for Eq. (17). As all functions
of r1, except the oscillatory exponentials, are slowly varying
functions, we can use Eq. (B6) derived in Appendix B, in
order to evaluate the leading contribution coming from the
integral over n12,


N =
∫

(. . . )
∫ ∞

0
dr1

∑
ν1,ν2,σ1

eiϑ (ν1−ν2(1−σ1 ))

|λF r2| D−1
2

× eikF [ν2|r1−σ1r2|−ν1r1]V1(|σ1r1n2 − r1′ |)
× tr{gν1 (−r1)gν2 (|r1 − σ1r2|) . . . }, (48)

where two stationary points correspond to n1 = σ1n2, σ1 =
±1, here n1 = r1/r1 and n2 = r2/r2. Next, we have to make
sure that the fast oscillatory phase factor in Eq. (48) (see the
second line) is independent of r1, which can be satisfied if the
index ν2 is chosen as follows:

ν2 = ν1 sgn(r1 − σ1r2), (49)

where sgn(x) returns the sign of x. Notice that the following
combination of the indices, which appears in the constant
phase factor in Eq. (48) can be then also simplified,

ν1 − ν2(1 − σ1) = σ1ν1, (50)

where ν2 satisfies Eq. (49), and we used that sgn(r1 + r2) = 1
as r1 > 0 and r2 > 0. In other words, we just performed the
summation over ν2 under the condition that the phase should
be independent of r1,


N =
∫

(. . . )
∫ ∞

0
dr1

∑
ν,σ1

e−iν(kF r2−ϑ )

|λF r2| D−1
2

V1(|σ1r1n2 − r1′ |)

× tr{gν (−σ1r1)gν (σ1r1 − r2) . . . }, (51)

where we used Eq. (17) and introduced a new index notation
ν = σ1ν1 in Eq. (51). The summation over σ1 in Eq. (51)
extends the integration over r1 to R,


N =
∫

(. . . )
∫ ∞

−∞
dx1

∑
ν

e−iν(kF r2−ϑ )

|λF r2| D−1
2

× V1(|x1n2 − r1′ |)tr{gν (−x1)gν (x1 − r2) . . . }. (52)

Next, we integrate over r2, see Fig. 2(c), so let us then also
highlight all terms that depend on r2,


N =
∫

(. . . )
∫ ∞

−∞
dx1

∫ ∞

0
dr2 rD−1

2

∑
ν

e−iν(kF r2−ϑ )

|λF r2| D−1
2

×
∫

dn23 V1(|x1n2 − r1′ |)V1(r2 − r2′ )

× tr{gν (−x1)gν (x1 − r2)G(r2 − r3) . . . }, (53)

where dr2 = rD−1
2 dr2 dn23 and where we measure directions

of r2 with respect to r3. Here, r2′ 	= r2 represents the loop co-
ordinate, which is connected with r2 by the forward-scattering
line and which remains fixed while we integrate over r2.
Notice that after substituting the asymptotics of G(r2 − r3)
in Eq. (53), we restore the structure of Eq. (47). Just as the
integration over n12 in Eq. (47) resulted in the stationary
points with r1 and r2 being collinear, the integration over n23

in Eq. (53) yields the stationary points with collinear r2 and r3.
It is now clear how this process propagates along the loop. In
order to understand how this process terminates, we just have
to check what happens at the last vertex with the relative loop
coordinate rN−1, see Fig. 2(c),


N =
∫

(. . . )
∫ ∞

−∞

N−2∏
i=1

(dxi )
∫

drN−1

∑
ν

e−iν(kF rN−1−ϑ )

|λF rN−1| D−1
2

×
∏
( j, j′ )

[V1(|x jnN−1 − r j′ |)]

× tr{gν (−x1)gν (x1 − x2) . . . G(rN−1)}, (54)

where nN−1 = rN−1/rN−1 and ( j, j′) represents a pair of ver-
tices connected by a forward-scattering line. Now it is time
to simplify the arguments of interactions noticing that all r j′

in Eq. (54) correspond to the stationary points of the angular
integrals and, therefore, are all collinear. As all coordinates,
except rN−1, are already integrated out, we can always choose
r j′ = x j′nN−1. Note that this is true even if r j′ represents
rN−1, as nN−1 = rN−1/rN−1 with xN−1 = rN−1. Therefore, we
conclude the following:

|x jnN−1 − r j′ | = |x j − x j′ |, (55)
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where the pair of indices ( j, j′) denotes a pair of vertices con-
nected by a corresponding interaction line. This last argument
also removes all dependencies on nN−1, so the integration
over nN−1 is trivial. Substituting the asymptotics of G(rN−1)
in Eq. (54) and accounting for Eq. (55), we find


N

CD
=

∫
(. . . )

∫ ∞

−∞

N−2∏
i=1

(dxi )2
∫ ∞

0
drN−1

∏
( j, j′ )

[V1(|x j j′ |)]

×
∑

ν

tr{gν (−x1)gν (x1 − x2) . . . gν (rN−1)}, (56)

where CD is given by Eq. (30), x j j′ = x j − x j′ , and ( j, j′)
denotes a pair of vertices that are connected by some inter-
action line, here also xN−1 = rN−1. Only the nonoscillatory
contribution is taken into account in Eq. (56). Finally, we
extend the integration over rN−1 to the integral over R by
noticing that the expression under the integral in Eq. (56)
does not change under the following transformation: ν → −ν,
xi → −xi for all i ∈ {1, 2, . . . , N − 2} and rN−1 → −rN−1.
This finally constitutes the dimensional reduction of an arbi-
trary skeleton diagram with single fermion loop and forward
scattering interaction,


̃N [g, v] =
∫

(. . . )
∫ ∞

−∞

N−1∏
i=1

(dxi )
∏
( j, j′ )

[V1(|x j j′ |)]

×
∑

ν

tr{gν (−x1)gν (x1 − x2) . . . gν (xN−1)}.
(57)

The part shown by the dots in Eq. (57) corresponds to the time
integrals and the constant coming from the diagrammatic rules
of the original D-dimensional theory, see Eq. (2). This means
that Eq. (57) represents the same diagram shown in Fig. 2(c)
as the original 
N with the natural relabeling G → g and V →
v. Here, we proved this statement if V and its corresponding
v account for the forward scattering interaction only. In next
section we show that this statement remains true even if the
backscattering is included.

VII. SKELETON DIAGRAMS WITH A SINGLE FERMION
LOOP: INCLUDING THE BACKSCATTERING

In this section we perform the dimensional reduction of
skeleton diagrams with a single fermion loop containing ar-
bitrary number of forward- and backscattering interaction
lines. Here, we employ an inductive proof via the following
procedure: In order to do the dimensional reduction of a
skeleton diagram with n f and nb forward- and backscattering
interaction lines, respectively, we first start from the skeleton
diagram with the same topology and with all n f + nb lines
corresponding to the forward scattering, then we substitute
the forward scattering lines by the backscattering ones, one
by one, until we get to the desired diagram.

Let us start from a single-loop skeleton diagram with N �
4 interaction vertices [the only skeleton diagram containing
the two-vertex loop is the first-order diagram, see Fig. 2(a), it
has been considered separately in Sec. V]. We know that all
such diagrams acquire the 1D form, see Sec. VI. Let us now
substitute one of the forward scattering interaction lines by the

backscattering interaction, see Eq. (19). Say, this backscatter-
ing line connects the vertices r0 and r0 + rk , where r0 is the
absolute loop coordinate, see Fig. 2(c). This corresponds to
the following substitution in our diagram:

V1(rk ) →
∑

σ=±1

V2(σ rk )e2iσ (kF rk−ϑ ). (58)

As the interaction is independent of directions of rk and all
other lines correspond to the forward scattering, then we can
actually integrate out all ri, i 	= k, precisely the way we did in
Sec. VI, resulting in



(1)
N =

∫
(. . . )

∫ ∞

−∞

∏
i 	=k

(dxi )
∏
( j, j′ )

[V1(x j j′ )]
∫

drk

×
∑
ν1,ν2

ei(ν2−ν1 )(kF rk−ϑ )

|λF rk|D−1

∑
σ=±1

V2(σ rk )e2iσ (kF rk−ϑ )

× tr{gν1 (−x1) . . . gν1 (xk−1 − rk )

×gν2 (rk − xk+1) . . . gν2 (xN−1)}, (59)

where the superscript (1) just indicates a single backscattering
line. Note that here we slightly modified the logic compared
to Sec. VI where we were integrating out along a single path
r1 → r2 → · · · → rN−1. Here, we integrate out all ri, i 	= k,
via two separate paths: one is r1 → · · · → rk and the other
is rN−1 → · · · → rk , where the last integration over rk is the
only one that is modified by the substitution Eq. (58). Note
that sums over ν1 and ν2 appeared here due to two different
paths. The last step is to ensure that the phase in Eq. (59) is
independent of rk , which is satisfied only if ν2 = −ν1 and σ =
ν1. The angular integration over nk is then trivial,


̃
(1)
N = 


(1)
N

CD
=

∫
(. . . )

∫ ∞

−∞

N−1∏
i=1

(dxi )
∏
( j, j′ )

[V1(x j j′ )]

×
∑

ν

V2(νxk )tr{gν (−x1) . . . gν (xk−1 − xk )

×g−ν (xk − xk+1) . . . g−ν (xN−1)}, (60)

where we also extended the integration over rk to R. Notice
that according to Eq. (27) V2(νxk ) = vν−ν

−νν (xk ), which just
corresponds to standard convolution of the chiral indices.
Thus, we just proved that the insertion of a backscattering line
instead of any forward scattering one does not spoil the result:
we still get the 1D skeleton diagram with usual spin and chiral
pseudospin convolution rules.

Following the inductive argument, we assume that the
1D structure holds after nb − 1 insertions of the backscatter-
ing lines. We need to prove that the insertion of one more
backscattering line does not spoil the dimensional reduction.
By choosing one of the vertices of the substituted interaction
being the absolute loop coordinate r0, we can just repeat the
same steps as in the paragraph above. This proves that all
skeleton diagrams in 
̃[g, v] with single fermion loop and
with the interaction given by Eq. (27) are represented by the
effective 1D skeleton diagrams that follow from the original
D-dimensional ones via the natural identification G → g and
V → v.
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FIG. 4. The sixth-order skeleton diagram with two six-vertex
fermion loops, both containing the internal backscattering line
(dashed line). The wavy lines correspond to the forward-scattering
interaction here. We denoted the relative coordinates ξi = (τi, xi ),
ξ ′

i = (τ ′
i , x′

i ), i ∈ {1, . . . , 5}, of the dimension-reduced diagram, see
Eq. (68), ξ0 is the absolute coordinate of the unprimed loop, the
absolute coordinate of the primed loop is set to zero. Here, n and
n′ are the relative loop directions defining the saddle-point values of
the D-dimensional coordinates, ri = nxi, r′

i = n′x′
i , i ∈ {1, . . . , 5}.

For example, let us consider the second-order skeleton
diagram shown in Fig. 2(b),


2[G,V ] = 1

4

∫
dz1dz2dz3 V (z1 − z3)V (z2)

× tr{G(−z1)G(z1 − z2)G(z2 − z3)G(z3)}, (61)

where zi = (τi, ri ), i ∈ {1, 2, 3}, and tr again stands for the
spin trace. Substituting the Green’s function asymptotics,
see Eq. (13), and the harmonic decomposition of dressed
interaction, see Eq. (19), we restore the 1D form of the
dimension-reduced second-order skeleton diagram,


̃2[g, v] ≡ 
2[G[g],V [v]]

CD

= 1

4

∫ 3∏
i=1

(dξi ) v
μν
αβ (ξ1 − ξ3)vνα

βμ(ξ2)

× tr{gμ(−ξ1)gν (ξ1 − ξ2)gα (ξ2 − ξ3)gβ (ξ3)},
(62)

where ξi = (τi, xi ), i ∈ {1, 2, 3} and α, β, μ, ν ∈ {L, R} are
the chiral indices.

VIII. SKELETON DIAGRAMS WITH MULTIPLE
FERMION LOOPS: CONTRIBUTION OF THE

NONCOLLINEAR SCATTERING

In previous sections we integrated out all relative coordi-
nates on a fermion loop with even number of vertices. It is
clear that the same proofs are also applicable to the fermion
loops with odd number of interaction vertices, e.g., see Fig. 3.
The first important difference of the multiloop skeleton dia-
grams from the single-loop ones is that some interaction lines
might connect two vertices that belong to different fermion
loops, see Figs. 3 and 4. Within leading order in λF /r, all
such lines must correspond to the forward-scattering inter-
action: Any oscillatory interaction harmonic, 2kF , 4kF , etc.,
necessarily pins the relative coordinate directions on the con-

nected loops to the same direction, ±n, while there is no
such constraint imposed by the forward scattering. This is
especially obvious for the backscattering 2kF interaction: The
backscattering processes are resonant near the FS only if the
total momentum of scattered electrons is close to zero, i.e.,
the backscattering is resonant in the Cooper channel. There
is no such constraint for the forward scattering: Momenta of
the scattered electrons can be completely uncorrelated as soon
as both are near the FS. The latter represents the noncollinear
scattering effect, where the momenta of the scattering elec-
trons are neither aligned nor anti-aligned. Another important
difference of the K-loop skeleton diagrams from the single-
loop ones that are considered in Secs. V, VI, and VII, comes
from the integration over the absolute loop coordinates, see
definition of r0 in Fig. 2(c): only one of K > 1 absolute loop
coordinates can be set to zero due to the translation invariance,
say r(K )

0 = 0; the integration over each of the remaining K −
1 absolute loop coordinates, r(k)

0 , k ∈ {1, . . . , K − 1}, con-
tributes the infrared-divergent D-dimensional volume factor
∝ |r (k)

0 |D−1. This behavior of the multiloop skeleton diagrams
at D > 1 is qualitatively different from the genuine 1D case.

For better understanding of the dimensional reduction in
the multi-loop case, we show the derivation for the two-loop
skeleton diagram in Fig. 3,


3 = 1

6

∫
dz dz′ L3(z1, z2)L3

(
z′

2, z′
1

)
× V1(z0)V1(z0 + z1 − z′

1)V1(z0 + z2 − z′
2), (63)

where z = (τ, r), τ is the imaginary time, r is the
D-dimensional coordinate, dz = dz0 dz1 dz2, dz′ = dz′

1 dz′
2,

V1(z) is the forward-scattering interaction, L3 denotes the
following fermion loop:

L3(z1, z2) = tr{G(−z1)G(z1 − z2)G(z2)}, (64)

where tr stands for the spin trace. After performing the dimen-
sional reduction over the relative loop coordinates following
the lines of reasoning in Sec. VI, we find


̃3 = 
3

CD
= CD

6

∫
dξ dξ ′ L̃3(ξ1, ξ2)L̃3

(
ξ ′

2, ξ
′
1

)
×

∫
dz0

∫
dn

AD−1

∫
dn′

AD−1
V1(r0)

× V1(r0 + nx1 − n′x′
1)V1(r0 + nx2 − n′x′

2), (65)

L̃3(ξ1, ξ2) =
∑

ν

tr{gν (−ξ1)gν (ξ1 − ξ2)gν (ξ2)}. (66)

Here, ξ = (τ, x), dξ = dξ1dξ2, dξ ′ = dξ ′
1dξ ′

2, CD is given
by Eq. (30), and, again, AD−1 is the surface area of the
(D − 1)-dimensional unit sphere SD−1. The time arguments of
the forward-scattering interactions are not shown explicitly in
Eq. (65) for brevity of expressions. As before, the leading con-
tribution to each loop in Fig. 3 comes from the sector where all
relative coordinates within each loop are collinear, the general
direction for such relative coordinates is denoted here by n
and n′ for two loops in Fig. 3. We call such n and n′ directions
the relative loop direction here. In contrast to Secs. VI and
VII, the angular integrals over the relative loop directions n
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and n′ are no longer trivial because the forward-scattering
lines connecting different loops depend on n and n′. We can
further simplify Eq. (65) using that dz0 = dτ0 rD−1

0 dr0 dn0

and Eq. (30),


̃3 = 1

6

[
AD−1

2

]2 ∫
dξ dξ ′ L̃3(ξ1, ξ2)L̃3

(
ξ ′

2, ξ
′
1

)

×
∫

dξ0

∫
dn0

AD−1

∫
dn

AD−1

∫
dn′

AD−1

∣∣∣∣ x0

λF

∣∣∣∣
D−1

V1(x0)

× V1(n0x0 + nx1 − n′x′
1)V1(n0x0 + nx2 − n′x′

2), (67)

where we also extended the integral over r0 to R using
the change n0 → −n0, n → −n, n′ → −n′; dξ0 = dτ0dx0,
x0 ∈ R. The power of AD−1/2 in the first line of Eq. (67)
comes from K − 1 CD factors [one CD factor per loop, minus
one comes from the normalization in Eq. (65)] and from the
normalization of K − 1 integrals over the absolute coordinate
directions (one absolute coordinate is set to zero, r(K )

0 = 0), so

the overall power is 2(K − 1). In case of the two-loop diagram
in Fig. 3, K = 2.

In general, the dimension-reduced diagram with K fermion
loops has the following diagrammatic structure: (i) the
order-dependent factor is inherited from the D-dimensional
representation, see Eq. (2); (ii) multiply it by [AD−1/2]2(K−1);
(iii) substitute all loops by their complete 1D analogs (in-
clude all internal interaction lines in the definition of such
loops); (iv) set one of the absolute loop coordinates to zero,
say ξ

(K )
0 = 0, then integrate over other K − 1 absolute co-

ordinates dξ
(k)
0 , k ∈ {1, . . . , K − 1}, with the measure factor

|x(k)
0 /λF |D−1; (v) integrate over all absolute coordinate di-

rections, n(k)
0 , k ∈ {1, . . . , K − 1}, and over the relative loop

directions n with the unit measure dn/AD−1. These simple
diagrammatic rules allow us to express arbitrary skeleton
diagram of the LW functional in the semiclassical/infrared
limit.

Following the diagrammatic rules formulated in the para-
graph above, the dimension-reduced skeleton diagram shown
in Fig. 4 takes the following form:


̃6 = − 3

12

[
AD−1

2

]2∫
dξ dξ ′ L̃6(ξ1, . . . , ξ5)L̃6(ξ ′

5, . . . , ξ
′
1)

∫
dξ0

∫
dn0

AD−1

∫
dn

AD−1

∫
dn′

AD−1

∣∣∣∣ x0

λF

∣∣∣∣
D−1

V1(x0)

× V1(n0x0 + nx2 − n′x′
2)V1(n0x0 + nx3 − n′x′

3)V1(n0x0 + nx5 − n′x′
5), (68)

where dξ = ∏5
i=1(dξi ), dξ ′ = ∏5

i=1(dξ ′
i ), the order-

dependent coefficient −3/12 comes from the original
D-dimensional diagram, see Eq. (2) with n = 6, F = 2, and
N� = 3, the absolute coordinate of the primed loop is set
to zero, n0 is the direction of the absolute coordinate of the
unprimed loop, n and n′ are the relative directions of the
primed and unprimed loops, and the vertex numbering is
shown in Fig. 4. As both loops in Fig. 4 are topologically
identical, we use a single notation L̃6,

L̃6(ξ1, ξ2, ξ3, ξ4, ξ5) =
∑
μ,ν

vμν
νμ (ξ14)tr{gμ(−ξ1)gν (ξ12)gν (ξ23)

× gν (ξ34)gμ(ξ45)gμ(ξ5)}, (69)

where ξi j = ξi − ξ j . The diagram in Fig. 4 corresponds to the
backscattering line contribution, μ = −ν, in Eq. (69).

In this section we formulated simple diagrammatic-like
rules for the dimension-reduced skeleton diagrams. We note
that the noncollinear scattering is explicitly accounted for
within our approach, in contrast to the multidimensional
bosonization approaches where these effects are omitted. We
emphasize that the dimensional reduction can be applied not
only to the LW functional but also to the thermodynamic po-
tential that can be represented by the vacuum bubble diagrams
of similar structure.

IX. EXAMPLES AND FUTURE PROSPECTS

In this section we compare our results with predictions
of the multidimensional bosonization [29–44] as well as the
perturbation theory [50,62]. We also comment on why the
multi-loop diagrams considered in Sec. VIII may be important

in higher dimensions D > 1 as soon as the spectral curva-
ture and the backscattering are taken into account. Here, the
spectral curvature is the finite curvature of the single-particle
spectrum, namely ∂2εk/∂k2 	= 0. This section contains heuris-
tic arguments and is included for illustrative purposes.

First, the dimensional reduction can be utilized for the
perturbation theory. For example, we calculated nonanalytic
corrections to the grand canonical potential of the interacting
DDEG with an arbitrary spin splitting [50] that agree with
previously known special cases [47–49]. The dimensional
reduction has been also employed to calculate resonant inter-
action corrections to the 2kF spin susceptibility of a 2DEG
[62], which resulted in full agreement with the numerical
study [63].

Now, we compare our results with predictions of the
multidimensional bosonization that becomes exact when the
spectral curvature and the backscattering are neglected. Under
these conditions, the 1D FLCT is exact [14]. As all rela-
tive coordinates in fermion loops can be reduced to their
1D analogues, see Secs. VI–VIII, then the skeleton diagrams
containing more than one fermion loop do not contribute to
neither P nor s. We emphasize that the 1D FLCT [14] is
applicable here due to Eqs. (37)–(39): g, s, and P can be ex-
pressed in terms of the Feynman diagrams with fully dressed
interaction lines but with bare g0. As a result, only the bare
particle-hole bubble P0 contributes to q ∼ 0 component of the
polarization operator P ,

Pνν
μμ(ξ ) ≈ Pνν

0 μμ(ξ ) = δμν tr{g0 ν (ξ )g0 ν (−ξ )}, (70)

where, again, tr stands for the spin trace, δab is the Kronecker
index, g0(ξ ) is the 1D Fourier transform of G0(iωn, q), see
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Eq. (10), and ξ = (τ, x). Using Eq. (28), we find the q ∼ 0
component of the polarization operator,

P1(τ, x)

= tr{g0(τ, x)g0(−τ,−x) + g0(τ,−x)g0(−τ, x)}. (71)

Substituting Eq. (71) into Eq. (24), we find that D-dimensional
polarization operator is also given by the bare particle-hole
bubble 	0,

	(τ, r) ≈ 	0(τ, r) = tr{G0(τ, r)G0(−τ,−r)}. (72)

Here, the bare electron Green’s function G0(τ, r) is repre-
sented via its asymptotic form, see Eq. (9), and only q ∼ 0
component of 	(τ, r) has to be taken into account. Thus, we
indeed confirm that the RPA approximation is asymptotically
exact as soon as the spectral curvature and the backscatter-
ing are neglected, which agrees with the multidimensional
bosonization [29–44].

We conclude this section by exploring possible effects
beyond the applicability range of the multidimensional
bosonization. For this, we include a finite-spectral curvature
that is naturally present in the effective mass approximation,
and the backscattering that is generated self-consistently. Un-
der these conditions the FLCT is no longer exact as well as
the multidimensional bosonization. These perturbations are
known to be irrelevant in 1DEGs, see e.g., Refs. [16,43]. How-
ever, large infrared-divergent measure factors of the multiloop
skeleton diagrams, see Sec. VIII, might be strong enough
to make these perturbations relevant in higher dimensions.
The importance of the multiloop diagrams for the nonanalytic
corrections in 2DEGs has been pointed out in Ref. [47], where
it has been shown that the diagram in Fig. 3 considered in
the context of the thermodynamic potential is responsible for
the noncollinear scattering contribution to the infrared non-
analyticities. This demonstrates that the multiloop diagrams
are important for the infrared physics of a DDEG with D > 1.
In contrast to the multidimensional bosonization approaches,
our theory accounts naturally for the noncollinear scattering
contribution to the semiclassical/infrared limit of interacting
DDEG that goes beyond the FLCT.

In order to quantify the infrared divergence of a K-
loop skeleton diagram, we introduce the divergence exponent
α(K ), which counts additional powers of |x(k)

0 /λF | � 1, k ∈
{1, . . . , K − 1}, coming from the absolute loop coordinates,
see Sec. VIII,

α(K ) = (K − 1)(D − 1). (73)

From this, we conclude that the most infrared-divergent di-
agrams must contain a large number K of fermion loops,
i.e., those loops must contain a minimal number of vertices.
The multiloop skeleton diagrams are possible in all orders
N � 3, for instance, a third-order two-loop diagram is shown
in Fig. 3. Note that the three-vertex loops are the minimal
possible loops in N th-order skeleton diagrams with N � 3 [the
two-vertex loop is only possible in the first-order skeleton
diagram shown in Fig. 2(a)]. Thus, the skeleton diagrams with
maximal possible number of three-vertex loops K3(N ) have
the largest divergence exponent α(K ), see Eq. (73),

K3(N ) =
⌊

2N

3

⌋
, α3(N ) =

[⌊
2N

3

⌋
− 1

]
(D − 1), (74)

where �x� is the floor function, α3(N ) = α[K3(N )], N � 3.
The two-particle irreducibility of skeleton diagrams requires
all three vertices on any three-vertex loop to be external, i.e.,
all three vertices are connected with other fermion loops, e.g.,
see Fig. 3.

The divergence exponent α3(N ) of the maximally infrared-
divergent diagrams is overestimated. Indeed, one can show
that all odd-vertex fermion loops must vanish in the presence
of particle-hole symmetry, which is asymptotically exact in
the semiclassical/infrared limit. The spectral curvature must
be taken into account to break the particle-hole symmetry
explicitly. Being a subleading effect, the spectral curvature
results in a small λF /r factor per fermion loop, thus reducing
the divergence exponent from α3(N ), see Eq. (74), to α′

3(N ),

α′
3(N ) = α3(N ) − K3(N )

=
[⌊

2N

3

⌋
− 1

]
(D − 2) − 1. (75)

We see that at any D > 2 there exists N0 � 3 such that
α′

3(N ) > 0 for all N � N0. This means that the spectral cur-
vature is a relevant perturbation at D > 2 and thus, the RPA is
no longer asymptotically exact. We point out that the spectral
curvature is qualitatively important for the low-temperature
transport properties even in 1DEG where it is formally an
irrelevant perturbation [53].

As we see, the emergent particle-hole symmetry in the
semiclassical/infrared limit significantly reduced the diver-
gence exponent of the skeleton diagrams containing maximal
number of the three-vertex loops. Instead, we may consider
fermion loops with even number of vertices as those are not
sensitive to the particle-hole symmetry. In order to violate the
FLCT, we insert one backscattering line within each loop. As
the number of vertices connected with other loops must be
strictly greater than two (due to the two-particle irreducibil-
ity), the minimal number of vertices is then equal to six. The
smallest such diagram is shown in Fig. 4. The divergence
exponent, α6(N ), of skeleton diagrams containing maximal
possible number of the six-vertex loops is the following:

α6(N ) =
[⌊

2N

6

⌋
− 1

]
(D − 1). (76)

As we see, the divergence exponent is strictly positive in
any D > 1 at N � 6, emphasizing the relevance of the mul-
tiloop diagrams in higher dimensions. Exponents α′

3(N ) and
α6(N ) allow for a classification of the infrared-divergent
diagrams. We believe that this classification may result in
well-controlled nonperturbative approaches in strongly cor-
related electron systems. However, a thorough study of the
multiloop diagrams goes well beyond the scope of this paper.
Here we only use a simple power-counting argument to point
out that such diagrams deserve attention and may possibly
result in new physical effects.

In this section we pointed out that predictions of the
perturbation theory evaluated within the dimensional re-
duction approach, see Refs. [50,62], agree with previously
known results calculated conventionally [47–49,63]. We also
demonstrated that our theory agrees with the multidimen-
sional bosonization results if the FLCT is satisfied. However,
here we also argue that the spectral curvature and the
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backscattering, both are irrelevant in the 1DEG and both
violate the FLCT, may become relevant in higher dimen-
sions due to additional infrared divergence of the multiloop
skeleton diagrams at D > 1, see Sec. VIII. We believe that
the multiloop diagrams have to be further considered the-
oretically, and the dimensional reduction serves here as a
helpful and powerful tool. It has been also pointed out in
Refs. [40,43] that the electron Green’s function evaluated self-
consistently within the RPA, acquires unphysical singularities
in the semiclassical/infrared limit near the single-particle pole
line, which may also signal that the RPA is not sufficient for
an accurate description of the semiclassical/infrared limit of
the interacting DDEG at D > 1.

X. CONCLUSIONS

In this paper, we have presented a powerful theoretical
tool, the dimensional reduction, that allows for the asymp-
totically exact treatment of an interacting DDEG, D > 1, in
the semiclassical/infrared limit where the effect of interac-
tion is strongest. Using the LW approach [56–59], we show
that the single-loop skeleton diagrams are reduced to effec-
tive 1D form. Together with the FLCT, this is equivalent to
the exactness of the RPA in the semiclassical/infrared limit
of interacting DDEG, which agrees with conclusions of the
multidimensional bosonization [29–44]. Skeleton diagrams
containing large number of fermion loops represent the non-
collinear scattering contribution and are infrared-divergent
at D > 1. We show that this divergence makes the spectral
curvature relevant at D > 2 and the backscattering relevant
at D > 1, both perturbations explicitly violate the FLCT, and
both are irrelevant in 1DEG. This makes the FLCT unreliable
in the semiclassical/infrared limit at D > 1. Our theory still
retains simple diagrammatic structure (in terms of irreducible
diagrams), which is important for practical calculations, the
noncollinear scattering processes that are missing in the multi-
dimensional bosonization approaches, are naturally accounted
for here. Therefore, we believe that the semiclassical/infrared
limit of the LW functional of interacting DDEG that we de-
rived in this paper, may step beyond well-known predictions
of the multidimensional bosonization. The dimensional re-
duction technique that is applied here to the LW functional,
is quite versatile, it can be straightforwardly generalized for
the thermodynamic potential that is represented by similar
vacuum bubble diagrams, it can be also applied to perturbation
theory corrections, e.g., see Refs. [50,62], or self-consistent
approximations, see Ref. [61]. The dimensional reduction of
interacting DDEG with an arbitrary spin splitting and sponta-
neously broken symmetries is the subject of our future study.
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APPENDIX A: DIMENSIONAL REDUCTION
OF THE FREE TERMS IN THE LW FUNCTIONAL

Here we derive Eqs. (31)–(33) presented in Sec. IV.
In order to simplify the first term in Eq. (1), we use the

frequency-momentum representation

Tr ln
(
G−1

0 − �
) = T

∑
ωn

∫
d p

(2π )D

× tr
{
ln

[
G−1

0 (iωn, p) − �(iωn, p)
]}

,

(A1)

where tr stands for the spin trace. Contribution of the infrared
sector near the FS comes from p ≈ kF , which allows us to
simplify the integration measure,

d p
(2π )D

≈
[

kF

2π

]D−1

AD−1
dq

2π
= 2CD

dq

2π
, (A2)

AD−1 = 2π
D
2

�(D/2)
, (A3)

where q = p − kF � kF , AD−1 is the surface area of the (D −
1)-dimensional unit sphere SD−1, �(x) is the Euler gamma
function, CD is given in Eq. (30). Using Eqs. (10) and (15)
as definitions of the effective 1D Green’s function and 1D
self-energy, we find

G0(iωn, p) = g0(iωn, q), �(iωn, p) = s(iωn, q), (A4)

where q = p − kF � kF . Substituting Eqs. (A2) and (A4)
back into Eq. (A1), we find the infrared contribution of the
first term in Eq. (1),

Tr ln
(
G−1

0 [g0] − �[s]
)

CD

= T
∑
ωn

∫ ∞

−∞

dq

2π
2 tr

{
ln

[
g−1

0 (iωn, q) − s(iωn, q)
]}

,

(A5)

where we extended the integration over q to the interval q ∈
(−∞,∞). Using the chiral indexing introduced in Eqs. (12)
and (16) and corresponding chiral symmetry, see Eq. (17), we
incorporate the factor of 2 in Eq. (A5) into trace over the chiral
index,

Tr ln
(
G−1

0 [g0] − �[s]
)

CD

= Sp ln
(
g−1

0 − s
)

= T
∑
ωn,ν

∫ ∞

−∞

dq

2π
tr
{

ln
((

g−1
0

)
ν
(iωn, q) − sν (iωn, q)

)}
,

(A6)

where ν ∈ {L, R} is the chiral index, Sp stands for the 1D trace
that includes the frequency and 1D momentum summation
as well as the spin and chiral traces, see the second line in
Eq. (A6).

In order to reduce the dimensionality of the second term
in Eq. (1), it is more convenient to use the space-time
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asymptotics given by Eqs. (13) and (14),

Tr{�[s]G[g]} =
∑
νi

∫
dτ

∫ ∞

0
dr rD−1AD−1

× ei(ν1+ν2 )(kF r−ϑ )

(λF r)D−1 tr{gν1 (τ, r)sν2 (−τ, r)},
(A7)

where ν1,2 ∈ {L, R} are the chiral indices, tr is the spin
trace. Here we used that dr = AD−1rD−1 dr, AD−1 is given
by Eq. (A3). The case ν2 = ν1 corresponds to the integration
over fast oscillatory terms e±2ikF r that are irrelevant to the
infrared physics. Thus, the only relevant terms in Eq. (A7)
correspond to ν2 = −ν1. The remaining sum over ν1 together
with the chiral symmetry, see Eq. (17), allows us to extend the
integration over r to the real line R, yielding

Tr{�[s]G[g]}
CD

= Sp{sg}

=
∫

dτ

∫ ∞

−∞
dx

∑
ν

tr{gν (τ, x)sν (−τ,−x)},
(A8)

where Sp represents full 1D trace.
The dimensional reduction procedure of the third term in

Eq. (1) is similar to the integration of the second term,

Tr{	V } =
∫

dτ

∫ ∞

0
dr rD−1AD−1V (τ, r)	(−τ, r), (A9)

where the trivial angular integration is already performed.
Then, we substitute the harmonic expansions of the interaction
and the polarization operator, see Eqs. (19) and (24),

Tr{	[P]V [v]}
CD

= 2
∫

dτ

∫ ∞

0
dr [V1(τ, r)P1(−τ, r)

+
∑

σ=±1

V2(τ, σ r)P2(−τ,−σ r)

⎤
⎦, (A10)

where we omitted all fast oscillatory terms the same way we
did it in Eq. (A8). The symmetric extension of V1, see Eq. (22),
and the sum over σ in Eq. (A10), allows us to extend the
integration over r ∈ (0,∞) to the real line R,

Tr{	[P]V [v]}
CD

=
∫

dτ

∫ ∞

−∞
dx [V1(τ, x)P1(−τ,−x)

+
∑
ν=±1

V2(τ, νx)P2(−τ,−νx)

⎤
⎦, (A11)

where x ∈ R is the effective 1D coordinate. Finally, we rewrite
Eq. (A11) in terms of the chiral components of the interaction

and the polarization operator introduced in Eqs. (27) and (28),
Tr{	[P]V [v]}

CD
= Sp{vP}

=
∫

dτ

∫ ∞

−∞
dx v

μν
αβ (τ, x)Pαβ

μν (−τ,−x),

(A12)

where Sp stands for the 1D trace, the second line of Eq. (A12)
also defines the convolution rule of the chiral indices for v and
P that is consistent with the definition, see Eqs. (27) and (28)
and Figs. 1(a) and 1(b).

APPENDIX B: USEFUL ANGULAR INTEGRAL

In this Appendix we outline the asymptotic behavior of the
following integral:

JQ
ν [ f ] ≡

∫
dn1 eiνQ|r1−r2| f (r1, r2), (B1)

where ν = ±1, Q is the large parameter here, the integral is
taken over directions n1 = r1/r1, r1 and r2 are fixed. The func-
tion f (r1, r2) in Eq. (B1) varies slowly on the scale r1,2 ∼ 1/Q
and otherwise, is arbitrary. The asymptotics of JQ

ν [ f ] can be
derived via the stationary phase method. The extrema of the
phase Q|r1 − r2| as a function of n1 correspond to n1 = ±n2,
n2 = r2/r2. The contribution of these two stationary points to
the large-Q asymptotics is then the following:

JQ
ν [ f ] ≈

∑
σ=±1

f (σ r1n2, r2)eiνQ|r1−σ r2| jσν (r1, r2), (B2)

jσν (r1, r2) ≡ AD−2

∫ ∞

0
dθ θD−2 exp

(
i
νσQr1r2θ

2

2|r1 − σ r2|
)

, (B3)

where we expanded the measure and the phase in a small
vicinity of each of two stationary points, AD−2 is the area of
a (D − 2)-dimensional unit sphere, see Eq. (A3). The integral
given by Eq. (B3) is reduced to Euler gamma function after
the transformation θ → θ (x),

θ (x) = ei π
4 νσ

√
2|r1 − σ r2|

Qr1r2

√
x, (B4)

jσν (r1, r2) =
[

2π |r1 − σ r2|
Qr1r2

] D−1
2

eiσνϑ , (B5)

where ϑ is given by Eq. (11). Substituting Eq. (B5) back into
Eq. (B2), we find the asymptotics of JQ

ν [ f ],

JQ
ν [ f ] ≈

∑
σ

f (σ r1n2, r2)eiν(Q|r1−σ r2|+σϑ )

×
[

2π |r1 − σ r2|
Qr1r2

] D−1
2

, (B6)

where σ = ±1, n2 = r2/r2.
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[69] J. Vučičević, N. Wentzell, M. Ferrero, and O. Parcollet, Phys.

Rev. B 97, 125141 (2018).
[70] R. Eder, arXiv:1407.6599.
[71] A. Stan, P. Romaniello, S. Rigamonti, L. Reining, and J. A.

Berger, New J. Phys. 17, 093045 (2015).
[72] L. Lin and M. Lindsey, Arch. Ration. Mech. Anal. 242, 527

(2021).
[73] O. V. Dolgov, D. A. Kirzhnits, and E. G. Maksimov, Rev. Mod.

Phys. 53, 81 (1981).
[74] T. Senthil, Phys. Rev. B 78, 035103 (2008).
[75] I. Esterlis, H. Guo, A. A. Patel, and S. Sachdev, Phys. Rev. B

103, 235129 (2021).
[76] K. A. Matveev, A. Furusaki, and L. I. Glazman, Phys. Rev. B

76, 155440 (2007).

235116-14

https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.75.113
https://doi.org/10.1103/PhysRevB.81.113108
https://doi.org/10.1103/PhysRevB.90.045143
https://doi.org/10.1143/ptp/5.4.544
https://doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704281
https://www.mit.edu/~levitov/jetp/dzyaloshinskii_larkin1973.pdf
https://doi.org/10.1088/0022-3719/14/19/010
http://www.jetpletters.ru/ps/1401/article_21263.pdf
https://doi.org/10.1103/PhysRevLett.58.270
https://doi.org/10.1103/PhysRevB.42.6623
https://doi.org/10.1103/PhysRevB.43.11353
https://doi.org/10.1103/PhysRevB.51.3285
https://doi.org/10.1140/epjb/e2014-50395-6
https://doi.org/10.1103/PhysRevB.89.085101
https://doi.org/10.1103/PhysRevB.91.245144
https://doi.org/10.1103/PhysRevB.91.085426
https://doi.org/10.1103/PhysRevB.107.045409
https://doi.org/10.1103/PhysRev.159.161
https://doi.org/10.1103/PhysRevB.19.320
http://arxiv.org/abs/arXiv:cond-mat/0505529
https://doi.org/10.1103/PhysRevLett.72.1393
https://doi.org/10.1103/PhysRevB.49.10877
https://doi.org/10.1103/PhysRevResearch.4.033131
https://doi.org/10.1007/BF02101241
http://arxiv.org/abs/arXiv:hep-th/9511100
https://doi.org/10.1103/PhysRevB.74.165108
https://doi.org/10.1103/PhysRevB.74.075102
https://doi.org/10.1103/PhysRevLett.103.186403
https://doi.org/10.1103/PhysRevB.82.235120
https://doi.org/10.1103/PhysRevB.84.205131
https://doi.org/10.1103/PhysRevLett.72.316
https://doi.org/10.1103/PhysRevB.52.10877
https://doi.org/10.1080/000187398243528
https://doi.org/10.1080/000187300243363
https://doi.org/10.1103/PhysRevB.58.15449
https://doi.org/10.1007/PL00001043
https://doi.org/10.1103/PhysRevB.79.075112
https://doi.org/10.1103/PhysRevB.82.115415
https://doi.org/10.1103/PhysRevB.85.115424
https://doi.org/10.1103/PhysRevB.106.134417
https://doi.org/10.1103/PhysRevLett.96.196405
https://doi.org/10.1103/PhysRevB.82.245104
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1103/PhysRevB.71.205112
https://doi.org/10.1103/PhysRevLett.94.156407
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.124.287
https://doi.org/10.1103/PhysRevB.63.115110
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevB.83.035427
https://doi.org/10.1103/PhysRevB.103.075104
http://arxiv.org/abs/arXiv:2310.05555
https://doi.org/10.1103/PhysRevB.65.195309
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevB.57.2108
https://doi.org/10.1103/PhysRevB.85.155131
https://doi.org/10.1103/PhysRevB.95.195131
https://doi.org/10.1103/PhysRevLett.114.156402
https://doi.org/10.1103/PhysRevB.97.125141
http://arxiv.org/abs/arXiv:1407.6599
https://doi.org/10.1088/1367-2630/17/9/093045
https://doi.org/10.1007/s00205-021-01691-y
https://doi.org/10.1103/RevModPhys.53.81
https://doi.org/10.1103/PhysRevB.78.035103
https://doi.org/10.1103/PhysRevB.103.235129
https://doi.org/10.1103/PhysRevB.76.155440

