
PHYSICAL REVIEW B 108, 235112 (2023)

Derivation of the ghost Gutzwiller approximation from quantum embedding principles: Ghost
density matrix embedding theory

Nicola Lanatà *

School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, New York 14623, USA
and Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA

(Received 18 May 2023; revised 19 August 2023; accepted 14 November 2023; published 4 December 2023)

Establishing the underlying links between the diverse landscape of theoretical frameworks for simulating
strongly correlated matter is crucial for advancing our understanding of these systems. In this work, we focus
on the ghost Gutzwiller approximation (gGA), an extension of the Gutzwiller approximation (GA) based on
the variational principle. We derive a framework called “ghost density matrix embedding theory” (gDMET)
from quantum embedding (QE) principles similar to those in density matrix embedding theory (DMET), which
reproduces the gGA equations for multiorbital Hubbard models with a simpler implementation. This derivation
highlights the crucial role of the ghost degrees of freedom, not only as an extension to the GA, but also as the
key element in establishing a consistent conceptual connection between DMET and the gGA. This connection
further elucidates how gGA overcomes the systematic accuracy limitations of standard GA and achieves results
comparable to dynamical mean field theory. Furthermore, it offers an alternative interpretation of the gGA
equations, fostering new ideas and generalizations.
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I. INTRODUCTION

Theoretical frameworks based on quantum embedding
(QE) principles [1,2] have emerged as powerful tools for
studying strongly correlated matter. Among these, dynami-
cal mean field theory (DMFT) [3–7] is a well-known and
widely used method. Other methods, such as the Gutzwiller
approximation (GA) [8–15], its recent extension to ghost GA
(gGA) [16–18], the rotationally invariant slave boson (RISB)
theory [19–21], the slave spin theory [22,23], and density
matrix embedding theory (DMET) [24–32], have also made
significant contributions. In this work, we focus on GA and
gGA, both of which are based on the variational principle and,
as DMFT, on the limit of infinite dimensionality [8,9].

The key idea underlying gGA is to expand the GA vari-
ational space by incorporating auxiliary “ghost” fermionic
degrees of freedom—which is a common theme with differ-
ent frameworks such as extensions to DMET [33,34], matrix
product states and projected entangled pair states [35], the
ancilla qubit technique [36], and recent extensions of neural
network states [37]. It also presents suggestive analogies with
the concepts of “hidden fermion” [38] and “hidden Fermi
liquid” [39].

The gGA variational extension allows one to achieve an
accuracy comparable to that of DMFT, but with a substan-
tially lower computational cost [16,17,40,41]. Additionally,
the gGA, like the GA, can be reformulated using a RISB
perspective [42–45], providing us with an exact reformulation
of the many-body problem that reduces to gGA at the mean
field level. This alternative formulation may pave the way to
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develop practical implementations for systematically adding
quantum-fluctuation corrections towards the exact solution.

In Refs. [13,16,17], it was shown that the GA and gGA can
both be formulated using a typical QE algorithmic structure,
analogous to DMET. This structure involves the recursive
computation of an embedding Hamiltonian’s (EH’s) ground
state for each correlated fragment of the system. In prac-
tice, this approach offers new opportunities to reduce the
computational costs of GA and gGA—e.g., by employing
density matrix renormalization group [46], variational quan-
tum eigensolvers [47–49], or other classical methods [50,51],
to compute the EH’s ground state. Subsequently, the com-
parison between the GA and DMET equations was also
discussed in Refs. [52,53], where it was noted that the main
mathematical difference between the DMET and the GA, as
formulated in Refs. [13,21] using a QE structure, is that the
latter involves variational parameters encoding the quasipar-
ticle spectral weights of the correlated degrees of freedom,
which are effectively set to 1 in DMET.

The mathematical similarities between GA, gGA, and
DMET algorithms, outlined above, suggest a possible under-
lying physical connection between these methods. However,
such a connection has not been established yet.

In this paper, we address this issue by deriving the
ghost DMET (gDMET): a QE method based on princi-
ples similar to those of DMET, possessing self-consistency
conditions mathematically equivalent to those found in the
gGA variational-energy minimization framework [16,17].
This clear correspondence between gGA and gDMET offers
a valuable alternative perspective on interpreting the physi-
cal implications of the resulting equations and introduces a
practical advantage with a simpler implementation. Further-
more, as our approach yields nonarbitrary self-consistency
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conditions consistent with the variational principle in the
infinite-dimensional limit, it could serve as a guide for devel-
oping new QE methods with enhanced accuracy and broader
applicability, e.g., for systems with nonlocal interactions
[54–59], at finite temperature [60–63], and out of equilibrium
[64–71].

II. DERIVATION OF gDMET: THE gGA FROM QE
SELF-CONSISTENCY PRINCIPLES

Let us consider a generic multiorbital Fermi-Hubbard
Hamiltonian represented as follows:

Ĥ =
N∑
i=1

Ĥ i
loc[c†

iα, ciα] +
∑
i �= j

T̂i j, (1)

T̂i j =
νi∑

α=1

ν j∑
β=1

[ti j]αβ c†
iαc jβ, (2)

where i and j label the fragments of the system, Ĥ i
loc is

a generic operator lying within the i fragment (i.e., con-
structed with c†

iα, ciα), including both one-body and two-body
contributions, and α labels all fermionic modes within each
fragment.

The key idea underlying QE frameworks is to describe the
interaction of each fragment i with its environment in terms
of an EH Ĥ i

emb, consisting of the fragment and an entangled
quantum bath. In principle, it can be demonstrated that the
fragments can always be exactly embedded by baths no larger
than the fragments themselves [24,25]. However, this result
is purely formal. In DMET, a practical approximation to the
bath of Ĥ i

emb is built from a one-body state, which is gener-
ally constructed as the ground state of an auxiliary one-body
Hamiltonian Ĥ∗ determined by appropriate self-consistency
conditions, rather than the original interacting Hamiltonian Ĥ .

The goal of this section is to develop the gGA from QE
self-consistency principles reminiscent of DMET. Like gGA
and the DMET frameworks of Refs. [33,34], our construction
will involve an effective one-body Hamiltonian Ĥ∗ featuring
auxiliary fermionic degrees of freedom, which will serve to
enrich the description of many-body effects compared to clas-
sical DMET frameworks.

A. The gDMET quasiparticle Hamiltonian

In our approach, we construct the effective Hamiltonian
Ĥ∗, also called “quasiparticle Hamiltonian,” as in the gGA
literature,

Ĥ∗[R,�] =
N∑
i=1

Bνi∑
a,b=1

[�i]ab f †
ia fib +

∑
i �= j

T̂i j,

T̂i j =
Bνi∑
a=1

Bν j∑
b=1

[Riti jR†
j ]ab f †

ia f jb, (3)

where R = (R1, . . . ,RN ), � = (�1, . . . , �N ), we assume
that B > 1 is an odd number, and we introduced modes
f †
ia, with original fermionic modes c†

iα expressed as linear

FIG. 1. Schematic one-dimensional representation of the effec-
tive Hamiltonian Ĥ∗ in the ideal scenario described in Sec. II A. The
physical degrees of freedom c†

iα = f †
iα , α = 1, . . . , νi, are represented

by blue circles. The additional ghost modes f †
ia, a = νi+1, . . . , Bνi,

are represented by green circles.

combinations,

c†
iα =

Bνi∑
a=1

[Ri]aα f †
ia (α = 1, . . . , νi ). (4)

Note that T̂i j is the same operator in Eqs. (2) and (3), as it can
be readily verified by substituting Eq. (4) in Eq. (2).

Similarly to all DMET implementations, the entries of the
parameters �i and Ri characterizing Ĥ∗ are initially unspeci-
fied, and will be determined self-consistently.

For Eq. (4) to be logically coherent and provide c†
iα and f †

ia
modes, both satisfying canonical anticommutation rules

{ fia, f †
jb} = δi jδab, (5)

{ciα, c†
jβ} = δi jδαβ, (6)

the condition R†
i Ri = 1 (where 1 is the identity matrix) has to

hold true, as it can be verified by substituting Eq. (4) in Eq. (6)
and comparing the resulting equation with Eq. (5). When this
condition is exactly satisfied, the modes f †

ia can be chosen
in such a way that [Ri]aα = δaα ∀ a, α � νi, and [Ri]aα = 0
otherwise.

This ideal scenario, corresponding to the system rep-
resented in Fig. 1, is useful for interpreting the gGA
equations from a DMET perspective. Specifically, it allows
interpreting Ĥ∗ as an effective Hamiltonian approximating
many-body interactions between fragments and their environ-
ments using one-body operators; with “hopping” (nonlocal)
terms retained as in the original Hamiltonian Ĥ , and new
“ghost” or “ancilla” fermionic degrees of freedom introduced
locally in all fragments to enrich the approximate description
of many-body effects induced by local interacting terms of Ĥ .

For later convenience, we rewrite Eq. (3) as follows:

Ĥ∗[R,�] =
N∑

i, j=1

[�ih∗� j]ab f †
ia f jb, (7)

where we introduced the matrix

h∗ =

⎛
⎜⎜⎜⎝

�1 R1t12R†
2 . . . R1t1NR†

N
R2t21R†

1 �2 . . .
...

...
...

. . .
...

RN 1tN 1R†
1 . . . . . . �N

⎞
⎟⎟⎟⎠, (8)
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and the projectors over the degrees of freedom corresponding
to each fragment

�i =

⎛
⎜⎝

δi1[1]Bν1×Bν1
. . . 0

...
. . .

...

0 . . . δiM[1]BνM×BνM

⎞
⎟⎠, (9)

where [1]n×n is the n × n identity matrix.

B. Construction of the EH

As previously outlined, our objective is to employ the
Hamiltonian Ĥ∗ to form an EH, denoted by Ĥ i

emb, to approx-
imate the interaction of each fragment i with its surrounding
environment within the original system Ĥ . In this section, we
delineate the specific methodical process of building the EH
within the DMET framework under development in this study.

For this purpose, we leverage on a general theorem based
on the Schmidt decomposition, here provided in the Sup-
plemental Material for completeness [72]. This theorem, a
standard result in DMET frameworks [74], allows one to
express the so-called “active part” of the ground state |�0〉
of Ĥ∗ [see Eq. (3)] for each fragment i. With the “active
part,” here we refer to the part of |�0〉 constructed from the
Bνi f †

ia modes and the Bνi modes entangled with it, while
the “inactive part” refers to the part of |�0〉 constructed with
the remaining fermionic modes, which is entirely decoupled
from the i fragment and the corresponding active part of the
ground state. Specifically, the theorem demonstrates that the
active part corresponds to the ground state of a one-body EH
involving Bνi fragment degrees of freedom, denoted as f †

ia,
and Bνi “bath” degrees of freedom entangled with it, denoted
as b†

ia, given by the following equation:

b†
ia =

N∑
j=1

Bν j∑
b=1

[
B j

i

]
ba f †

jb (a = 1, . . . , Bνi ), (10)

where the entries of the matrices B j
i are given by the following

equation:

[
B j

i

]
ba = (1 − δi j )

[
� j f (h∗)�i

1√
t	i(1 −t 	i )

]
ba

, (11)

where

[	i]ab = 〈�0| f †
ia fib |�0〉 (a, b = 1, . . . , Bνi ), (12)

f (h∗) is the Fermi function of the matrix h∗, and t	i indicates
the transpose of 	i. For later convenience, we also define the
following matrix:

Bi =
N∑
j=1

B j
i . (13)

As explained in the Supplemental Material [72], it is pos-
sible to project Ĥ∗ onto the space spanned by the “active”
degrees of freedom associated to each fragment i. The result-
ing one-body embedding Hamiltonian is the following:

Ĥ i
0 =

Bνi∑
a,b=1

[�i]ab f †
ia fib −

Bνi∑
a,b=1

[
�c

i

]
ab b†

iabib

FIG. 2. Schematic representation of the EH Ĥ i
emb. The fragment

degrees of freedom c†
iα , α = 1, . . . , νi, are represented by a blue

circle, while the additional bath modes f †
ia, a = 1, . . . , Bνi, are rep-

resented by a green ellipse. The matrix �c
i encodes the bath degrees

of freedom and the ghost modes, while the matrix Di encodes the
hybridization with the fragment.

+
Bνi∑

a,b=1

([
D0

i

]
ba f †

iabib + H.c.
)

=
Bνi∑

a,b=1

[�i]ab f †
ia fib −

Bνi∑
a,b=1

[
�c

i

]
ab b†

iabib

+
Bνi∑
a=1

νi∑
α=1

([Di]bα c†
iαbib + H.c.), (14)

where [
�c

i

]
ab = −[�iB†

i h∗Bi�i]ab, (15)

[
D0

i

]
ba = [�ih∗Bi]ab =

∑
j

[Riti jR†
jB

j
i ]ab, (16)

[Di]ba =
∑

j

[ti jR†
jB

j
i ]ab, (17)

and in the last step of Eq. (14), we used Eq. (4).
Given Ĥ i

0, we construct the following approximation to
the actual EH of each impurity for the original interacting
Hamiltonian Ĥ [Eq. (1)] as follows:

Ĥ i
emb = Ĥ i

0 −
Bνi∑

a,b=1

[�i]ab f †
ia fib + Ĥ i

loc[c†
iα, ciα]

= Ĥ i
loc[c†

iα, ciα] −
Bνi∑

a,b=1

[
�c

i

]
ab

b†
iabib

+
Bνi∑
a=1

νi∑
α=1

([Di]bα c†
iαbib + H.c.), (18)

which is schematically reproduced in Fig. 2.
This working hypothesis, which will enable us to recover

the gGA equations, can be physically motivated by noting that
the fragment portion of the EH is already known to be Ĥ i

loc.
Therefore, that part does not need to be approximated.

C. Calculating the ground state of the EH

It is essential to recognize that Ĥ i
emb explicitly involves

only the νi fragment modes c†
iα and the Bνi bath modes b†

ia, but
exists within the extended Hilbert space containing all 2Bνi

degrees of freedom. This space includes both the “physical”
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(B + 1)νi modes in Eq. (18) and the “unphysical” (B − 1)νi

modes decoupled from it. Consequently, the ground state of
Ĥ i

emb is a tensor product of a “physical” state and an “unphys-
ical” state, with the latter not affecting the expectation value
of Ĥ i

emb.
It is also important to note that projecting Ĥ∗ into the ith

“active space” leads to the total EH system [including the
additional (B − 1)νi auxiliary modes] being half filled, i.e.,
containing Bνi fermions in total, as explained in the Supple-
mental Material [72].

From the observations above, it follows that calculating
the ground state of Ĥ i

emb requires separately inspecting the
blocks corresponding to various assignments of the available
Bνi fermions between the auxiliary modes and the physically
relevant portion of the EH, and identifying the one with the
lowest energy.

Interestingly, a similar challenge is encountered in gGA
[16]. Here, different assignments of fermions lead to vari-
ous variational states, with the physical solution having the
lowest variational energy. Previous gGA work indicates that
the lowest-energy solution is obtained when the physically
relevant portion of the EH, corresponding to the (B + 1)νi

modes in Eq. (18), is half filled with νi(B + 1)/2 fermions
(integer for odd B, as assumed in Sec. II A). This observation,
highlighted in Ref. [17], significantly reduces the computa-
tional cost and will also be exploitable in DMET, within the
context of the gDMET framework that we are in the process
of explaining in this paper.

D. Self-consistency conditions

We now postulate the following self-consistency condi-
tions for determining the parameters Ri and �i:

〈�0[R,�]| b†
iabib |�0[R,�]〉 = 〈
i| b†

iabib |
i〉, (19)

〈�0[R,�]| c†
iαbib |�0[R,�]〉 = 〈
i| c†

iαbib |
i〉, (20)

where |�0〉 is the ground state of Ĥ∗ and |
i〉 is the ground
state of Ĥ i

emb; see Eq. (18).
This working hypothesis, which will allow us to recover

the gGA equations, can be physically motivated by observing
that the role of |�0〉 is to approximate the environment of each
fragment and its interaction with the fragment itself, which are
directly related to Eqs. (19) and (20), respectively.

Note that as shown in the Supplemental Material [72], the
left-hand side of Eq. (19) is given by

〈�0[R,�]| b†
iabib |�0[R,�]〉 = [1 − 	i]ab. (21)

Similarly, the left-hand side of Eq. (20) is given by the
following equation:

〈�0[R,�]| c†
iαbib |�0[R,�]〉

=
Bνi∑
a=1

[Ri]aα〈�0[R,�]| f †
iabib |�0[R,�]〉

=
Bνi∑
a=1

[Ri]aα[	i(1 − 	i )]
1
2
ab. (22)

E. Summary

In summary, the solution to the gDMET quantum embed-
ding problem is given by the following identities:

Ĥ∗[R,�]|�0〉 = E0|�0〉, (23)

[	i]ab = 〈�0| f †
ia fib |�0〉, (24)

B j
i = (1−δi j ) � j f (h∗)�i

1√
t	i(1 −t 	i )

, (25)

Bi =
N∑
j=1

B j
i , (26)

[Di]bα =
N∑
j=1

[ti jR†
jB

j
i ]αb, (27)

[�c
i ]ab = −[�iB†

i h∗Bi�i]ab, (28)

Ĥ i
emb|
i〉 = Ec

i |
i〉, (29)

〈
i| b†
iabib |
i〉 = [1 − 	i]ab, (30)

〈
i| c†
iαbib |
i〉 =

Bνi∑
a=1

[Ri]aα[	i(1 − 	i )]
1
2
ab, (31)

where the embedding parameters �c
i and 	i, characterizing

the EH Ĥ i
emb of the fragments, depend on Ri and �i through

the steps described above; Eq. (29) consists in computing the
ground state of Ĥ i

emb; and Eqs. (30) and (31) are the self-
consistency conditions to be satisfied for determining Ri and
�i.

In the Supplemental Material, we provide a proof that the
gDMET equations presented above are indeed mathematically
equivalent to the gGA equations [72]. This equivalence allows
for a complementary physical interpretation. Furthermore, our
approach introduces a practical advantage, as Eq. (28) offers a
simpler method for calculating �c

i compared to the expression
used in previous GA/gGA implementations [72].

A key mathematical distinction of our approach, compared
to other DMET implementations proposed in the literature,
is that Eqs. (23)–(31) do not form an under-determined sys-
tem, but can be exactly satisfied simultaneously. The primary
reason is that the combined number of independent entries
of �i and Ri is equal to the number of independent EH
density matrix elements appearing in the left-hand sides of
Eqs. (30) and (31). In classic DMET frameworks, however,
the matrices Ri are not considered as free parameters, and the
parameters �i are insufficient for exactly satisfying the QE
self-consistency conditions. The standard DMET approach to
tackle this problem is to address the self-consistency condi-
tions only approximately, with respect to an arbitrary notion of
distance. On the other hand, the QE framework derived in this
work relies on the assumption that the matrices Ri satisfy the
condition R†

i Ri = 1, which should therefore be interpreted as
a “sanity check” of the theory, but is not generally exactly
verified. The discrepancy between the ideal assumption of
R†

i Ri = 1 and the actual matrix conditions found in practice
hints at a common underlying physical reason that is relevant
to both our approach and the classic DMET frameworks.
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From a physical standpoint, this common underlying phys-
ical reason can be traced back to the role of the ghost degrees
of freedom. In classic GA (i.e., for B = 1, corresponding to
the limiting case without ghost fermionic degrees of freedom),
R†

i Ri = Zi represents the quasiparticle weight of the i de-
grees of freedom. Since generally the eigenvalues of Zi are
smaller than 1, the QE procedure above becomes less justified
in the correlated regime from a DMET perspective (while it
remains perfectly justified from the GA variational perspec-
tive). In contrast, gGA incorporates ghost fermionic degrees
of freedom, where R†

i Ri represents the entire spectral weight
of the i degrees of freedom, including both the quasiparticle
weight and the contribution of the Hubbard bands. Therefore,
in gGA, one generally finds that R†

i Ri ∼ 1 in all physical
regimes, ranging from the weakly correlated to the strongly
correlated. This fact can be interpreted as an a posteriori indi-
cation that the additional ghost degrees of freedom allow us to
capture, with higher precision, the many-body effects induced
by local interacting terms of Ĥ , justifying our procedure.

In light of the above discussion, we argue that the ghost
degrees of freedom play a pivotal role in unifying the DMET
and gGA perspectives, offering a common framework that
successfully captures many-body effects, while adhering to
the principles of both approaches.

III. GAUGE FREEDOM AND QE GAUGE FROM
SINGULAR VALUE DECOMPOSITION

In this section, we discuss the gauge invariance of the
equations derived in our paper. By inspection, one can verify
that Eqs. (24)–(31) are invariant with respect to the following
set of gauge transformations:

|�0〉 → Û†(θ1, . . . , θN )|�0〉, (32)

|
i〉 → Û †
i (θi )|
i〉, (33)

Ri → u†
i (θi )Ri, (34)

Di → t u(θi )Di, (35)

	i → t ui(θi )	i
t u†

i (θi ), (36)

�i → u†
i (θi )�iui(θi ), (37)

�c
i → u†

i (θi )�
c
i ui(θi ), (38)

where θi are Hermitian matrices of Lie parameters and

ui(θi ) = eiθi , (39)

Ûi(θi ) = ei
∑Bνi

a,b=1 [θi]abb†
iabib, (40)

Û (θ1, . . . , θN ) = ei
∑

i

∑Bνi
a,b=1 [θi]ab f †

ia fib . (41)

In the context of our derivation of the QE equations, the
invariance under the given set of gauge transformations stems
from the fact that the choice of the fia modes is arbitrary,
as long as they can span the physical ciα modes. The term
“gauge” refers to the idea that such a basis choice does not
impact physical quantities since all parameters related by
this group of transformations are effectively equivalent. In

particular, note that Eq. (33) corresponds to applying any
unitary transformation to the bath of the effective Hamilto-
nian, which does not affect the expectation values of fragment
observables in the EH (as in DMFT).

Importantly, as discussed in Sec. II A, if the identity
R†

i Ri = 1 was exactly satisfied, we would be able to choose
a gauge that corresponds to the ideal scenario depicted in
Fig. 1– which was used to justify our QE procedure. On the
other hand, even when R†

i Ri = 1 is verified only approxi-
mately, we can leverage the gauge freedom to transform Ri

into a form that closely resembles the ideal scenario depicted
in Fig. 1 (which we are going to refer to as the “QE gauge” ).
To illustrate this point, we will present an argument based on
the singular value decomposition (SVD) of Ri.

The SVD theorem states that it is always possible to ex-
press a rectangular matrix such as Ri as follows:

Ri = Ui�iV
†

i , (42)

where Ui is a Bνi × Bνi matrix, Vi is a νi × νi unitary ma-
trix, and �i is a Bνi × νi diagonal matrix, where [�i]αα � 0
∀α � νi are the “singular values,” and [�i]aα = 0 ∀ a > νi.
This property arises from the fact that the SVD captures the
effective rank of Ri, which is νi, and the nonzero singular
values correspond to the contributions from the physical ciα
modes. In our context of application inherent in the gGA
equations, where we know that

R†
i Ri 
 1 (43)

is accurately satisfied, we have that [�i]aα 
 δaα for a � νi,
as can be readily verified by noting that

�
†
i �i = V †

i R
†
i RiVi. (44)

Let us define the gauge transformation ui = UiV̄
†

i , where V̄i

is a unitary block matrix with entries [V̄i]αβ = [Vi]αβ∀α, β �
νi, [V̄i]ab = δab∀ a, b � νi + 1, and 0 elsewhere. By applying
such gauge transformation to Ri, we can bring it into a form
close to the one corresponding to the ideal scenario of Fig. 1.
In fact,

R′
i = u†

i Ri = V̄i�iVi, (45)

which has entries

[R′
i]αβ 
 δαβ, ∀α, β � νi, (46)

[R′
i]aα = 0, ∀ a > νi, (47)

where Eq. (46) holds true because the corresponding block of
R′

i consists of a unitary rotation of the singular values of �i,
which we know to be approximately 1 under our hypothesis;
see Eqs. (43) and (44).

In the arguments presented above, it is important to em-
phasize that the construction allowing us to obtain an Ri

matrix with the ideal form depicted in Fig. 1 is specifically
applicable only to the gGA framework, where B > 1, as our
key hypothesis that R†

i Ri 
 1 is not satisfied in the case of
the classic GA with B = 1.

In the following section, we will provide a concrete il-
lustration of the gauge-fixing construction explained above.
Specifically, we will apply these concepts to the simple case of
the Hubbard model at particle-hole symmetry, within the gGA
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framework with B = 3, as previously studied in Ref. [16].
This example will serve to further clarify the gauge-fixing
procedure and demonstrate the practical utility of the auxiliary
ghost modes in capturing the many-body effects arising in this
system.

QE gauge fixing for single-band Hubbard model

Let us consider the special case of a single-band Hub-
bard model (νi = 1) satisfying particle-hole symmetry and
translational invariance. The translational invariance implies
that Ri = R and �i = � are independent of the fragment
i. Furthermore, as previously pointed out in Ref. [16], the
particle-hole symmetry condition implies that in the gauge
that diagonalizes �, we have

R =

⎛
⎜⎝

√
z√

h/2√
h/2

⎞
⎟⎠, � =

⎛
⎜⎝

0 0 0

0 l 0

0 0 −l

⎞
⎟⎠ , (48)

where z represents the quasiparticle weight, h represents the
spectral weight of the Hubbard bands, and l controls the
position of the Hubbard bands.

In such simple case, the SVD of R,

R = U�V †, (49)

can be realized as follows:

U = 1√
z + h

⎛
⎜⎜⎜⎝

√
z −√

h 0√
h
2

√ z
2 −

√
z+h

2√
h
2

√ z
2

√
z+h

2

⎞
⎟⎟⎟⎠, (50)

� =

⎛
⎜⎝

√
z + h

0

0

⎞
⎟⎠, (51)

V = 1, (52)

and the QE gauge fixing procedure above reduces to perform-
ing the following matrix multiplications:

R′ = U †R =

⎛
⎜⎝

√
z + h

0

0

⎞
⎟⎠ 


⎛
⎜⎝

1

0

0

⎞
⎟⎠, (53)

�′ = U †�U = −l√
z + h

⎛
⎜⎝

0 0
√

h

0 0
√

z√
h

√
z 0

⎞
⎟⎠,


 −l

⎛
⎜⎝

0 0
√

h

0 0
√

z√
h

√
z 0

⎞
⎟⎠, (54)

where, in the last step of Eqs. (53) and (54), we used that
z + h = �†� 
 1, consistently with the fact that the gGA
framework captures both the quasiparticle weight and the
Hubbard bands.

Therefore, the gauge transformation above reproduces the
scenario represented in Fig. 1, featuring the same nonlocal

terms as the original Hamiltonian and additional ghost
fermionic degrees of freedom interacting locally with each
fragment. It is important to remember that as previously ex-
plained below Eq. (4), this reduction is exact only under the
hypothesis that R†R = z + h = 1, which, while being satis-
fied accurately in gGA, is not met exactly.

As expected, the auxiliary degrees of freedom (corre-
sponding to the first component of the above matrices) are
decoupled from the auxiliary modes in the uncorrelated
regime, where the spectral weight h of the Hubbard bands
vanishes. On the other hand, such coupling becomes stronger
as the interaction strength grows and, in the Mott phase, where
the quasiparticle weight z vanishes, it becomes commensurate
to l 
 U , where U is the Hubbard interaction strength of the
model. This is consistent with the notion that Ĥ∗, parametrized
by R and �, serves as an effective Hamiltonian aiming to ap-
proximate the many-body interactions between the fragments
and their respective environments with one-body operators.
Consequently, it is natural that the ghost modes are useful only
when many-body interactions are present.

IV. CONCLUSIONS

In this study, we derived the gDMET framework: a QE
method based on principles that echo the foundational con-
cepts underlying DMET, which is mathematically equivalent
to the gGA. This reformulation offers an alternative, math-
ematically precise interpretation of the gGA equations and
uncovers the underlying physical link between the two meth-
ods, besides introducing a practical advantage with a simpler
implementation [72].

A key aspect of our analysis is the crucial role of the
ghost degrees of freedom in connecting the DMET and gGA
perspectives, i.e., their necessity for formulating a unified
framework that adheres to the principles of both approaches.
In relation to this point, it is interesting to note that as shown in
Ref. [17], the limitations of standard GA in capturing charge
fluctuations in the strongly correlated regime, particularly in
the Mott phase, are directly tied to the method’s inability to
capture the entire spectral weight, and that the introduction
of ghost degrees of freedom in gGA resolves these issues,
providing results with accuracy that is essentially equal to
DMFT. Our study suggests a possible association between
the requirement of ghost degrees of freedom for achieving
satisfactory accuracy and the feasibility of formulating the
gGA equations also from a DMET perspective, contingent on
the inclusion of ghost degrees of freedom.

Finally, the connection between gGA and DMET estab-
lished here may pave the way for novel methodological
generalizations, leveraging on the combined strengths of the
variational perspective underlying the gGA framework and
the QE perspective underlying DMET.
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Slave boson theory of orbital differentiation with crystal field
effects: Application to UO2, Phys. Rev. Lett. 118, 126401
(2017).

[22] L. de’Medici, A. Georges, and S. Biermann, Orbital-selective
Mott transition in multiband systems: Slave-spin representation
and dynamical mean-field theory, Phys. Rev. B 72, 205124
(2005).

[23] R. Yu and Q. Si, u(1) slave-spin theory and its application to
Mott transition in a multiorbital model for iron pnictides, Phys.
Rev. B 86, 085104 (2012).

[24] G. Knizia and G. Kin-Lic Chan, Density matrix embedding: A
simple alternative to dynamical mean-field theory, Phys. Rev.
Lett. 109, 186404 (2012).

[25] G. Knizia and G. K.-L. Chan, Density matrix embedding: A
strong-coupling quantum embedding theory, J. Chem. Theory
Comput. 9, 1428 (2013).

[26] I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Density matrix
embedding from broken symmetry lattice mean fields, Phys.
Rev. B 89, 035140 (2014).

[27] U. Mordovina, T. E. Reinhard, I. Theophilou, H. Appel, and
A. Rubio, Self-consistent density-functional embedding: A
novel approach for density-functional approximations, J. Chem.
Theory Comput. 15, 5209 (2019).

[28] S. Sekaran, M. Saubanére, and E. Fromager, Local potential
functional embedding theory: A self-consistent flavor of den-
sity functional theory for lattices without density functionals,
Computation 10, 45 (2022).

[29] S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager,
Householder-transformed density matrix functional embedding
theory, Phys. Rev. B 104, 035121 (2021).

[30] S. Yalouz, S. Sekaran, E. Fromager, and M. Saubanére,
Quantum embedding of multi-orbital fragments using the
block-householder transformation, J. Chem. Phys. 157, 214112
(2022).

[31] S. Sekaran, O. Bindech, and E. Fromager, A unified density-
matrix functional construction of quantum baths in density
matrix embedding theory beyond the mean-field approximation,
J. Chem. Phys. 159, 034107 (2023).

[32] B.-X. Zheng, Density matrix embedding theory and strongly
correlated lattice systems, Ph.D. thesis, Princeton University,
2017; arXiv:1803.10259.

[33] E. Fertitta and G. H. Booth, Rigorous wave function embedding
with dynamical fluctuations, Phys. Rev. B 98, 235132 (2018).

[34] P. V. Sriluckshmy, M. Nusspickel, E. Fertitta, and G. H. Booth,
Fully algebraic and self-consistent effective dynamics in a static
quantum embedding, Phys. Rev. B 103, 085131 (2021).

[35] F. Verstraete, V. Murg, and J. I. Cirac, Matrix product states,
projected entangled pair states, and variational renormalization
group methods for quantum spin systems, Adv. Phys. 57, 143
(2008).

[36] Y.-H. Zhang and S. Sachdev, From the pseudogap metal to the
Fermi liquid using ancilla qubits, Phys. Rev. Res. 2, 023172
(2020).

[37] J. Robledo Moreno, G. Carleo, A. Georges, and J. Stokes,
Fermionic wave functions from neural-network constrained
hidden states, Proc. Natl. Acad. Sci. 119, e2122059119 (2022).

235112-7

https://doi.org/10.1126/science.aat5975
https://doi.org/10.1021/acs.accounts.6b00356
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1002/pssb.200642053
https://doi.org/10.1088/0953-8984/9/35/010
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.79.075114
https://doi.org/10.1103/PhysRevB.77.073101
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevB.68.155117
https://doi.org/10.1103/PhysRevB.96.195126
https://doi.org/10.1103/PhysRevB.104.L081103
https://doi.org/10.1103/PhysRevMaterials.3.054605
https://doi.org/10.1103/PhysRevB.76.155102
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.86.085104
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1021/ct301044e
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1021/acs.jctc.9b00063
https://doi.org/10.3390/computation10030045
https://doi.org/10.1103/PhysRevB.104.035121
https://doi.org/10.1063/5.0125683
https://doi.org/10.1063/5.0157746
http://arxiv.org/abs/arXiv:1803.10259
https://doi.org/10.1103/PhysRevB.98.235132
https://doi.org/10.1103/PhysRevB.103.085131
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevResearch.2.023172
https://doi.org/10.1073/pnas.2122059119


NICOLA LANATÀ PHYSICAL REVIEW B 108, 235112 (2023)

[38] S. Sakai, M. Civelli, and M. Imada, Hidden-fermion representa-
tion of self-energy in pseudogap and superconducting states of
the two-dimensional Hubbard model, Phys. Rev. B 94, 115130
(2016).

[39] P. W. Anderson, Hidden Fermi liquid: The secret of high-Tc

cuprates, Phys. Rev. B 78, 174505 (2008).
[40] T.-H. Lee, N. Lanatà, and G. Kotliar, Accuracy of ghost rota-

tionally invariant slave-boson and dynamical mean field theory
as a function of the impurity-model bath size, Phys. Rev. B 107,
L121104 (2023).

[41] C. Mejuto-Zaera and M. Fabrizio, Efficient computational
screening of strongly correlated materials: Multiorbital phe-
nomenology within the ghost Gutzwiller approximation, Phys.
Rev. B 107, 235150 (2023).

[42] G. Kotliar and A. E. Ruckenstein, New functional integral ap-
proach to strongly correlated Fermi systems: The Gutzwiller
approximation as a saddle point, Phys. Rev. Lett. 57, 1362
(1986).

[43] J. Bünemann and F. Gebhard, Equivalence of Gutzwiller and
slave-boson mean-field theories for multiband Hubbard models,
Phys. Rev. B 76, 193104 (2007).

[44] N. Lanatà, P. Barone, and M. Fabrizio, Fermi-surface evolution
across the magnetic phase transition in the Kondo lattice model,
Phys. Rev. B 78, 155127 (2008).

[45] N. Lanatà, Operatorial formulation of the ghost rotationally
invariant slave-boson theory, Phys. Rev. B 105, 045111 (2022).

[46] S. R. White, Density matrix formulation for quantum renormal-
ization groups, Phys. Rev. Lett. 69, 2863 (1992).

[47] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, The
variational quantum eigensolver: A review of methods and best
practices, Phys. Rep. 986, 1 (2022).

[48] Y. Yao, F. Zhang, C.-Z. Wang, K.-M. Ho, and P. P. Orth,
Gutzwiller hybrid quantum-classical computing approach for
correlated materials, Phys. Rev. Res. 3, 013184 (2021).

[49] J. Rogers, T. Jiang, M. S. Frank, O. Christiansen, Y.-X.
Yao, and N. Lanatà, Error mitigation in variational quan-
tum eigensolvers using tailored probabilistic machine learning,
arXiv:2111.08814.

[50] R. J. Bartlett and M. Musiał, Coupled-cluster theory in quantum
chemistry, Rev. Mod. Phys. 79, 291 (2007).

[51] N. Lanatà, Y.-X. Yao, X. Deng, C.-Z. Wang, K.-M. Ho, and
G. Kotliar, Gutzwiller renormalization group, Phys. Rev. B 93,
045103 (2016).

[52] T. Ayral, T.-H. Lee, and G. Kotliar, Dynamical mean-field the-
ory, density-matrix embedding theory, and rotationally invariant
slave bosons: A unified perspective, Phys. Rev. B 96, 235139
(2017).

[53] T.-H. Lee, T. Ayral, Y.-X. Yao, N. Lanatà, and G. Kotliar, Ro-
tationally invariant slave-boson and density matrix embedding
theory: Unified framework and comparative study on the one-
dimensional and two-dimensional Hubbard model, Phys. Rev.
B 99, 115129 (2019).

[54] T. Ayral, S. Biermann, and P. Werner, Screening and nonlocal
correlations in the extended hubbard model from self-consistent
combined gw and dynamical mean field theory, Phys. Rev. B
87, 125149 (2013).

[55] H. Terletska, T. Chen, and E. Gull, Charge ordering and corre-
lation effects in the extended hubbard model, Phys. Rev. B 95,
115149 (2017).

[56] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E.
Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov,
and K. Held, Diagrammatic routes to nonlocal correlations be-
yond dynamical mean field theory, Rev. Mod. Phys. 90, 025003
(2018).

[57] R. Chitra and G. Kotliar, Effect of long range Coulomb in-
teractions on the Mott transition, Phys. Rev. Lett. 84, 3678
(2000).

[58] G. Goldstein, N. Lanatà, and G. Kotliar, Extending the
Gutzwiller approximation to intersite interactions, Phys. Rev.
B 102, 045152 (2020).

[59] N. Lanatà, Local bottom-up effective theory of nonlo-
cal electronic interactions, Phys. Rev. B 102, 115115
(2020).

[60] W.-S. Wang, X.-M. He, D. Wang, Q.-H. Wang, Z. D. Wang,
and F. C. Zhang, Finite-temperature Gutzwiller projection for
strongly correlated electron systems, Phys. Rev. B 82, 125105
(2010).

[61] M. Sandri, M. Capone, and M. Fabrizio, Finite-temperature
Gutzwiller approximation and the phase diagram of a toy model
for V2O3, Phys. Rev. B 87, 205108 (2013).

[62] N. Lanatà, X. Deng, and G. Kotliar, Finite-temperature
Gutzwiller approximation from the time-dependent variational
principle, Phys. Rev. B 92, 081108(R) (2015).

[63] C. Sun, U. Ray, Z.-H. Cui, M. Stoudenmire, M. Ferrero,
and Garnet Kin-Lic Chan, Finite-temperature density
matrix embedding theory, Phys. Rev. B 101, 075131
(2020).

[64] G. Seibold and J. Lorenzana, Time-dependent Gutzwiller ap-
proximation for the Hubbard model, Phys. Rev. Lett. 86, 2605
(2001).

[65] M. Schiró and M. Fabrizio, Time-dependent mean field theory
for quench dynamics in correlated electron systems, Phys. Rev.
Lett. 105, 076401 (2010).

[66] N. Lanatà and H. U. R. Strand, Time-dependent and steady-state
Gutzwiller approach for nonequilibrium transport in nanostruc-
tures, Phys. Rev. B 86, 115310 (2012).

[67] D. Guerci, M. Capone, and N. Lanatà, Time-dependent
ghost-Gutzwiller nonequilibrium dynamics, Phys. Rev. Res. 5,
L032023 (2023).

[68] D. Jaksch, V. Venturi, J. I. Cirac, C. J. Williams, and
P. Zoller, Creation of a molecular condensate by dynami-
cally melting a Mott insulator, Phys. Rev. Lett. 89, 040402
(2002).

[69] M. Yan, H.-Y. Hui, M. Rigol, and V. W. Scarola, Equilibration
dynamics of strongly interacting bosons in 2D lattices with
disorder, Phys. Rev. Lett. 119, 073002 (2017).

[70] M. Yan, H.-Y. Hui, and V. W. Scarola, Dynamics of disordered
states in the Bose-Hubbard model with confinement, Phys. Rev.
A 95, 053624 (2017).

[71] J. S. Kretchmer and G. K.-L. Chan, A real-time extension of
density matrix embedding theory for nonequilibrium electron
dynamics, J. Chem. Phys. 148, 054108 (2018).

[72] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.235112 for the following: Proof of the-
orem used in Sec. II B; standard derivation of gGA equations;
proof of equivalence between gGA and the gDMET equations,
derived in the main from QE principles; derivation of gDMET
equations in momentum representation, for systems with trans-
lational symmetry. This includes a Ref. [73].

235112-8

https://doi.org/10.1103/PhysRevB.94.115130
https://doi.org/10.1103/PhysRevB.78.174505
https://doi.org/10.1103/PhysRevB.107.L121104
https://doi.org/10.1103/PhysRevB.107.235150
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevB.76.193104
https://doi.org/10.1103/PhysRevB.78.155127
https://doi.org/10.1103/PhysRevB.105.045111
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1103/PhysRevResearch.3.013184
http://arxiv.org/abs/arXiv:2111.08814
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/PhysRevB.93.045103
https://doi.org/10.1103/PhysRevB.96.235139
https://doi.org/10.1103/PhysRevB.99.115129
https://doi.org/10.1103/PhysRevB.87.125149
https://doi.org/10.1103/PhysRevB.95.115149
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/PhysRevLett.84.3678
https://doi.org/10.1103/PhysRevB.102.045152
https://doi.org/10.1103/PhysRevB.102.115115
https://doi.org/10.1103/PhysRevB.82.125105
https://doi.org/10.1103/PhysRevB.87.205108
https://doi.org/10.1103/PhysRevB.92.081108
https://doi.org/10.1103/PhysRevB.101.075131
https://doi.org/10.1103/PhysRevLett.86.2605
https://doi.org/10.1103/PhysRevLett.105.076401
https://doi.org/10.1103/PhysRevB.86.115310
https://doi.org/10.1103/PhysRevResearch.5.L032023
https://doi.org/10.1103/PhysRevLett.89.040402
https://doi.org/10.1103/PhysRevLett.119.073002
https://doi.org/10.1103/PhysRevA.95.053624
https://doi.org/10.1063/1.5012766
http://link.aps.org/supplemental/10.1103/PhysRevB.108.235112


DERIVATION OF THE GHOST GUTZWILLER … PHYSICAL REVIEW B 108, 235112 (2023)

[73] R. Frésard and P. Wölfle, Unified slave boson representa-
tion of spin and charge degrees of freedom for strongly
correlated Fermi systems, Intl. J. Mod. Phys. B 06, 685704
(1992).

[74] S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L.
Chan, A practical guide to density matrix embedding theory
in quantum chemistry, J. Chem. Theory Comput. 12, 2706
(2016).

235112-9

https://doi.org/10.1021/acs.jctc.6b00316

