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Criteria and analytical results for the pseudogap at the Van Hove point in two dimensions
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I established the criteria and obtained analytical results for the pseudogap at the Van Hove (antinodal) point
on the Fermi surface in two dimensions. The original criterion ξ � ξth_db = vF /πT is not applicable in this case
since Fermi velocity vF = 0. It turns out that the characteristic length for the pseudogap crossover at the Van
Hove point ξth_vh ∝ 1/T 1/2 is significantly shorter than the one at the regular Fermi surface points ξth_db ∝ 1/T .
In particular, ξth_vh is between one and two lattice spacings in the intermediate interaction regime of the Hubbard
model. I have also identified the regime where there is still a single maximum in the spectral function, but single
particle properties are abnormal. Specifically, the imaginary part of the self-energy has a minimum instead of
maximum at the Fermi level and the slope of the real part of the self-energy is positive instead of negative.
The important advantages of an analytical approach is that it provides results in both the Matsubara frequency
representation and in the real frequencies representation. I compare Matsubara frequency results with the exact
numerical results of the Monte Carlo methods in the Hubbard model and then show what they correspond to in
the real frequency self-energy and spectral function.
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I. INTRODUCTION

Pseudogap phenomena has been observed in many quasi-
two-dimensional materials (for review see Ref. [1]). In
particular it was observed in all high-Tc superconductors (for
review see Ref. [2]). In the hole doped High-Tc materials
it appears at temperatures above superconducting phase and
gradually transitions to the full gap below phase transition.
The ubiquitous feature of the pseudogap in these materials is
that it appears first at points close to the Van Hove (antinodal)
points on the Fermi surface. As the material cools down, the
pseudogap spreads from the Van Hove point forming pseu-
dogap arcs. Only much later, close to the phase transition,
does the pseudogap spread to the diagonal of the Brillouin
zone where Fermi velocity is large. Numerous theories were
proposed for the pseudogap [3–18]. In this paper, I will focus
on the following ideas: the pseudogap is a precursor of the
real gap in the ordered state, it is critically dependent on the
dimensionality of a system (it is essentially a two-dimensional
phenomenon), and it is greatly enhanced at the Van Hove
points on the Fermi surface (FS).

The idea that the pseudogap should exist in two dimensions
can be understood physically using the following arguments.
In two dimensions (2D) the mean field phase transition to the
ordered state is suppressed due to the Mermin-Wagner theo-
rem. In the 2D antiferromagnetic systems the phase transition
is pushed all the way down to zero temperature. Therefore,
at the phase transition the gapped state already exists with
the two distinct peaks separated by the gap in the spectral
function. It is thus natural to assume that this structure in
the spectral function does not immediately disappear as the
temperature is increased. A similar argument can be made
in the superconducting case. Although in this case a finite
temperature Kosterlitz-Thouless phase transition is allowed,
the gap is finite at that transition [19] and thus one can

expect that the two peak structure in the spectral function
remains above the phase transition temperature. There is an-
other possibility for finite temperature phase transition in the
quasi-2D superconducting material: Namely that the weak
third dimension tunneling causes phase transition before the
Kosterlitz-Thouless phase transition occurs. This case was
considered in Ref. [20] where it was shown that the pseudogap
effect is very small in 3D systems and increases as the system
becomes more quasi-2D.

Theoretically the pseudogap in two dimensions was pre-
dicted in the context of the repulsive 2D Hubbard model
at half-filling [3,4]. The main result of that work was that
the Fermi liquid quasiparticles are destroyed and replaced
by the pseudogap when the system enters the renormalized
classical (RC) regime dominated by thermal spin fluctuations.
For the regular points on the FS (vF �= 0), the pseudogap
appears when correlation length ξ of spin fluctuations exceeds
the thermal de Broglie wavelength of an electron ξth_db =
vF /πT . Here vF is an electron velocity at the Fermi surface,
T is the temperature and the units are h = 1 and kB = 1. I
note that the positive U > 0 Hubbard model at half-filling is
equivalent to the negative U Hubbard model via Lieb-Mattis
canonical transformation. The antiferromagnetic ground state
of the positive U Hubbard model maps to superconducting
ground state of U < 0 model, the spin susceptibility with
peak at antiferromagnetic Q vector Q = (π, π ) maps to the
strongly peaked pairing susceptibility at Q = (0, 0) and anti-
ferromagnetic pseudogap maps to the superconducting pairing
pseudogap. The criteria for the pseudogap in two dimensions
in the superconducting context is the same as in the antiferro-
magnetic case ξ > ξth_db = vF /πT .

Recently the pseudogap was confirmed in the 2D half-
filled Hubbard model using virtually exact numerical cal-
culations with both diagrammatic (DiagMC) [21,22] and
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determinantal quantum Monte Carlo [22,23]. Although these
methods have a convergence problem at low temperatures
they were able to go low enough in temperature to show
convincingly that the pseudogap indeed exists in the weak-to-
intermediate coupling. They also show that the pseudogap first
appears and is more pronounced at the Van Hove (antinodal)
point on the FS. One of the limitations of these numerical
methods is that the results are available in the Matsubara
frequency representation only and the analytical continuation
to the real frequencies is challenging.

In this paper, I establish criteria and obtain analytical re-
sults for the pseudogap at the Van Hove point on the FS.
The original criteria ξ > ξth_db = vF /πT is, obviously, not
applicable in this case since vF = 0. It turns out that the
characteristic length for the pseudogap crossover at the Van
Hove point ξth_vh ∝ 1/T 1/2 is significantly shorter than the
one at the regular FS points ξth_db ∝ 1/T . In particular, ξth_vh

is between one and two lattice spacings in the intermediate
interaction regime of the Hubbard model. I have also iden-
tified the regime in which there is still a single maximum
in the spectral function, but the single particle properties are
anything but normal. Specifically, the imaginary part of the
self-energy has a minimum instead of a maximum at the Fermi
level and the slope of real part of the self-energy is positive
instead of negative. I call this region a false quasiparticle state.

The important advantages of an analytical method is that
it allows a better understanding of the physics of the phe-
nomena and provides results in both Matsubara frequency
representation and in real frequencies representation. I com-
pare Matsubara frequency results with the exact numerical
results of the Monte Carlo methods in the Hubbard model
and then show what they correspond to in the real frequency
self-energy and spectral function.

The paper is organized as follows. In Sec. II, I present the
formalism of the approach. In Sec. III, I present analytical
results for the self-energy in Matsubara and real frequency
representations. In Sec. IV, I compare my Matsubara fre-
quency results with virtually exact DiagMC method and than
present real frequency results for the pseudogap regime.

II. MODEL

In this paper, I will adapt phenomenological approach.
I evaluate the effect of collective mode fluctuations on the
electronic self-energy of the 2D material in the one-loop ap-
proximation. The expression for the self-energy has the form:

�(k, ikn) = gkT
∑
iqn

∫
d2q

(4π2)
χ (q, iqn)G0(k + q, ikn + iqn).

(1)

The above equation describes the effect of antiferromag-
netic fluctuations on the self-energy �(k, ikn). Here χ (q, iqn)
is the spin susceptibility that is picked at the antiferromagnetic
vector q = Q = (π, π ), G0 is the noninteracting Green func-
tion of an electron, and gk is the effective coupling constant
between electrons and spin fluctuations. The units are h = 1,
kB = 1, lattice spacing a = 1 and in the section where I dis-
cuss the Hubbard model, I set the nearest neighbor hopping
parameter t = 1.

The effect of the superconducting pairing fluctuation on
the self-energy can be written in a similar fashion with the
χ (q, iqn) representing pairing susceptibility with the peak at
q = (0, 0) and the k and ikn in the Green function replaced by
−k and −ikn.

Note that the Green function in the expression for the
self-energy is bare rather than dressed as in the FLEX approx-
imation. It was argued in Ref. [4] that using the dressed Green
function with frequency independent vertex does not make the
theory work better. In fact, it makes agreement with the Monte
Carlo results worse and it does not predict the appearance of
the pseudogap in two dimensions.

The coupling constant between electrons and collective
modes gk can, in general, depend on k. This can be important
to describe the precursor of d-wave superconductivity. In what
follows the k dependence of coupling is not essential and I
will drop the k index going forward. The coupling constant
g is actually proportional to one bare interaction U and one
renormalized interaction Ū [3,4]. This point will be important
in Sec. IV, where I will compare my results with Monte
Carlo benchmarks, but in the rest of the paper I will just use
parameter g for simplicity.

It was argued in Ref. [4] that in the RC regime the zero
Matsubara frequency term qn = 0 in expression Eq. (1) is
sufficient (static approximation) to describe the dominant con-
tribution to the self-energy at the regular points on the FS
vF ∼ 1. However, as we will see shortly, the static approxi-
mation is not sufficient at small frequencies in the case of Van
Hove point vF = 0. In the latter case, one needs a more gen-
eral expression that sums up all Matsubara frequencies. Using
the Kramers-Kronig relation for the susceptibility, summing
up all Matsubara frequencies, and using standard procedures
for analytical continuation ikn → ω + i0+, one can obtain the
following expression for the self-energy in real frequency
representation:

�(k, ω) = g
∫

d2qdω′

(4π3)

χ ′′(q, ω′)[nB(ω′) + f (ε̃(k + q))]

ω + ω′ − ε̃(k + q) + i0+ .

(2)

Here χ ′′(q, ω′) is the imaginary part of the susceptibility,
ε̃(k + q) is the energy dispersion relative to the chemical po-
tential, nb and f are boson and fermion distribution functions,
respectively. Equation (2) is for the magnetic case. To get
the the expression for pairing fluctuation case, one needs to
replace ε̃(k + q) with −ε̃(−k + q) and ω′ in the denominator
with −ω′.

In the critical regime the correlation length growth rapidly,
the susceptibility is strongly peaked at the vector Q (Q = 0 in
the pairing case) and it can be approximated by its asymptotic
expression (Ornstein-Zernike susceptibility):

χoz(q, ω) = A

ξ−2 + (q − Q)2 − iω/γ
. (3)

Here A is the prefactor or the amplitude of susceptibility,
ξ is the correlation length and γ is the diffusion coefficient
(Landau damping). This type of asymptotic susceptibility ap-
pears in any random phase approximation-like theory, whether
it uses bare or renormalized interactions. However, con-
trary to the mean field theory, the phase transition in 2D is

235110-2



CRITERIA AND ANALYTICAL RESULTS FOR THE … PHYSICAL REVIEW B 108, 235110 (2023)

suppressed due to the Mermin-Wagner theorem and there is
a wide temperature range in which correlation length grows
exponentially. In this RC regime, the characteristic energy
scale of collective modes ωc = γ ξ−2 become rapidly smaller
than temperature T .

To single out the contribution to the self-energy due to the
asymptotic form of the susceptibility Eq. (3), I will add it and
subtract it in the numerator of the expression Eq. (2), leading

to two separate contributions to the self-energy:

�(k, ω) = �oz(k, ω) + �r (k, ω). (4)

The asymptotic (Ornstein-Zernike) contribution is

�oz(k, ω) = g
∫

d2qdω′

(4π3)

χ ′′
oz(q, ω′)[nb(ω′) + f (ε̃(k + q))]

ω + ω′ − ε̃(k + q) + i0+ .

(5)

The regular contribution is

�r (k, ω) = g
∫

d2qdω′

(4π3)

[χ ′′(q, ω′) − χ ′′
oz(q, ω′)][nb(ω′) + f (ε̃(k + q))]

ω + ω′ − ε̃(k + q) + i0+ . (6)

The �oz(k, ω) contribution to the self-energy is primarily
due to classical thermal fluctuations in the RC regime. In-
deed, the frequency integral in this expression is dominated
by low frequencies ω′ ∼ ωc = γ ξ−2, which is much smaller
than temperature. Thus one can replace the Bose function
nb(ω′) with its expansion at low frequencies nb(ω′) ≈ T/ω′
and neglect Fermi function f (ε̃(k + q)) < 1 in comparison
with the large parameter T/ωc � 1. The classical expression
for the self-energy has the following form:

�cl (k, ω) = T g
∫

d2qdω′

(4π3)

χ ′′
oz(q, ω′)/ω′

ω + ω′ − ε̃(k + Q + q) + i0+ .

(7)

In the above expression, I used a coordinate system in
which Ornstein-Zernike susceptibility has maximum at q = 0.
In the antiferromagnetic case it implies that the origin was
shifted to Q = (π, π ).

The classical approximation above should be distinguished
from the static classical approximation that corresponds to
keeping only zero frequency term in expression Eq. (1). To
get the latter approximation one needs to be able to neglect
ω′ in the denominator of Eq. (7). Then using Kramers-Kronig
relation for the susceptibility, one readily arrives at the static
approximation:

�cl_st (k, ω) = gT
∫

d2q

(2π )2

χoz(q, 0)

ω − ε̃(k + Q + q) + i0+ . (8)

It was argued in Refs. [3,4] that for regular FS points
vF ∼ 1 the above static approximation is sufficient in the RC
regime. To see this one needs to notice that the dispersion
term ε̃(k + Q + q) can be expanded on small q because the
q integrals in �cl expression are dominated by q ∼ ξ−1 	 1.
For regular Fermi surface points, the leading term of the
expansion is linear vFq and thus of the order of vF ξ−1. This
is much larger than ω′ ∼ ωc = γ ξ−2. For this reason ω′ can
be neglected in expression Eq. (7) and one arrives at the static
approximation for the self-energy Eq. (8).

The situation is more complicated in the case of the Van
Hove (antinodal) point on the Fermi surface. In this case the
expansion of ε̃(k + Q + q) starts with quadratic term and thus
is of order q2 ∼ ξ−2. This is the same order as ω′ ∼ ωc ∝ ξ−2.
If electronic frequency ω is also small, then one must use a
general classical expression for the self-energy Eq. (7), rather
than the static approximation Eq. (8). If one, nevertheless,

would use the static approximation in this case, one would
receive unphysical results: the imaginary part of � would
diverge at any correlation length (see Sec. III B for details).
The case ω < γ ξ−2 will be considered in Sec. III A.

When electronic frequency ω � ωc = γ ξ−2, the ω′ can be
neglected in the denominator of Eq. (7) in comparison with
ω, and one again recovers the static classical approximation
Eq. (8). This also implies that in the Matsubara frequency
representation one can use the static approximation for all
frequencies since even the lowest Matsubara frequency πT
is much larger than ω′ ∼ ωc = γ ξ−2. This case will be con-
sidered in Sec. III B. I also note that this situation underscores
challenges of numerical continuation from the Matsubara fre-
quency results to real frequencies: a good approximation in
the Matsubara representation can produce qualitatively incor-
rect results for small real frequencies.

Let us now turn our attention to the regular contribution
to the self-energy Eq. (6). In the Sec. IV, I will compare my
results with the benchmark Monte Carlo results [22] for the
half-filled Hubbard model with the nearest neighbor hopping.
To do this I need to model the regular self-energy Eq. (6)
because it gives substantial contribution at the temperatures
available in the Monte Carlo calculations. I will model it by
simple marginal Fermi liquid (MFL) behavior. Such behav-
ior is expected in this model [22,24] due to perfect nesting.
Importantly, it comes not from the peak in the susceptibility
but from the region close to the line (qx, qx ). In particular,
the MFL appears already in the second-order perturbation
theory which does not have strong peak in susceptibility. For
this reason, I expect the MFL behavior to give the dominant
contribution to the regular self-energy Eq. (6), from which the
peak contribution was explicitly removed. I model the MFL
as follows: �′′

r ∝ πT for ω < πT , �′′
r ∝ ω for ω > πT .

For simplicity, the results in the next section and the
Appendixes are presented for k located at the FS. To get
the results away from the FS, one need to replace ω with
ω − ε̃(k + Q) in the antiferromagnetic case and ω + ε̃(−k)
in the pairing case.

III. ANALYTICAL RESULTS

In this section, I obtain analytical results for �cl (k, ω)
at the Van Hove point on the FS. In the antiferromagnetic
case the anomalous behavior of �cl (k, ω) occurs actually on
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shadow FS which obtained from the real one by the shift
on the vector Q = (π, π ). From the physical point of view,
the most interesting points are “hot” spots where shadow
FS and the real one intersects. I note that for the half-filled
Hubbard model with nearest neighbor hopping all FS is “hot”
in this sense and Van Hove (antinodal) point k = (π, 0) is
on the FS. For pairing case the maximum in susceptibility is
at Q = (0, 0) and the results here are applicable for the Van
Hove point on the FS.

I start by expanding on small q ∼ ξ−1 	 1 the expression
for electron dispersion ε̃(kvh + Q + q) ≈ w(q2

x − q2
y ). Here

w = (1/2)∂2ε̃(k + Q)/∂k2
x . In general, the second derivatives

at Van Hove point can be different in qx and qy directions
by absolute value, but I assume them to be the same for
simplicity. I also note that this is the case in the Hubbard
model with both nearest and next to nearest neighbor hopping
and Van Hove point at kvh = (π, 0).

Using the above expansion for electron dispersion together
with the expression Eq. (7) and switching to the polar coordi-
nates one obtains:

�cl (kvh, ω) = T g
∫

qdqdφdω′

(4π3)

× χ ′′
oz(q, ω′)/ω′

ω + ω′ − wq2 cos(2φ) + i0+ . (9)

A. Results for low frequencies

Let us now turn our attention to low frequencies ω 	
ωc = γ ξ−2. Using, the expression for asymptotic susceptibil-
ity Eq. (3) and integrating over ω′ using delta function, one
arrives at the following expression for the imaginary part of
the self-energy at the Fermi level:

�′′
cl (kvh, 0) = −gAT

π2γ

∫ ∞

0
qdq

∫ π/2

0
dφ

× 1

(ξ−2 + q2)2 + w2q4 cos2(φ)/γ 2
. (10)

Changing variable q2 = xξ−2, I obtain the final result:

�′′
cl (kvh, 0) = −gAT ξ 2

2π2γ
σ 2

1 , (11)

where

σ 2
1 =

∫ ∞

0
dx
∫ π/2

0
dφ

1

(x + 1)2 + w2x2 cos2(φ)/γ 2
. (12)

It is clear from expression Eq. (11) that the absolute
value of �′′

cl (kvh, 0) is very large in the RC regime since
�′′

cl (kvh, 0) ∝ ξ 2. This has to be contrasted with the result for
the regular point on the FS [3,4] in which case �′′

cl (kvh, 0)
is proportional to the first power of ξ (see Appendix A).
This makes the dip in the spectral function at the Fermi level
significantly more pronounced at the Van Hove point than at
regular points on the FS. It also appears at higher temperatures
than at regular points on the FS.

The factor σ 2
1 is of order 1. I calculated this factor numer-

ically for the values of γ specific to the Hubbard model in
Sec. IV.

Let us now consider the real part of the self-energy. Taking
real part of �cl (kvh, ω) in Eq. (9) and integrating by parts on
ω′ one obtains:

�′
cl (kvh, ω) = gAT

π3γ

∫
qdqdφdω′

× 2ω′ ln |ω + ω′ − wq2 cos(2φ)|
[(ξ−2 + q2)2 + ω′2/γ 2]2

. (13)

The above expression can be differentiated by ω to find the
slope of �′

cl (kvh, ω) at ω = 0. After some transformations,
I obtained the following result for �′

cl at small frequencies
ω < ωc :

�′
cl (kvh, ω) = gAT ξ 4

π3γ 3
σ 2

2 ω, (14)

where factor σ 2
2 is

σ 2
2 = −

∫ ∞

0
dx
∫ ∞

0
dz
∫ π/2

0
dφ

ln |z2 − w2x2 cos2(φ)|
[(x + 1)2 + z2/γ 2]2

×
[

1 − 4z2/γ 2

(x + 1)2 + z2/γ 2]2

]
. (15)

It is important to note that the slope of �′
cl (kvh, ω) in

the vicinity of the Fermi level is positive, large, and scales
as ξ 4. It is significantly larger than for regular point on the
FS [see Sec. III A, for which the slope is proportional to ξ 2

[3,4]. The slope ∂�′
cl (kF, ω)/∂ω > 1 leads to two solution

for the poles of the Green function (see Fig. 5). These two
poles in the Green function imply two peaks in the spectral
function separated by the pseudogap (see Fig. 3). Thus the
condition for precursors of quasiparticles in the ordered state
are significantly more favorable at the Van Hove point than at
regular point on the FS.

The parameter σ 2
2 is positive and of the order of 1. To see

that it is positive, note that the main contribution to the integral
in Eq. (15) comes from small z, x < 1 and thus the logarithm
ln in the expression is negative. I calculated the factor σ 2

2
numerically for the values of γ specific to the Hubbard model
in Sec. IV.

B. Results for frequencies larger than |ω| > ωc

In this section, I consider frequencies larger than |ω| > ωc.
Since ωc = γ ξ−2 is a very small parameter in the problem,
this region of frequencies is very wide. As I explained in
Sec. II, one can use in this case the static approximation
Eq. (8). In particular, one can use this approximation for
all fermionic Matsubara frequencies. Substituting Eq. (3) in
Eq. (8), I obtain the following expression for the self-energy
in the Matsubara representation:

�cl (kvh, ikn) = gTA

(2π )2

∫ ∞

0
dq
∫ 2π

0
dφ

× 1

(ξ−2 + q2)(ikn − wq2 cos(2φ))
. (16)
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FIG. 1. Imaginary part of the self-energy for antinode (right) and
node (left) as a function of Matsubara frequencies for the numerically
exact DiagMC (symbols) and the present theory (lines). The drop of
the self-energy at the smallest Matsubara frequency is the signature
of the pseudogap.

The integrals on the angle φ and q can be done exactly. The
final result is

�cl (kvh, ikn) = −i
gTA

4π

kn

|kn|
√

k2
n + w2ξ−4

× ln
|kn|
(√

k2
n + w2ξ−4 + |kn|

)
wξ−2

(√
k2

n + w2ξ−4 − wξ−2
) . (17)

Let us now consider the case when:

ξ � ξth_vh =
( w

πT

)1/2
. (18)

FIG. 2. Negative imaginary part of the self-energy at the first
Matsubara frequency for antinode and node as a function of temper-
ature for the numerically exact DiagMC (symbols) and the present
theory (lines). The rapid increase of this quantity with decreasing
temperature is a strong evidence of the pseudogap. The theory pre-
dicts divergence of the self-energy as T → 0 [see Eq. (22)].

We will see in a moment that this is the condition for the
pseudogap at the Van Hove point. Expanding over the small
parameter wξ−2/(πT ), I obtain:

�cl (kvh, ikn) = gA

2π ikn

[
T ln ξ + T

2
ln

(
2πT

w

)]
. (19)

Taking into account that deep in the RC regime correlation
length grows exponentially ξ = ξ̃0 exp(T0/T ) the Eq. (19) can
be written as follows:

�cl (kvh, ikn) = �2

ikn

[
1 + T

2T0
ln

(
2kn

wξ̃−2
0

)]
, (20)

where the gap parameter:

�2 = gAT0

2π
. (21)

The 1/ikn behavior of the self-energy is the signature of
the pseudogap in the Matsubara representation. The tempera-
ture dependence of the prefactor A is weak in the pseudogap
regime [22] and thus �2 depends very little on temperature as
well.

The pseudogap effect shows most dramatically in the tem-
perature dependence of the self-energy for the the lowest
Matsubara frequency k0 = πT . The self-energy in this case
diverges as T goes toward 0. Indeed Eq. (20) becomes for
k0 = πT :

�cl (kvh, ik0) = −i
�2

πT

[
1 + T

2T0
ln

(
2πT

wξ̃−2
0

)]
. (22)

The leading temperature correction to the term �2/(πT )
comes from the term proportional to (T/2T0) ln T . This term
is negative at low temperatures and twice smaller than the
similar term for the regular point on the FS (see Sec. III A).
This explains why the self-energy at the Van Hove (antinodal)
point is larger by absolute value than the one at the regular
FS point [see Fig. 2 in Sec. IV]. This difference, however,
is pure finite temperature effect and should disappear as the
temperature goes to zero.

I now derive results for real frequencies. In order to per-
form analytical continuation of the expression Eq. (17), one
needs first replace nonanalytical function |kn| with equivalent
analytical function

√
k2

n . The analytical continuation is then
obtained using standard procedure ikn → ω + i0+. It turns out
that in real frequencies representation, there are two distinct
functional forms for �cl (kvh, ω): one for ω < wξ−2 and one
for ω > wξ−2. These two expressions connect smoothly at
ω = wξ−2.

I start with presenting results for ω > wξ−2. The expres-
sion for the real part of the self-energy has the form

�′
cl (kvh, ω) = gTA

4π
√

ω2 − w2ξ−4

× ln
ω +

√
ω2 − w2ξ−4

wξ−2
. (23)
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The expression for the imaginary part of the self-energy is

�′′
cl (kvh, ω) = − gTA

4π
√

ω2 − w2ξ−4

× arctan

√
ω2 − w2ξ−4

wξ−2
. (24)

To see that the above expressions describes the pseudogap
Let us consider frequencies ω � wξ−2. Since wξ−2 	 1, this
covers wide region of frequencies. In this case the expressions
for �cl (kvh, ω) can be significantly simplified:

�′
cl (kvh, ω) = gA

2πω

(
T ln ξ + 0.5T ln

2ω

w

)
, (25)

�′′
cl (kvh, ω) = −gTA

8ω
. (26)

The above equations can be rewritten in the RC regime
using the gap parameter Eq. (21):

�′
cl (kvh, ω) = �2

ω

[
1 + T

2T0
ln

(
2ω

wξ̃−2
0

)]
, (27)

�′′
cl (kvh, ω) = −π�2T

4T0ω
. (28)

It is clear from the expression Eq. (27) that the elec-
tron’s Green function has two poles (solutions of ω − �′
(kvh, ω) = 0). These two poles in the Green function lead to
two peaks in the spectral function A(kvh, ω): the precursors
of the quasiparticles in the ordered state. The positions of the
peaks in A(kvh, ω) at low temperatures are given by

ωpeak = ±�

√√√√1 + 0.5
T

T0
ln

(
2�

wξ̃−2
0

)
. (29)

I note that the temperature dependent term in the above
expression has a factor 0.5,which does not exist in the similar
expression for regular point on the FS (see Sec. III A). In
other words, the shifts of the quasiparticles peaks at finite
temperatures relative to their T = 0 positions are smaller for
Van Hove point than for a regular point on the FS. The width
of the peaks decreases linearly with the temperature Eq. (28).

I now consider case ω < wξ−2. As was pointed out earlier,
the classical static approximation is not valid when ω > γ ξ−2.
For this reason, the region ω < wξ−2 is relevant only when
γ < w. The results below are for the case γ ξ−2 < ω < wξ−2.

The expression for the real part of the self-energy is

�′
cl (kvh, ω) = gTA

4π
√

w2ξ−4 − ω2

× arctan

√
w2ξ−4−ω2

ω
. (30)

The expression for the imaginary part of the self-energy is

�′′
cl (kvh, ω) = − gTA

4π
√

w2ξ−4 − ω2

× ln
wξ−2 +

√
w2ξ−4 − ω2

ω
. (31)

The above expressions lead to the unphysical results in
the limit ω → 0: the real part of the self-energy has a

discontinuity at ω = 0 and the imaginary part diverges as ln ω

at a finite correlation length. This underscores once again that
these expressions cannot be used in the region ω < γ ξ−2.
Instead one should use expressions derived in Sec. III A.

The pseudogap criteria ξ � ξth_vh = (w/πT )1/2 was de-
rived in this section for the Van Hove point on the FS.
However, I expect it to be relevant for points on the FS for
which ξth_vh(Trc) > ξth_db(Trc) (Trc crossover temperature to
the RC regime). The condition w > v2

F /(πTrc) defines the
region close to the Van Hove point. It is at this region that
the pseudogap should develop first.

IV. COMPARISON WITH MONTE CARLO RESULTS
FOR HUBBARD MODEL

In this section, I compare my results with results of the vir-
tually exact numerical DiagMC results [22] for the Hubbard
model with the nearest neighbor hopping and at half filling. I
choose this special case for comparison because all necessary
data including parameters for Ornstein-Zernike susceptibility
are available in this case. The energy dispersion in this model
is given by

ε̃(k) = −2(cos(kx ) + cos(ky)) (32)

The Van Hove point in this model is located on the FS
at the point k = (π, 0). At this point the Fermi velocity is
∂ε̃(k)/∂k = 0. The second derivative of the dispersion has
opposite signs in x and y directions and its absolute value
is |∂2ε̃(k)/∂kx

2| = 2. In Ref. [22], the Van Hove point was
referred to as antinodal (AN) and in this section, to avoid
confusion, I will refer to the Van Hove point as AN point as
well. Another important point on the FS is the nodal point
(N) at k = (π/2, π/2). At this point the Fermi velocity is
maximal and the second derivative of the ε̃(k) is zero. All
points on the FS can be connected by antiferromagnetic vector
Q = (π, π ) and thus all FS is affected by the antiferromag-
netic fluctuations (all the FS is “hot”).

To compare with the benchmarks results I need parame-
ters for the asymptotic Ornstein-Zernike (OZ) susceptibility
and the coupling parameter g. Fortunately, all parameters
necessary for evaluation of the classical contribution to the
self-energy �cl is available in the literature. Specifically,
I used the following parameters for the OZ susceptibility
from Ref. [22]: the prefactor A, the correlation length ξ ,
and the diffusion coefficient (Landau damping) γ . For the
coupling parameter g, I used the expression from the two-
particle self-consistent (TPSC) approach [3,4]. In the latter
reference, the coupling was defined as g = g̃UUsp where the
numeric factor g̃ = 1/4 and Usp is the renormalized inter-
action. The idea that one vertex has to be bare and one
renormalized comes from standard diagrammatic arguments
about double-counting of vertex corrections or, equivalently,
from the Kadanov and Baym [25] formalism. The TPSC made
the following assumptions: The renormalized vertex does not
depend on the momentum and the frequency and its value is
reduced relative to the bare interaction by the pair correlation
function g↑↓(0), Usp = g↑↓(0)U . In the TPSC, the pair corre-
lation function is found self-consistently using the sum rule
(Fluctuation-dissipation theorem). In the present phenomeno-
logical approach, I obtained it from the DiagMC results [22]
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for the double occupancy g↑↓(0) = 〈n↑n↓〉/〈n↑〉〈n↓〉. The nu-
meric factor g̃ is somewhat ambiguous in the TPSC because
using the momentum independent vertex violates rotational
invariance: The value of g̃ is different in the longitudinal and
the transverse spin channels. In Ref. [26] the average values
of these two channels was used g̃ = 3/8. This assumes that
inaccuracies for g̃ in the longitudinal and the transverse spin
channels cancel one another. I found, however, in the present
work that the result for the longitudinal channel works better
and I used the factor g̃ = 1/4 from Refs. [3,4].

In Ref. [22] the results for the one-loop approximation
for the self-energy were used together with the numerically
accurate results for the spin susceptibility in the dynamical
vertex approximation. The results are qualitatively similar to
the ones presented here but differ quantitatively. I believe the
main source of difference is the difference in the coupling pa-
rameter. In Ref. [22] the expression for coupling parameter g
had bare interaction U for both vertices. It also used numerical
factor g̃ = 3/8.

I now turn to the discussion of the regular contribution
to the self-energy Eq. (6). For the reasons explained in the
Sec. II, I choose the marginal Fermi liquid (MFL) model.
Specifically, I assume that the imaginary part of the self-
energy is described by the following expressions: �′′

r (k, ω) =
bω for ω > πT and �′′

r (k, ω) = bπT for ω <= πT . This is,
of course, oversimplification. For example, the second-order
perturbation theory predicts some frequency dependence of
the �′′

r (kN, ω) for ω 	 πT [22,24]:

Im �r (kF, ω) − Im �r (kF, 0)
|ω|	πT∼

{|ω|, kF �= kN√|ω| kF = kN
,

(33)

with kN = (π/2, π/2).
The frequency variation is, however, small in comparison

with the main, frequency independent, term �′′
r (k, 0). I thus,

neglected the frequency variation of the �′′
r for ω � πT . The

parameter b is the fitting parameter in my phenomenological
model. To keep the number of fitting parameters to a mini-
mum, I choose it to be the same for all temperatures and k
vectors. I use the value b = −0.069. For the calculation of
the Matsubara self-energy and the real part of the self-energy,
I used Kramers-Kronig relation. To do this, I needed high
frequency cut off for the imaginary part of the self-energy.
I choose it as ωmax = 6.4. This parameter mostly affects high
frequency behavior. The results for the regular contribution to
the self-energy in the Matsubara representation, as well as, the
real part of the self-energy are presented in Sec. III B.

The self-energy is calculated as the sum of the classical
and regular contributions Eq. (4). Figures below show com-
parison of my model with the benchmark DiagMC results
[22] for U = 2. Since, my analytical results for the classical
contribution to the self-energy are valid only in the RC regime
γ ξ−2 < T , I limit comparison to T � Trc. For U = 2 it was
found that Trc = 0.1 [22].

A. Comparison with Matsubara frequency results

Figure 1 shows the imaginary part of the Matsubara self-
energy as the function of the Matsubara frequencies for three
temperatures and two points on the FS: nodal and antinodal.

The agreement with the present model is fairly good. The
drop of the self-energy at the smallest Matsubara frequency
is the signature of the pseudogap. It can be understood using
the asymptotic expression Eq. (20) for the classical contri-
bution to the Matsubara self-energy. The latter predicts that
the absolute value of the Matsubara self-energy increases with
the decrease of the Matsubara frequencies �cl ≈ �2/ikn. The
regular contribution to the self-energy behaves in the oppo-
site fashion: the absolute value �r decreases with decreasing
frequency. Thus there is a competition between two contribu-
tions. For the two lowest temperatures in the Fig. 1, only the
self-energy at the lowest Matsubara frequency clearly shows
the pseudogap-like behavior. I predict that this behavior will
spread to higher Matsubara frequencies when the temperature
is lowered. The figure also clearly shows that the pseudogap
effect comes earlier and is more pronounced for the antin-
odal point. As I pointed out earlier, the pseudogap opens up
when the correlation length is significantly larger than the
characteristic thermal wave length. For the nodal point this
is the de Broglie wavelength of an electron ξth_db = vF /πT
and for the antinodal point it is the Van Hove characteristic
length ξth_vh = w/(πT )(1/2). At low temperatures the latter is
significantly shorter than the former. Specifically, for U = 2,
Trc = 0.1 : ξth_db = 9 and ξth_vh = 1.78. This explains, why
the pseudogap appears earlier at the antinodal point than at
the nodal point.

Figure 2 shows the temperature dependence of the
−Im�(k, ik0) for the lowest Matsubara frequency k0 = πT .
The figure presents, probably, the most clear evidence of the
pseudogap in the Matsubara representation because this quan-
tity is expected to diverge as T → 0 [see Eq. (22)]. Indeed, the
figure shows this tendency of the self-energy as temperature
lowers. One can also notice that the absolute value of the
self-energy −Im�(k, ik0) is larger for the antinodal point than
for the nodal point. This is expected from the asymptotic be-
havior of −Im�(k, ik0) for the antinodal and the nodal points,
Eq. (22) and Eq. (A6). The leading term �2/(πT ) is the same
for both FS points. However, the temperature correction to this
term is ∝ T ln T , has opposite sign to the main term, and is
smaller by the factor of 2 for the antinodal point. I note that
this difference between values of −Im�(k, ik0) at different
points on the FS is expected to shrink to zero as T → 0.

B. Real frequency results

In this section, I present real frequency results for the same
parameters of the model as above. I have analytical results
for ω 	 γ ξ−2 and ω � γ ξ−2. I will interpolate between
these two results using the following procedure: I extended
results for ω 	 γ ξ−2 until they intersect with the results for
ω � γ ξ−2 at some frequency ωi ∼ γ ξ−2. The interpolation
procedure leads to some artifacts at frequencies ω � ωi. For
example, the imaginary part of the self-energy is constant for
ω � ωi. These artifacts at small frequencies does not affect
the main results.

The panels in Figs. 3, 4, and 5 show results for the spectral
function A(k, ω) = −2ImG((k, ω), the imaginary part of the
self-energy �′′(k, ω), and the real part of the self-energy
�′(k, ω). The results are presented for four different temper-
atures below Trc = 0.1, and for the nodal and antinodal points
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FIG. 3. Evolution of the spectral function A(k, ω) with the tem-
perature for nodal (left) and antinodal (right) points. The pseudogap
appears first and is more pronounced at the antinodal point. The
single maximum at T = 0.0833 for AN point is an example of the
false quasiparticle (see text for details).

on the FS. On the plots for the real part of the self-energy
�′(k, ω), I also showed the line �′ = ω. The intersections of
this line with �′(k, ω) are the solutions of equation for the
poles of the Green function ω = �′(k, ω). The poles of the
Green function correspond to the positions of the maximum
in the spectral function A(k, ω). When the slope of �′(k, ω)
at ω = 0 exceeds one, there are two maximum in the spectral
function A(k, ω) separated by the pseudogap.

In Ref. [22] the pseudogap crossover temperatures for
antinodal TAN = 0.065 and nodal points TN = 0.0625 were
determined based on the Matsubara self-energy. As usual,
the determination of the crossover is somewhat uncertain. The
real frequency results give a little bit different perspective
on the pseudogap Fig. 3, show that the pseudogap already
present at the AN point for T = 0.074. At this temperature
ξ/ξth_vh ≈ 5. On another hand, at the temperature T = 0.0625
the pseudogap at the N point just starts to develop. This is,
especially, clear from the plot for the real part of the self-
energy which shows that �′(kN, ω) is almost parallel to the
line �′ = ω at small ω. At the temperature T = 0.0588 the
pseudogap is clearly developed at both antinodal and nodal
points, but more pronounced at the AN point. At the opposite
end of the temperature range at T = 0.0833, there is only

FIG. 4. Evolution of the imaginary part of the self-energy
�′′(k, ω) with the temperature for nodal (left) and antinodal (right)
points. The sharp minimum of this quantity at ω = 0 is the signature
of the pseudogap.

one maximum in the spectral function for both the nodal and
the antinodal points. However, the single-particle properties
at the antinodal point are clearly abnormal at this temperature:
the slope of the real part of the self-energy is positive and
the imaginary part of the self-energy has a minimum instead
of maximum at ω = 0. Similar, but less pronounced picture
emerges at the temperature T = 0.074 for the nodal point:
The imaginary part of the self-energy has shallow minimum
and the slope of the real part of the self-energy is almost zero.
Although there is no pseudogap in this picture, the electronic
state is clearly incoherent in this regime. I suggest to call it
the false quasiparticle state. For the antinodal point it starts
slightly below Trc.

Figure 6 shows positions of the peak in the spectral func-
tion at the N and AN points as a function of the temperature.
The position of the peak at the nodal point is always closer to
the Fermi energy than at the antinodal point. This is expected
based on the asymptotic results for the position of the peaks
in the spectral function Eqs. (29) and (A9) . The difference
between positions of the peaks for antinodal and nodal points
is temperature dependent and will disappear when T → 0.

We can see that the pseudogap behavior is significantly
different at the antinodal point and at the regular point on
the FS vF ∼ 1. As was pointed out in the previous section,
the condition w > v2

F /(πTrc) defines a region close to the
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FIG. 5. Evolution of the real part of the self-energy �′(k, ω) with
the temperature for nodal (left) and antinodal (right) points. Intersec-
tions with line �′ = ω determine the positions of the maximum in the
spectral function A(k, ω). The figure for the AN point at T = 0.0833
shows positive slope which is less than one. It is an example of the
false quasiparticle (see text for details).

FIG. 6. Temperature dependence of the position of the maximum
in the spectral function A(k, ω) for nodal and antinodal points and
ω � 0. The position of the peak at the nodal point is always closer to
the Fermi energy than at the antinodal point. This is expected based
on the asymptotic results in Eqs. (29) and (A9).

Van Hove point where the behavior of the single particle
properties should be similar to the one at the Van Hove point.
For the parameters considered here, the following section of
the FS should behave similarly to the antinodal point: k =
(π − ky, ky) with ky < (1/2)(πTrc/2)1/2 = 0.2.

I conclude this section by pointing out, that the results
in the section are fully applicable to the attractive Hubbard
model at half-filling and U = −2. As was mentioned earlier,
the two models are equivalent via canonical transformation. In
the attractive model, the pseudogap is due to critical thermal
pairing. All results including criteria for the pseudogap and
differences between behavior at the nodal and the antinodal
points are the same.

V. CONCLUSION

In this paper I established criteria and obtained analytical
results for the pseudogap at the Van Hove point on the FS
in two dimensions. In two dimensions the mean field phase
transition is suppressed due to thermal critical fluctuations
(Mermin-Wagner theorem). It is replaced by a crossover to
the renormalized classical regime (RC) with exponentially
growing correlation length. It is in this regime that the pseu-
dogap was predicted above the corresponding ordered state
[3,4]. I have also identified the state with false quasiparticles.
In this state there is a single broad maximum in the spectral
function but the self-energy is very abnormal. To describe
pseudogap phenomena, I used a phenomenological model
which I validated by comparing with exact numerical Monte
Carlo results [22] for the Hubbard model at half-filling. The
phenomenological model is applicable to both antiferromag-
netic and pairing cases, and the condition for the pseudogap
are the same. Specifically, the pseudogap appears when the
correlation length is much larger than characteristic thermal
wave length ξ � ξth. For the regular points on the FS, this
is the de Broglie wavelength of an electron ξth = ξth_db =
vF /πT and for the Van Hove point it is ξth_vh = w/(πT )(1/2).
The latter is significantly shorter than the former and that
is why the pseudogap appears at higher temperature and is
more pronounced at the Van Hove point. For the Hubbard
model at the intermediate coupling 2 � U � 4, the Van Hove
characteristic length ξth_vh(Trc) is between one and two lattice
spacing.

For arbitrary point on the FS, I suggest to use thermal char-
acteristic length ξth = MAX (ξth_db(Trc), ξth_vh(Trc). While the
pseudogap condition is ξ � ξth, in practice, the ratio ξ/ξth is
not very large. In the experiments on electron doped materials
[27] the antiferromagnetic pseudogap appeared when ξ/ξth =
2.6. For the parameters of the Hubbard model in Sec. IV the
pseudogap appears at ξ/ξth ≈ 4.

The parts of the FS affected by the pseudogap are different
for pairing and antiferromagnetic cases. In the former case, the
peak in the susceptibility is at q = 0. Consequently, all points
on the FS are affected by the pseudogap with the strongest
effect at the Van Hove point. In the antiferromagnetic case the
peak in the susceptibility is at q = Q = (π, π ). The singular
behavior in the self-energy occurs on the shadow FS which
is shifted by Q relative the real FS. The points where these
two Fermi surfaces intersect (“hot” spots) are the points where
the pseudogap develops in the antiferromagnetic case. In the
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electron doped High Tc materials the pseudogap occurs above
antiferromagnetic state [28]. It was shown in Ref. [29] that the
pseudogap in these materials can be explained quantitatively
by antiferromagnetic thermal fluctuations in the RC regime.
In the hole underdoped materials the pseudogap occurs above
superconducting state and smoothly transition to the true gap
below Tc with the strongest effect at the Van Hove (antin-
odal) point [2]. The experiments also show that around the
nodal point the gapless feature persists over wide range of
temperatures. The latter observation is different from what
is observed in the Hubbard model at the half-filling in the
weak coupling limit. In that case, the pseudogap at the nodal
point develops relatively soon after it develops at the antinodal
point. Further studies are necessary to determine if the thermal
classical fluctuations in the RC regime are responsible for
the pseudogap in the hole doped High Tc materials. Another
distinct possibility is the pseudogap due to strong coupling
effects considered in Refs. [18,30].
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APPENDIX A: SELF-ENERGY RESULTS FOR REGULAR
POINTS ON THE FS

In this Appendix, I present results for regular points on
the FS ((vF ∼ 1)). Most of the results shown below are from
Refs. [3,4]. I reproduce them here for ease of reference.

As I explained in Sec. II, for regular FS points the static
approximation Eq. (8) can be used for all frequencies in the
RC regime. For the self-energy in the Matsubara frequencies
representation, the expression is

�cl (kF , ikn) = gTA

4π

√
v2

F ξ−2 − k2
n

× ln
ikn +

√
v2

F ξ−2 − k2
n

ikn −
√

v2
F ξ−2 − k2

n

. (A1)

This expression of the complex variable reduces to two
different functional expressions: one for vF ξ−1 > kn and
one for vF ξ−1 < kn. The latter region has been considered
earlier in Refs. [3,4]. This is the region of temperatures
where pseudogap occurs. The region vF ξ−1 > kn will be for
the first time presented here. It exists in the RC regime
when γ ξ−2 < πT < vF ξ−1. I need this range of tempera-
tures to compare with benchmark Monte Carlo results in
Sec. IV.

Case vF ξ−1 > kn:

�cl (kF , ikn) = −i
gTA

2π

√
v2

F ξ−2 − k2
n

× arctan

√
v2

F ξ−2 − k2
n

kn
. (A2)

Case vF ξ−1 < kn:

�cl (kF , ikn) = −i
gTA

4π

√
k2

n − v2
F ξ−2

× ln
kn +

√
k2

n − v2
F ξ−2

kn −
√

k2
n − v2

F ξ−2.

(A3)

Let us now consider the case when correlation length ξ is
much larger than the de Broglie wavelength of an electron:

ξ � ξth_db = vF

πT
. (A4)

This is the condition for the pseudogap at the regular point
on the FS [3,4]. Expanding over small parameter vF ξ−1/(πT )
one obtains:

�cl (kF , ikn) = gTA

2π ikn

[
T ln ξ + T ln

(
2kn

vF

)]
. (A5)

Taking into account that in the RC regime correlation
length grows exponentially ξ = ξ̃0 exp(T0/T ), Eq. (A5) can
be written as follows:

�cl (kF , ikn) = �2

ikn

[
1 + T

T0
ln

(
2kn

vF ξ̃0

)]
, (A6)

where gap parameter � is given by Eq. (21).
I now present results for the self-energy in real frequency

representation:

�cl (kF , ω) = gTA

4π

√
ω2 + v2

F ξ−2

×

⎡
⎢⎣ln

ω +
√

ω2 + v2
F ξ−2

ω −
√

ω2 + v2
F ξ−2

− iπ

⎤
⎥⎦. (A7)

At small ω < vF ξ−1 the imaginary part of the self-energy
�cl (kF , 0) ∝ ξ and the slope of the real part of the self-energy
is positive and scales ξ 2. These are necessary conditions to
have a pseudogap.

At frequencies ω � vF ξ−1, the expression for the real
part of the self-energy can be written using gap parameter as
follows:

�cl (kF , ω) = �2

ω

[
1 + T

T0
ln

(
2ω

vF ξ̃0

)]
, (A8)

where gap parameter � is given by Eq. (21). This form of the
self-energy leads to two peaks in the spectral function, which
are precursors of the quasi-particles in the ordered state. The
positions of the peaks at low temperatures are given by

ωpeak = ±�

√√√√1 + T

T0
ln

(
2�

vF ξ̃−1
0

)
. (A9)

APPENDIX B: RESULTS FOR THE REGULAR
CONTRIBUTION TO THE SELF-ENERGY

In this Appendix, I present results for the regular contribu-
tion to the self-energy based on the MFL model described in
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the Sec. IV. I remind the reader that the model for imaginary
part of the self-energy is

�′′
r (k, ω) =

{
b|ω| |ω| � ω0 = πT
bω0 |ω| < ω0 = πT .

(B1)

I start with the Matsubara self-energy which I derive using
the Kramers-Kronig relation:

�(k, ikn) = 1

π

∫
�′′(k, ω)

ω − ikn
. (B2)

The final result is

�(k, ikn) = i
2b

π

⎛
⎜⎝ω0 arctan

ω0

kn
+ kn ln

√
ω2

max + k2
n√

ω2
0 + k2

n

⎞
⎟⎠.

(B3)

I now present the result for the real part of the self-energy:

�′(k, ω) = b

π

[
ω ln

(
ω2

max − ω2
)]+ b

π
[(ω0 − ω) ln(ω0 − ω)

− (ω0 + ω) ln(ω0 + ω)]. (B4)
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