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Nonanalytic corrections to the Landau diamagnetic susceptibility in a two-dimensional Fermi liquid
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We analyze potential nonanalytic terms in the Landau diamagnetic susceptibility, χdia, at a finite temperature T
and/or in-plane magnetic field H in a two-dimensional (2D) Fermi liquid. To do this, we express the diamagnetic
susceptibility as χdia = (e/c)2 limQ→0 �JJ

⊥(Q)/Q2, where �JJ
⊥ is the transverse component of the static current-

current correlator, and evaluate �JJ
⊥(Q) for a system of fermions with Hubbard interaction to second order in

Hubbard U by combining self-energy, Maki-Thompson, and Aslamazov-Larkin diagrams. We find that at T =
H = 0, the expansion of �JJ

⊥(Q)/Q2 in U is regular, but at a finite T and/or H , it contains U 2T and/or U 2|H |
terms. Similar terms have been previously found for the paramagnetic Pauli susceptibility. We obtain the full
expression for the nonanalytic δχdia(H, T ) when both T and H are finite, and we show that the H/T dependence
is similar to that for the Pauli susceptibility.

DOI: 10.1103/PhysRevB.108.235108

I. INTRODUCTION

This communication is about the Landau diamagnetic sus-
ceptibility, χdia, of interacting electrons in a two-dimensional
(2D) Fermi liquid. Landau diamagnetism comes from the
orbital motion of electrons in the presence of a transverse
magnetic field [1,2]. For a 2D material, the Landau dia-
magnetic susceptibility χdia measures the response to an
infinitesimally small out-of-plane magnetic field. For nonin-
teracting fermions, χdia is one-third in magnitude and opposite
in sign to the paramagnetic Pauli susceptibility χpara, asso-
ciated with the alignment of the electron spin in an applied
magnetic field.

The behavior of paramagnetic susceptibility is well under-
stood. For interacting electrons, χpara at zero temperature and
in the limit of zero magnetic field differs from free-fermion
expression χ0

para = 2μ2
BNF by a factor [3,4]

χpara = χ0
para

m∗/m

1 + F s
0

, (1)

where m is the electron mass, m∗ is the effective mass, dressed
by the interaction, and F s

0 is the Landau coefficient in the
spin channel with angular momentum component l = 0. Both
m∗/m and F s

0 can be obtained perturbatively, in the expansion
either in dimensionless rs for the Coulomb interaction, or in
the Hubbard U for short-range interaction (the dimensionless
expansion parameter is NFU , where NF = m/(2π ) is the den-
sity of states on the Fermi surface). In the Galilean-invariant
case, the expansion in NFU in 2D yields, to order (NFU )2 [5],

m∗

m
= 1 + 1

2
(NFU )2,

F s
0 = −NFU + (NFU )2 log 2,

χpara = χ0
para

[
1 + NFU + (NFU )2

(
3

2
− log 2

)]
. (2)

At a finite temperature T and/or a finite magnetic field
H , χpara has been obtained by analyzing corrections to Lan-
dau Fermi liquid theory both in 3D and in 2D [6–15]. The
Pauli susceptibility of free fermions has a regular expansion
in (T/EF )2 and (μBH/EF )2, where EF is the Fermi energy.
In the presence of interactions, the functional form changes:
χpara(T, H ) in 2D has a linear in T dependence at small T and
a linear in H dependence at small H . These dependencies,
along with a |Q| dependence of χpara(Q) at T = H = 0, come
exclusively from backscattering and reflect a special role of
the subset of 1D scattering processes in a multidimensional
system (a 2D system in our case). More specifically, 1D
scattering accounts for the �/q form of the Landau damping
in the limit when � � vF q. Because of the 1/q dependence,
the effective interaction dressed by Landau damping is long-
ranged. A finite T and/or a finite H acts as a mass term that
converts long-range interaction into a short-range one. This
makes the derivatives dχpara(T )/dT 2 and dχpara(H )/dH2 sin-
gular, if one attempts a typical power series expansion of χpara

in powers of T 2 or H2. For this reason, we call these terms
nonanalytic even though dχpara(T )/dT and dχpara(H )/dH
are finite.

For the 2D Hubbard model, the paramagnetic spin suscep-
tibility to order U 2 at a finite T and H = 0 and at a finite H
and T = 0 are [10,15]

δχpara(T ) = χpara(T ) − χpara(0) = χ0
para

N2
FU 2

2

T

EF
,

δχpara(H ) = χ0
paraN2

FU 2 μB|H |
EF

. (3)

When both H and T are nonzero, we have [9]

δχpara(H, T ) = χ0
para

N2
FU 2

2

μBH

EF
csch2

(
μBH

T

)

×
[

sinh

(
2
μBH

T

)
− μBH

T

]
. (4)
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The linear in T behavior of the paramagnetic spin sus-
ceptibility in 2D has been detected in iron pnictides [16–18].
The same physics gives rise to nonanalytic temperature de-
pendence of the specific heat coefficient, C(T )/T = a2 +
b2T in 2D and C(T )/T = a3 + b3T 2 log T in 3D (see, e.g.,
Refs. [7,8,19,20]). The latter has been observed first in
UAl2 [21] and later in other uranium alloys as well as
TiBe2 [22–24]. The linear in T behavior of C(T )/T has also
been observed in helium films on a variety of substrates [25].

The goal of our work is to perform the same type of
analysis for the diamagnetic susceptibility, χdia. It has been
argued [3,4,26,27] that the Landau diamagnetic susceptibil-
ity for interacting fermions cannot be obtained within Fermi
liquid theory as some interaction-induced corrections come
from fermions away from the Fermi surface. Still, χdia can
be computed directly in the expansion in either rs or NFU .
We consider short-range interaction and compute χdia to
second order in NFU in 2D. We address two issues: (i)
whether χdia(T = H = 0) is a regular function of NFU and
(ii) whether χdia(T, H ) is a nonanalytic function of temper-
ature and in-plane magnetic field (we consider the case of
an infinitesimally small transverse field, which causes orbital
motion of 2D fermions, and a finite Zeeman field within the
plane). It is not clear a’priori whether χdia(T, H ) has to be
nonanalytic. On one hand, it is a component of the magnetic
susceptibility, and its counter part, χpara, is nonanalytic. How-
ever, χdia is expressed via the correlator of charge currents
[Eq. (5) below] and one may argue that it should have the
same properties as a charge susceptibility. The latter does
not have a nonanalytic T and H dependence because it mea-
sures the response to a variation of the chemical potential
μ, and such a variation preserves �/q form of the Landau
damping [28].

Regarding these issues, we first show that χdia(T = H = 0)
is regular, much like χpara in Eq. (2). The only difference is
that the linear in U term is absent. Because χdia(T = H = 0)
∝ �JJ

⊥(Q, H = T = 0)/Q2, where �JJ
⊥(Q, H = T = 0) is the

transverse current-current correlator [Eq. (5) below], a reg-
ular χdia(T = H = 0) implies �JJ

⊥(Q, H = T = 0) scales as
Q2. This is expected but not a priori guaranteed as we
will see that individual diagrams for �JJ

⊥(Q, H = T = 0) do
contain |Q| terms. Such terms exist for spin-spin correlator,
where they combine into a nonzero total |Q| term, and for
charge-charge correlator, where |Q| contributions from indi-
vidual diagrams cancel out. We show that for �JJ

⊥(Q, H =
T = 0) the |Q| terms from individual diagrams cancel out. In
this respect, the behavior of the current-current correlator at
T = H = 0 is similar to that of the charge-charge correlator.
Our analysis of χdia(T = H = 0) complements several earlier
studies [29–31], which computed χdia(T = H = 0) for a sys-
tem with Coulomb interaction.

We then discuss the nonanalyticity of χdia. We show that at
a finite T and/or finite H , �JJ

⊥ evaluated to order Q2 contains
Q2|H | and Q2T terms, i.e., χdia(T, H ) is nonanalytic, much
like χpara(T, H ). We reiterate, to avoid misunderstanding, that
χdia(T, H ) is the response to an infinitesimal out-of-plane
magnetic field. The in-plane magnetic field only serves to
induce a spin-dependent dispersion via Zeeman splitting. We
combine χpara and χdia and obtain the nonanalytic term in the
full magnetic susceptibility.

FIG. 1. The fully dressed polarization bubble that represents the
current-current correlation function.

To detect the nonanalytic terms in the diamagnetic sus-
ceptibility, we recommend reexamining the measurements
on the magnetic susceptibility of iron pnictides, particularly
Ba2Fe2−xCoxAs2. In earlier experiments, a magnetic suscep-
tibility was obtained as a response to an in-plane magnetic
field and had only a paramagetic (spin) component. If a
transverse magnetic field is applied, then both the spin and
orbital parts should contribute to the magnetic susceptibility.
Subtracting the in-plane magnetic field susceptibility from
the out-of-plane susceptibility, one can potentially isolate the
diamagnetic susceptibility and analyze its dependence on T
and H .

II. GENERAL THEORY

The static diamagnetic susceptibility is related to the static
current-current correlation function as

χdia = e2

c2
lim
Q→0

�JJ
⊥(Q)

Q2
= 4m2μ2

B lim
Q→0

�JJ
⊥(Q)

Q2
, (5)

where �JJ
⊥ is the component of the current-current correlation

perpendicular to the direction of Q [4,29] (we set h̄ = 1).
This �JJ

⊥(Q) is the total current-current correlator, subject
limQ→0 �JJ

⊥(Q, 0) = 0 [32]. Diagrammatically, �JJ
⊥(Q) is ex-

pressed as the fully dressed particle-hole bubble with full
Green’s functions and one dressed and one bare current vertex
(Fig. 1). In analytic form,

�JJ
⊥(Q) = −2T

∑
ωm

∫
d2k

(2π )2
v⊥

k �⊥(k, Q)(GQ − GQ→0),

(6)

where v⊥
k is the component of the velocity perpendicular to

the direction of Q, �⊥(k, Q) is the fully dressed transverse
current vertex, and GQ = G(k + Q/2, ωm)G(k − Q/2, ωm).

For noninteracting fermions, �⊥(k) = v⊥
k , and

�JJ
⊥(Q) = − 2T

∑
ωm

∫
d2k

(2π )2
(v⊥

k )2
[
G0(k + Q/2, ωm)

× G0(k − Q/2, ωm) − G2
0(k, ωm)

]
, (7)

where G0(k, ωm) = (iωm − εk )−1 is free-fermion Green’s
function. At T = 0, T

∑
ωm

= ∫
dωm/(2π ). The momentum

and frequency integral is infra-red and ultra-violet convergent
and can be evaluating by integrating over momentum and
frequency in any order. For a parabolic dispersion, Eq. (7)
yields, to lowest order in Q, �JJ

⊥(Q) = −Q2NF /(6m2) in both
2D and 3D, and Eq. (5) reproduces the usual expression for the
Landau diamagnetic susceptibility, χ0

dia = − 1
3χ0

para [3,4]. We
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FIG. 2. The vertex function in the Hubbard model to first order
in U .

show in Appendix A that for a single band with an arbitrary
dispersion, expandable in even powers of momentum, Eq. (7)
reproduces the Landau-Peierls expression:

χdia = 2μ2
Bm2

3(2π )d

∫
dd k n′

F (εk )

[
∂2εk

∂k2
x

∂2εk

∂k2
y

−
(

∂2εk

∂kx∂ky

)2
]
.

(8)

The key interest of our study is the diamagnetic suscepti-
bility for interacting fermions both at T = H = 0 and when
either temperature or an in-plane field (or both) are finite. To
make computation less involved, we consider Hubbard inter-
action between fermions and assume that fermion dispersion
is parabolic. We present the Hubbard vertex in Fig. 2.

The full �JJ
⊥(Q) for an interacting system is obtained by

adding vertex corrections to the free-fermion bubble and by
dressing the fermionic propagators. Diagrams for �JJ

⊥(Q) to
first and second order in NFU are presented in Figs. 3 and 4.
The wavy lines in these diagrams are the Hubbard U . In Fig. 3,
the diagram with the renormalization of the fermionic line
is traditionally called the “self-energy” or “density of states”
diagram and the one with the vertical wave line is called Maki-
Thompson diagram. In Fig. 4 for �JJ

⊥(Q) to order U 2, the first
two diagrams renormalize G into G0, others renormalize one
v⊥

k into �⊥(k, Q). The last two diagrams in Fig. 4 (diagrams
f and g) are traditionally called Aslamazov-Larkin diagrams
and we will use this notation [33].

We will see below that the full �JJ
⊥(Q) at order U 2 and at

T = 0, H = 0 can be expressed in terms of the three diagrams
(a), (c), and (g) in Fig. 4 (other four diagrams in Fig. 4 are
expressed in terms on these three). To make our notation more
concise, we will designate the diagram (a) as the second-
order self-energy diagram, diagram (b) as the second-order

FIG. 3. The two distinct diagrams which appear at first order in
U . The first diagram is often called the Maki-Thompson diagram and
the second is often called the self-energy diagram.

Maki-Thompson diagram, and diagram (g) as the Aslamazov-
Larkin diagram.

III. NONANALYTICITIES OF THE
POLARIZATION BUBBLE

Diagrams (a), (c), and (f) in Fig. 4 all contain a polarization
bubble of free fermions �ph(q,�m). Before we proceed with
the calculation of these diagrams first at T = H = 0 and then
at finite T and H , it is instructive to list the expressions for
�ph(q,�m) at small frequency �m and momenta q near either
0 or 2kF , as these expressions will determine the nonanalytic-
ities of �JJ

⊥(Q)(T, H ) [7,9,10,34,35].
At T = H = 0, the particle-hole polarization bubble of

free fermions in 2D is given by

�ph(q,�m) =
∫

d2k

(2π )2

dωn

2π
G(k, ωn)G(k + q, ωn + �m).

(9)

At small q and �m,

�
q→0
ph (q,�m) = m

2π

⎛
⎜⎝−1 + |�m|√

(vF q)2 + �2
m

⎞
⎟⎠. (10)

At vF q � |�m|, �
q→0
ph (q,�m) contains a nonanalytic |�m|/q

term.
Near q = 2kF ,

�
q→2kF

ph (q,�m)

= m

2π

⎡
⎣−1 + 1

2

⎛
⎝
√

q̃

kF
− i�m

vF kF
+

√
q̃

kF
+ i�m

vF kF

⎞
⎠
⎤
⎦,

(11)

where q̃ = q − 2kF . For q̃ < 0 and vF |q̃| > |�m|,
�

q→2kF

ph (q,�m) again contains a nonanalytic |�m|/q̃ term, as
one can readily verify by expanding in small �m/q̃ around
the branch cuts in the square roots.

These forms of the polarization bubbles give rise to the
appearance of nonanalytic |Q| terms in the individual dia-
grams for the current-current correlation function already at
T = H = 0. We show later that these nonanalyticities cancel
once all diagrams are added together.

For the analysis of nonanalyticities in χdia, we will need
the expressions of the polarization bubble at a finite T and/or
in-plane H . When T = 0 and H is finite, the polarization is
spin-dependent:

�
αβ

ph (q,�m) =
∫

dd k

(2π )d

dω

2π
Gα (k, ω)Gβ (k + q, ω + �m).

(12)

Then one has to distinguish between �
↑↑
ph (q,�m) and

�
↑↓
ph (q,�m). At small q and �m = 0,

�
↑↑
ph (q,�m) = m

2π

|�m|
vF q

+ · · · , (13)

�
↑↓
ph (q,�m) = m

2π

|�m|√
(vF q)2 − (2μBH )2

+ · · · , (14)
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FIG. 4. The seven diagrams which contribute to the current-current correlator at order U 2. We call diagram (a) the second-order self-energy
correction, diagram (c) the second-order Maki-Thompson correction, and (g) the Aslamazov-Larkin diagram.

where dots stand for regular terms. We see that a finite H is
crucial for �

↑↓
ph (q,�m), where it cuts a long-range interaction

and causes singularity in the derivative with respect to H , but
not essential for �

↑↑
ph (q,�m). Near q = 2kF , the situation is

opposite:

�
↑↑
ph (q,�m) = m

4π

(√
q̃

kF
− i�m

vF kF
− 2μBH

vF kF

+
√

q̃

kF
+ i�m

vF kF
− 2μBH

vF kF

)
+ · · · , (15)

�
↑↓
ph (q,�m)= m

4π

⎛
⎝
√

q̃

kF
− i�m

vF kF
+

√
q̃

kF
+ i�m

vF kF

⎞
⎠+ · · · ,

(16)

where the ellipses again stand for analytic terms. We see that a
finite H affects the term where both spin indices are the same
and does not affect the term with opposite spin indices. Below
we combine fermions into particle-hole pairs in such a way
that we only get terms �

↑↓
ph (q,�m). With this we ensure that

all nonanalytic contributions come from only internal q ≈ 0.
At a finite T and H = 0, the particle-hole polarization

bubble near q = 0 has the same form as at T = 0, Eq. (10),
but now Matsubara frequencies are discrete, �m = 2πmT .
The dynamical piece is present at m �= 0, when �m are finite.
The same finite �m then appears in the denominator and cuts
long-range interaction at vF q < 2πT , i.e., at distances r >

vF /(2πT ). This in turn causes singularity in the temperature
derivative of �ph(q,�m).

We are not aware of a closed form of the polarization
bubble near q = 2kF at finite temperature. In Appendix E 2
we compute the linear in T contribution to χdia(T ) from

momenta near 2kF directly, without expressing it via the 2kF

polarization bubble, and for completeness also do the same for
the contribution from q near zero.

IV. ZERO TEMPERATURE AND ZERO MAGNETIC FIELD

A. First order in U

We first consider corrections to the diamagnetic suscepti-
bility in the Hubbard model at both T = 0 and H = 0. The
diagrams for �JJ

⊥(Q, 0) are shown in Fig. 3. These diagrams
have already been evaluated for the diamagnetic susceptibility
in the case of a dynamically screened Coulomb interaction in
RPA [29]. We show that in the Hubbard model, each of these
diagrams evaluate to 0.

We can write the contribution of the Maki-Thompson dia-
gram as

�JJ,MT
⊥ (Q, 0) = 2U

(∫
d2k

(2π )2

dω

2π
v

y
kGk−Q/2Gk+Q/2

)2

, (17)

where Gk±Q/2 = G(k ± Q/2, ω). Taking k → −k, and not-
ing ε−k = εk, we find

∫
d2k

(2π )2

dω

2π
v

y
kGk−Q/2Gk+Q/2

= −
∫

d2k

(2π )2

dω

2π
v

y
kGk−Q/2Gk+Q/2 = 0. (18)

For the self-energy diagram, we first note that there is a com-
binatorial factor of two in addition to the factor of two due
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to spin summation. The resulting susceptibility is then

�JJ,SE
⊥ (Q, 0) = 4U

(∫
d2k′

(2π )2

dω′

2π
Gk′

)(∫
d2k

(2π )2

dω

2π

(
v

y
k

)2
G2

k+Q/2Gk−Q/2

)
. (19)

Changing k → −k in the second term, we find∫
d2kdω

(
v

y
k

)2
G2

k+Q/2Gk−Q/2 =
∫

d2kdω
(
v

y
k

)2
Gk+Q/2G2

k−Q/2. (20)

However, doing frequency integration first, we find∫
dω G2

k+Q/2Gk−Q/2 = i
∫

dω
∂

∂ω
(Gk+Q/2)Gk−Q/2

= −i
∫

dωGk+Q/2
∂

∂ω
(Gk−Q/2) (21)

= −
∫

dω Gk+Q/2G2
k−Q/2. (22)

Comparing the two expressions, we see that �JJ,SE
⊥ (Q, 0) = 0.

We then must move to second order in U to detect the effects
of interaction.

B. Second order in U

To second order in U , there are a total of seven nontrivial
diagrams that contribute to the current-current correlator, as
shown in Fig. 4. We call the corresponding contribution �i

(i = a to g). We incorporate factors of 2 from combinatorics
and from spin summation into �i.

The calculation of the diagrams is tedious but straightfor-
ward. We present some details in Appendices B and C and
here cite the results. First, we verified that there are particular
relations between different �i, namely �a = −2�b, �c =

� f = −�d , and �e = − 1
2�g. The total contribution will then

be

�JJ
⊥(Q, 0) = 1

2�a + �c + 1
2�g = 1

2 (�a + �c)

+ 1
2 (� f + �g). (23)

Next, we find that O(Q2) contributions from diagrams (f) and
(g) cancel (see Appendix C). Then we can write the current-
current correlator as

�JJ
⊥(Q, 0) = 1

2
(�a + �c) = 2U 2

∫
k,q

�(q,�m)

× (
2
(
v

y
k

)2
G2

k+Q/2Gk−Q/2Gk+q+Q/2

+ v
y
kv

y
k+qGk+Q/2Gk+q+Q/2Gk−Q/2Gk+q−Q/2

)
, (24)

where �(q,�m) = ∫ d2 p
(2π )2

ωp

2π
GpGp+q and we have used the

abbreviation
∫

k = ∫
d2kdωn/(2π )3. Finally, we verified that

while both �a and �c contain nonanalytic |Q| terms, the sum
of the two has no net nonanalyticity, i.e., the expansion in Q
starts with Q2, the details of which are in Appendix B

In explicit calculation of �JJ
⊥(Q, 0) from Eq. (24), we

evaluate the integral over ωn first, then expand out to order
Q2. This procedure ensures that relevant contributions from
ωm ∼ vF Q are all included. The result is

�JJ
⊥(Q, 0) = −mQ2U 2

(2π )4

∫ ∞

0
d�m

∫ ∞

0

dq

6q3
(
√

α2 − 1 +
√

(α∗)2 − 1)

(
α2q2 + 2q2 + 6αq + 3

(α2 − 1)5/2 + (α∗)2q2 + 2q2 + 6α∗q + 3(
(α∗)2 − 1

)5/2

)
,

(25)

where α = i�m
q − q

2 . Numerical evaluation of the integral
gives

δ�JJ
⊥(Q, 0) = −0.2618

mQ2U 2

(2π )4
. (26)

For the correction to the diamagnetic susceptibility, we then
have

δχdia = e2

c2
lim
Q→0

δ�JJ
⊥(Q, 0)

Q2
= Aχ0

diaN2
FU 2, (27)

where A = 0.7854/π . To five significant digits, A = 1/4, and
we believe that this is the exact value of A.

We see this correction enhances the diamagnetic suscep-
tibility compared to that for free fermions. We note that the
sign of this correction is opposite the sign found in previous

work in the case of the dynamically screened Coloumb in-
teraction [29,31]. In that case, interactions have been found
to decrease the magnitude of the diamagnetic susceptibility.
However, Refs. [29,31] only considered diagrams to first order
in the interaction. In our case, a nonzero result for δχdia ap-
pears at second order in U . By magnitude, δχdia/χ

0
dia is about

a third of δχpara/χ
0
para in Eq. (2). We see that even though

diamagnetism is enhanced by the Hubbard interaction, the
enhancement is smaller than the increase in the paramagnetic
susceptibility.

We also note that the convergence of the double integral
in Eq. (25) at large �m and q implies that to second order in
U the diamagnetic susceptibility still comes exclusively from
fermions near the Fermi surface, where one can linearize the
fermionic dispersion in k − kF . At higher orders in U , we
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FIG. 5. The relevant diagrams for the current-current correlation in the presence of a finite magnetic field. α and β label spin-up and
spin-down states, respectively.

expect that there will be some dependence of the upper cutoff
of the low-energy theory.

V. NONANALYTIC CONTRIBUTIONS TO THE
CURRENT-CURRENT CORRELATOR

We now consider the effects of finite temperature and finite
in-plane magnetic field. To do so, we consider precisely the
same U 2 terms as before, but with either a finite in-plane
field H or finite temperature T . At a nonzero H , fermionic
dispersion becomes spin-dependent εk → ε

↑(↓)
k = εk ± μBH ,

while for finite temperature the integrals over frequency are
replaced with sums �m → 2πmT and ωn → (2n + 1)πT .
We recall that we have chosen an in-plane field to make a di-
rect comparison to the case of spin susceptibility, for which a
Zeeman field gives rise to nonanalyticity. We emphasize again
that the Landau diamagnetic susceptibility we calculate is not
the response to the Zeeman field. Rather, we are calculating
how the response to an infinitesimal out-of-plane magnetic
field changes when there is a finite in-plane field present.

We calculate both δχdia(H, 0) and δχdia(0, T ) analytically
by restricting to contributions from small q in the polarization
bubble �ph(q,�m). For a finite H , we argue that this is the
full nonanalytic contribution. For a nonzero T and H = 0, we
show that there is also the contribution from q ≈ 2kF .

As a side remark, we note that, though we only consider
constant U here, the calculations can be straightforwardly
extended to a momentum-dependent interaction U (q) using
the same strategy as in Ref. [10] for the spin susceptibility.
We expect that, like in that case, the prefactors for the non-
analytic terms are expressed in terms of U (0)2, U (2kF )2, or
U (0)U (2kF ).

A. Magnetic field

As we said, in a finite in-plane field, fermionic Green’s
functions become spin-dependent, Gk,α = (iωn − εα

k )−1 and
ε

↑(↓)
k = εk ± μBH . We first note that upon adding all dia-

grams, the terms that exclusively contain G↑ or G↓ will cancel.
We can see this by explicitly adding up diagrams with the
same momentum labeling, then noting the difference in the
spin indices for each of the Green’s functions. As an example,
consider diagrams (a) and (b). Writing them together, we have

∫
k,q

(
v

y
k

)2

(∑
α,β

�αβ (q,�)(Gk+Q/2,α )2Gk−Q/2,αGk+q+Q/2,β

−
∑

α

�αα (q,�)(Gk+Q/2,α )2Gk−Q/2,αGk+q+Q/2,α

)

=
∫

k,q

(
v

y
k

)2 ∑
α �=β

�αβ (Gk+Q/2,α )2Gk−Q/2,αGk+q+Q/2,β .

(28)

This immediately implies that of the seven diagrams in Fig. 5,
only diagrams (a), (c), (f), and (g) contribute, with spin index
β �= α. Next, we explicitly verify (see Appendix C) that at or-
der Q2, diagrams (c) and (g) cancel each other, i.e., δχdia(H, 0)
is the sum of diagrams (a) and (f). Finally, we use the fact that
nonanalyticity in the polarization bubble made of fermions
with opposite spin projections comes from momenta q ≈ 0
and construct the polarization bubble in the diagram (f) out
of fermionic propagators shown by vertical lines (they have
opposite spins α and β), and construct the polarization bubble
in the diagram (a) using one of the two β fermions and the
α fermion “located” immediately below β fermions in Fig. 5.
The sum of diagrams (a) and (f) is then expressed as

δ�JJ
⊥ (H ) =U 2

∑
α �=β

∫
k,q

{
�αβ (q,�m)

[
2
(
v

y
k

)2(
Gα

k+Q/2

)2

× Gα
k−Q/2Gβ

k+q+Q/2 + v
y
kv

y
k+qGα

k+Q/2

× Gα
k−Q/2Gβ

k+q+Q/2Gβ

k+q−Q/2

]}
(29)
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FIG. 6. The numerical evaluation of diagrams (a) and (f). Here
we have not restricted the magnitude of q to small values. The result
for δχdia(H, 0) ∝ |H | agrees with the analytical calculation done by
restricting to small q.

The evaluation of this expression is again tedious but straight-
forward. We present the details in Appendix D. The result is

δ�JJ
⊥(H ) = − U 2Q2k2

F

m2(2π )4

∫ ∞

−∞
d�m

×
∫ ∞

0
dq

q3�2
m

(
4(i�m + 2μBH )2 + v2

F q2
)

4
(
(i�m + 2μBH )2 − v2

F q2
)

4
.

(30)

Integrating over q, subtracting off the H = 0 case, and then
integrating over �m, we find

δ�JJ
⊥(H ) = − U 2Q2m

24(2π )3

μB|H |
EF

⇒ δχdia(H )

= 1

4
χ0

diaU
2N2

F

μB|H |
EF

. (31)

To verify this result, we computed the sum of diagrams (a) and
(f) numerically, not restricting to small q. We plot the results
in Fig. 6. We see that there is a fairly good agreement with the
analytical analysis, in which we restricted to only small q. The
agreement confirms that nonanalytic δχdia(H, 0) comes from
only q � kF .

B. Finite temperature

We now perform the same analysis as above in the case of
H = 0 but T �= 0. We first consider analytically the contribu-
tion from small q, i.e., from vF q ∼ �n ∼ T . The calculation is
very similar to the one in the previous section and the result is
Eq. (29) with H = 0, and

∫
d�m/2π → T

∑
�m

. Using the
expression for �(q,�m) in Eq. (10), this equation can be
re-expressed as

δ�JJ
⊥,q=0(T ) = − U 2Q2k2

F

m2(2π )3
T
∫

dq
∑

m

q3�2
m

(
v2

F q2 − 4�2
m

)
4
(
�2

m + v2
F q2

)
4

.

(32)

We now sum over �m, subtract off the T = 0 contribution,
and integrate over q. Doing so, we find

δ�JJ
⊥,q=0(T ) = − U 2Q2m

48(2π )3

T

EF
⇒ δχ

q=0
dia (T )

=1

8
χ0

diaU
2N2

F

T

EF
, (33)

where, we recall, χ0
dia = − 2

3μ2
BNF is the bare diamagnetic sus-

ceptibility. We see that δ�JJ
⊥,q=0(T ), and hence δχ

q=0
dia (0, T ),

scales linearly with T . For completeness, in Appendix E we
calculate this term by summing over the two fermionic Mat-
subara frequencies first, expanding to order Q2, and evaluating
the resulting term. The result gives precisely the same expres-
sion for this linear in T term as above.

We also analyze the linear in T contribution to δ�JJ
⊥(T )

from q ∼ 2kF . This analysis requires more efforts, and we
present it in Appendix E 2. The result is that there is a linear
in T contribution to χdia from q = 2kF , which is equal to the
contribution at q = 0, i.e.,

δχ
q=2kF

dia (T ) = 1

8
χ0

diaU
2N2

F

T

EF
. (34)

Adding the two terms together, we find for the total nonana-
lytic contribution at finite temperature

δχdia(T ) = 1

4
χ0

diaU
2N2

F

T

EF
. (35)

C. Finite magnetic field and temperature

We note that, when internal q ∼ 0, we do not need to set
either H = 0 or T = 0. In fact, if we make the replacement∫

d�
2π

→ ∑
m, � → �m = 2πmT in Eq. (D), then we can

directly calculate the contribution at finite temperature and
finite magnetic field. Doing this, we find

δχ
q=0
dia (H, T ) = χ0

dia
U 2N2

F

8

μBH

EF
csch2

(
μBH

T

)

×
[

sinh

(
2
μBH

T

)
− μBH

T

]
. (36)

To find the total scaling function, we must also take into
account the contributions from q = 2kF . We recall that there is
a nonanalytic contribution from q = 2kF at finite temperature,
but not at finite Zeeman field. Taking this into account, we
obtain the total

δχdia(H, T ) = χ0
dia

U 2N2
F

8

T

EF

{
μBH

T
csch2

(
μBH

T

)

×
[

sinh

(
2
μBH

T

)
− μBH

T

]
+ 1

}
. (37)

We note that the q = 0 contribution to the diamagnetic
susceptibility contains the same scaling function as the param-
agnetic susceptibility. The overall scaling function is different
due to the presence of the q = 2kF contribution in the dia-
magnetic susceptibility. Adding both the paramagnetic and
diamagnetic contributions together into the total magnetic

235108-7



R. DAVID MAYRHOFER AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B 108, 235108 (2023)

susceptibility, we find

χ (H, T ) = 2
3χ0

para

(
1 + 3

2 NFU + 1.09(NFU )2
)

+ 11
12δχpara(H, T ) − 1

12δχpara(0, T ), (38)

where δχpara(H, T ) is given by Eq. (4).
We make a few remarks on the extension of these calcu-

lations to 3D. In the case of the spin susceptibility, there has
found to be a H2 log H contribution to the spin susceptibil-
ity [9]. Since the calculations to the diamagnetic susceptibility
have paralleled the spin susceptibility in the 2D case, we
would then expect there to be an analogous nonanalyticity
in the diamagnetic susceptibility. The calculations in for fi-
nite Zeeman field in 3D for the diamagnetic susceptibility
would proceed in the same ways as we have done above,
i.e., assuming that momentum transfers are close to q = 0 or
q = 2kF , and evaluating the relevant diagrams in these limits.
In the case of finite temperature, one needs to be more careful.
For the spin susceptibility, one would expect a T 2 log T term
analogous to the H2 log H term. However, this is not the
case—in 3D, there is no T 2 log T nonanalyticity in the spin
susceptibility. One is not able to determine whether this is
the case for the diamagnetic susceptibility immediately based
on our results. Further calculations in 3D are necessary to
determine if such a T 2 log T term could be present in the
diamagnetic susceptibility.

VI. CONCLUSIONS

We have analyzed the Landau diamagnetic susceptibil-
ity diagrammatically for a model of 2D fermions with
Hubbard-like interaction. We used the relation χdia =
(e/c)2 limQ→0 �JJ

⊥(Q)/Q2, where �JJ
⊥ is the transverse com-

ponent of the static current-current correlator. For free
fermions, we reproduced diagrammatically the Landau-
Peierls formula for arbitrary fermionic dispersion (it reduces
to χdia = −(2μ2

B)NF /3 for a parabolic dispersion). For in-
teracting fermions, we evaluated �JJ

⊥(Q) up to second order
in Hubbard U by combining self-energy, Maki-Thompson,
and Aslamazov-Larkin-type diagrams. At first order in U ,
we found no correction to the diamagnetic susceptibility. At
order U 2, we obtained a regular correction δχdia ∝ U 2 at zero
temperature and zero magnetic field, and explicitly obtained
the prefactor. In the process of calculations, we found that
individual diagrams for �JJ

⊥(Q) contain nonanalytic |Q| terms,
but these terms cancel out in the full expression, and �JJ

⊥(Q) ∝
Q2. In this respect, �JJ

⊥(Q) behaves similarly to charge po-
larization, for which |Q| terms from individual diagrams also
cancel out.

We next considered the corrections to the prefactor of
the U 2 term in δχdia in both temperature and magnetic
field. We showed that the Landau diamagnetic susceptibil-
ity does indeed have nonanalytic linear in T and linear in
H terms. In this respect, the behavior of the diamagnetic
susceptibility is similar to that of the paramagnetic Pauli
susceptibility, which also contains such terms. We computed
analytically the prefactors for O(U 2T ) and O(U 2H ) terms
in δχdia for parabolic fermionic dispersion. We found that
for both finite temperature and magnetic field, the non-
analytic contributions are of the same sign as the bare

Landau diamagnetic susceptibility, and therefore serve to en-
hance the diamagnetic effects as temperature and magnetic
field increase. By magnitude, nonanalytic corrections to the
diamagnetic susceptibility are comparable to nonanalytic cor-
rections to the spin susceptibility.
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APPENDIX A: REPRODUCING THE LANDAU-PEIERLS
FORMULA FROM DIAGRAMMATICS

In this Appendix we derive diagrammatically the Landau-
Peierls formula for diamagnetic susceptibility of free fermions
with arbitrary dispersion. The calculation has been performed
in collaboration with D. L. Maslov.

The formula for the diamagnetic susceptibility in a free
electron gas has been derived by Landau in 1930 [2]. Three
years later, Peierls obtained a correction to this expression
when the electrons experience a periodic potential due to
ions [36,37]. This correction is usually written as the sum of
the contribution from the ions and from conduction electrons.
The contribution from the conduction electrons is

χdia = 2μ2
Bm2

3(2π )d

∫
dd k n′

F (εk )

[
∂2εk

∂k2
x

∂2εk

∂k2
y

−
(

∂2εk

∂kx∂ky

)2
]
,

(A1)

where n′
F (εk ) = ∂nF

∂εk
and d = 2, 3. We note that as T → 0,

n′
F (εk ) → −δ(εk ), so at sufficiently small T , the above inte-

gral is equivalent to averaging the integrand over the Fermi
surface. Equation (A1) is known as Landau-Peierls formula.

It is well known that the Landau diamagnetic suscepti-
bility χdia for free fermions with a parabolic dispersion can
be reproduced diagrammatically by expressing χdia via the
transverse component of the static current-current correlator,
�JJ

⊥(Q) as χdia = (e/c)2 limQ→0 �JJ
⊥(Q)/Q2 [Eq. (5) in the

main text], and evaluating �JJ
⊥(Q) as the particle-hole bubble

with transverse velocity v⊥
k in the vertices [4]. Our aim here is

to show that the diagrammatic formalism can also reproduce
Eq. (A1) for an arbitrary dispersion relation.

For arbitrary dispersion, the particle-hole current-current
bubble is given by

�JJ
⊥(Qx̂, 0) = − 2T

∑
ωn

∫
dd k

(2π )d

(
v

y
k

)2
G(k + Q/2, ωn)

× G(k − Q/2, ωn) − · · · (A2)

= −2
∫

dd k

(2π )d

(
v

y
k

)2 nF (εk+Q/2) − nF (εk−Q/2)

εk+Q/2 − εk−Q/2
− · · · ,

(A3)

where dots stand for the Q = 0 terms that needs to be sub-
tracted. To get the Q2 term in �JJ

⊥(Qx̂, 0), we must expand
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each term in the right-hand side of Eq. (A3) to order Q2. Doing
so, we find

v
y
k = ∂εk

∂ky
= ∂yεk, (A4)

εk±Q/2 = εk ± Q

2
∂xεk + Q2

8
∂2

x εk ± Q3

48
∂3

x εk, (A5)

εk+Q/2 − εk−Q/2 = Q∂xεk + Q3

24
∂3

x εk, (A6)

nF (εk+Q/2) − nF (εk−Q/2)

εk+Q/2 − εk−Q/2

= n′
F (εk ) + Q2

24

(
3n′′

F (εk )∂2
x εk + n′′′

F (εk )(∂xεk )2), (A7)

where have made use of the notation ∂
∂ki

= ∂i. Inserting these
expressions into Eq. (A3), subtracting off the Q0 term, and
using Eq. (5) to find the diamagnetic susceptibility, we have

χdia = − μ2
Bm2

3(2π )d

∫
dd k(∂yεk )2

(
3n′′

F (εk )∂2
x εk

+ n′′′
F (εk )(∂xεk )2

)
. (A8)

Examining first the term proportional to n′′′
F (εk ), the ex-

pression can be simplified by using the chain rule to write
n′′′

F (εk )∂xεk = ∂xn′′
F (εk ) and then integrating by parts to find∫

dd k n′′′
F (εk )(∂yεk )2(∂xεk )2

= −
∫

dd k n′′
F (εk )

∂

∂kx
[(∂yεk )2(∂xεk )]. (A9)

Simplifying the above expression and inserting it back into the
diamagnetic susceptibility, we have

χdia = − μ2
Bm2

6π2

∫
dd k n′′

F (εk )

× [
∂2

x εk(∂yεk )2 − ∂xεk∂yεk
(
∂2

xyεk
)]

. (A10)

Again using chain rule to write n′′
F (εk )∂yεk = ∂yn′

F (εk ) for the
first term and n′′

F (εk )∂xεk = ∂xn′
F (εk ) for the second term, then

integrating by parts once more, we get

χdia = 2μ2
Bm2

3(2π )d

∫
dd k n′

F (εk )

[
∂2εk

∂k2
x

∂2εk

∂k2
y

−
(

∂2εk

∂kx∂ky

)2
]
.

(A11)

This is precisely the Landau-Peierls formula for the conduc-
tion electron part of the diamagnetic susceptibility, Eq. (A1).
If we take the ratio of χdia and χpara for free fermions with an
arbitrary dispersion relation, then we find

χdia

χpara
= − 1

3

m2∫
dd k n′

F (εk )

∫
dd k n′

F (εk )

×
[

∂2εk

∂k2
x

∂2εk

∂k2
y

−
(

∂2εk

∂kx∂ky

)2
]
. (A12)

The factor of − 1
3 emerges when the quantity ∂2εk

∂k2
x

∂2εk
∂k2

y
−

( ∂2εk
∂kx∂ky

)2 is m−2, that is when the dispersion is parabolic.

We emphasize that Eq. (A11) is for a single band of
fermions. In materials with multiple bands, such as bismuth
and graphene, the Landau-Peierls formula does not give the
full contribution to the diamagnetic susceptibility [38,39].
Besides, when electrons are in a periodic potential, there is
an additional term expandable in powers of the density that is
not included in the Landau-Peierls formula [40,41]. This term
describes Langevin diamagnetism in the limit of tight-binding
and is relevant when the density of fermions is not small. Still,
there is evidence from ab initio calculations that, in at least
some materials like the alkali metals, the Landau diamagnetic
susceptibility is adequately described by the Landau-Peierls
formula [42].

APPENDIX B: |Q| NONANALYTICITIES OF
SELF-ENERGY AND MAKI-THOMPSON DIAGRAMS

Here we explicitly calculate |Q| nonanalyticities in the
current-current correlator for the diagrams (a) and (c) in
Fig. 4, i.e., the second-order self-energy and Maki-Thompson
diagrams. From similar calculations for the charge and spin
susceptibilities, we know that these nonanalyticities comes
from contributions of small momentum and frequency trans-
fers as well as momentum transfers close to 2kF . We begin
by considering these small momentum transfers in both the
case of the second-order self-energy and Maki-Thompson dia-
grams, then consider the backscattering case in these diagrams
afterward. To simplify notations, below we relabel �JJ

⊥ by
just �.

1. Nonanalyticity from small q

We first consider the case of the self-energy diagram,
which is given by

�a(Q, 0) = 8U 2
∫

k,q
�(q,�m)

(
v

y
k

)2
G2

k+Q/2Gk−Q/2Gk+q+Q/2.

(B1)

For small q and Q, all contributions come from close to the
Fermi surface, so we can make the approximations

εk = vF (k − kF ), (B2)

εk±Q/2 = εk ± vF · Q/2, (B3)

εk+q±Q/2 = εk + vF · q ± vF · Q/2, (B4)

v
y
k = vF sin θ, (B5)

where vF = vF k̂ and θ = ∠(k, Q). Noting the expression is
even over �m so that we can reduce the expression to an
integral over �m from 0 to ∞, and then integrate first over
εk . The integrals over ωn and θ are also elementary, and can
be evaluated to give

δ�q=0
a (Q, 0) = U 2v2

F m

π4

∫
d2q

∫ ∞

0
d�m �(q,�m)

i�m

v2
F Q2(i�m − vF · q)2

(
i�m − vF · q − i

√
v2

F Q2 − (i�m − vF · q)2
)
, (B6)
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where we note that in the small q approximation, we can write

�(q,�m) = m

2π

⎛
⎜⎝−1 + �m√

v2
F q2 + �2

m

⎞
⎟⎠. (B7)

We make the change to polar coordinates here, so that �m = r sin φ and q = r cos φ. We also rescale r to be in units of Q, so
that the total function is now

iU 2kF |Q|
π4

∫ π/2

0
dφ

∫ 2π

0
dξ

∫ ∞

0
dr�(φ) sin φ cos φ

r

(i sin φ − cos φ cos ξ )2

× (r(i sin φ − cos φ cos ξ ) − i
√

1 − r2(i sin φ − cos φ cos ξ )2), (B8)

where ξ = ∠(k, q) and �(φ) = m/2π (−1 + sin φ). We note that this term is divergent over r, and needs a cutoff rmax. However,
we are only interested in the nonanalytic contribution of this term, which is a low energy contribution independent of the cutoff.
Integrating over r and negelecting the cutoff-dependent terms leaves only

δ�q=0
a (Q, 0) = − U 2kF |Q|

3π4

∫ π/2

0
dφ

∫ 2π

0
dξ�(φ) sin φ cos φ

1

(i sin φ − cos φ cos ξ )4

= − U 2kF m|Q|
24π4

∫ π/2

0
dφ(−1 + sin φ) sin φ cos φ(5 sin 3φ − 3 sin φ)

=U 2kF m

72π4
|Q|. (B9)

Now we can also consider the Maki-Thompson contribution. The diagram gives

�b(Q, 0) = 4U 2
∫

k,q
�(q,�m)vy

kv
y
k+qGk+Q/2Gk−Q/2Gk+q+Q/2Gk+q−Q/2. (B10)

We note that to lowest order, we have v
y
k+q = v

y
k , as the additional corrections due to q yield only contributions to orders Q2 and

higher, so we may discard them. Knowing this, we can integrate over εk , ωn, and θ to give

−U 2v2
F m

π4

∫
d2q

∫ ∞

0
d�m�(q,�m)

i�m

v2
F Q2(i�m − vF · q)2

(i�m − vF · q − i
√

v2
F Q2 − (i�m − vF · q)2). (B11)

Comparing the above equation to Eq. (B6), we find that this contribution exactly cancels with the contribution from the self-
energy term. Therefore, there is no net nonanalyticity at q ∼ 0 for these two diagrams.

2. Nonanalyticity from momenta near 2kF

We now consider the nonanalyticities which come from momentum transfers close to 2kF , corresponding to backscattering.
In this case, we can approximate εk+q = −εk + vF q̃ + 2vF kF (1 + cos θ ), where q̃ = (q − 2kF ) and k̂ · q̂ = cos θ . In addition,
the dominant contributions will come from angles close to perfect backscattering, so we can additionally write 1 + cos θ =
1
2 (π − θ )2 = 1

2 θ̃2. Then, we can write the self-energy contribution as

δ�2kF
a (Q, 0) = 8U 2

∫
k,q

(
v

y
k

)2
�(q,�m)(Gk+Q/2)2Gk−Q/2Gk+q+Q/2

= 8U 2
∫

k,q
�(q,�m)(vF sin θ1)2

(
1

iωn − εk+Q/2

)2 1

iωn − εk−Q/2

1

i(ωn + �m) + εk+Q/2 − vF q̃ − vF kF θ̃2
. (B12)

We can rescale εk , ωn, �m, q̃, and θ̃ to be unitless, and then integrate over εk . Doing so, after some simplification, we find

2U 2kF |Q|m
π6

∫ ∞

−∞
dq̃

∫ ∞

0
d�m

∫ π

0
dθ1

∫ ∞

0
d θ̃

(√
q̃ + i�m +

√
q̃ − i�m

)
sin2 θ1

Im

(∫ ∞

0
dωn

1

(i(ωn + �m) − q̃ − θ̃2)2(i(ωn + �m) − q̃ − θ̃2 + cos θ1)

)
, (B13)

where we have written �(q,�m) as m/2π (
√

q̃ + i�m + √
q̃ − i�m). We can then convert this to polar coordinates, with

q̃ = r cos φ and �m = r sin φ. Rescaling variables so that ωn → rωn and θ̃ → √
rθ̃ , we get

2U 2kF |Q|m
π6

Im
∫ π

0
dφ

∫ π

0
θ1

∫ ∞

0
d θ̃

∫ ∞

0
dωn

∫ ∞

0
dr cos φ/2 sin2 θ1

1

(iωn − e−iφ − θ̃2)2

r

r(iωn − e−iφ − θ̃2) + cos θ1
. (B14)
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Integrating over both r, taking only the low energy, cutoff-independent term, and then integrating over θ1, we find

−2U 2kF |Q|m
3π5

Re
∫ π

0
dφ

∫ ∞

0
d θ̃

∫ ∞

0
dωn cos φ/2

1

(iωn − e−iφ − θ̃2)4
. (B15)

The remaining integrals are elementary, and give the result

δ�2kF
a (Q, 0) = kF mU 2

72π4
|Q|. (B16)

Now, for the second-order Maki-Thompson result. We can write out this contribution as

δ�
2kF
b (Q, 0) = 4U 2

∫
k,q

�(q,�m)vy
kv

y
k+qGk+Q/2Gk−Q/2Gk+q+Q/2Gk+q−Q/2

= −4U 2
∫

k,q
�(q,�m)(vF sin θ1)2 1

iωn − εk+Q/2

1

iωn − εk−Q/2

× 1

i(ωn + �m) + εk+Q/2 − vF q̃ − vF kF θ̃2

1

i(ωn + �m) + εk−Q/2 − vF q̃ − vF kF θ̃2
. (B17)

We note here that, like in the case of the q ∼ 0 nonanalyticity, we can neglect the contribution of q̃ to vk+q. In addition, we can
take the direction of q to be exactly antiparallel to k, as including deviations from q = −k will also only contribute at higher
orders of |Q|. However, for q ∼ 2kF , εk+q = −εk + vF q̃ + 2vF kF (1 + cos θ ), so neglecting contributions of order q̃ and setting
θ = π means εk+q = −εk . Then, v

y
kv

y
k+q = −(vy

k )2. We rescale variables as before, and then integrate over εk . Then, converting
to polar coordinates, we find

U 2kF |Q|m
2π6

Im
∫ φ

0
dφ

∫ π

0
dθ1

∫ ∞

0
d θ̃

∫ ∞

0
dωn

∫ ∞

0
dr cos φ/2 sin2 θ1

1

(iωn − e−iφ − θ̃2)2

r2

r2(iωn − e−iφ − θ̃2)2 − cos2 θ1
.

(B18)

Now, we can integrate over r and θ1 as before, discarding the cutoff-dependent term, getting

2U 2kF |Q|m
3π5

Re
∫ π

0
dφ

∫ ∞

0
d θ̃

∫ ∞

0
dωn cos φ/2

1

(iωn − e−iφ − θ̃2)4
. (B19)

Comparing with Eq. (B15), this is precisely the same contri-
bution as the self-energy term with a minus sign. Therefore,
the nonanalyticity in the Maki-Thompson diagram from mo-
mentum transfers of 2kF is

δ�
2kF
b (Q, 0) = −kF mU 2

72π4
|Q|. (B20)

With this result, we have confirmed there is no net nonanalyt-
icity between the self-energy and Maki-Thompson diagrams
for both q = 0 and q = 2kF .

APPENDIX C: SUM OF DIAGRAMS (C) AND (G)

In this Appendix, we consider the sum of diagrams (c)
and (g) at finite temperature and magnetic field. We show
that at order Q2, the two diagrams in fact cancel. At zero
magnetic field, diagram (c) and diagram (f) are equal, so
this calculation also confirms that when H = 0, the pair of
Aslamazov-Larking diagrams cancel.

We can write the sum of these two diagrams as

�c + �g = 2U 2T
∑
α �=β

∑
�m

∫
q

Iαβ (Q, q,�m)(Iαβ (Q, q,�m)

+ Iβα (Q,−q,−�m )), (C1)

where
∫

q = ∫
d2q/(2π )2 and Iαβ (Q, q,�) is a triad of

Green’s functions defined as

Iαβ (Q, q,�m) =
∑
ωn

∫
k
v

y
kGα

k+Q/2Gα
k−Q/2Gβ

k+q. (C2)

Symmetrizing Eq. (C1) with respect to �m, and also noting
we can exchange α and β in the sum, we can rewrite the
expression as

U 2T
∑
α �=β

∞∑
m=1

∫
q
(Iαβ (Q, q,�m) + Iβα (Q,−q,−�m ))2. (C3)

We have left out the �m = 0 term in this sum. One can
confirm that this term is zero by following the same steps that
we outline below to show all �m �= 0 terms are zero. Series
expanding Eq. (C3), we can see the term proportional to Q2

has the form

1

2
U 2Q2T

∑
α �=β

∑
m

∫
q
(Iαβ (0, q,�m) + Iβα (0,−q,−�m ))

× (I ′′
αβ (0, q,�m) + I ′′

βα (0,−q,−�m )), (C4)

where I ′′
αβ (0, q,�m) = limQ→0

d2

dQ2 Iαβ (Q, q,�m), and we
have dropped terms proportional to I ′

αβ (0, q,�m ) as these go
to zero. We claim that Iαβ (0, q,�m) + Iβα (0,−q,−�m ) = 0,

so that the entire Q2 term vanishes. To show this, we sum over
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over fermionic Matsubara frequencies, and then take the limit as Q → 0. Doing so, we find

Iαβ (0,q,�m) + Iβα (0,−q,−�m ) =
∫

k

(
v

y
k

(
nF

(
ε

β

k+q

) − nF
(
εα

k

))
(
i�m − ε

β

k+q + εα
k

)
2

+ v
y
kn′

F

(
εα

k

)
i�m − ε

β

k+q + εα
k

− (c.c., α ↔ β )

)
, (C5)

where the second term denotes the complex conjugate of the first term with α and β interchanged, and we have used the fact
that Iβα (0,−q,−�m ) = −Iβα (0, q,−�m ). One can derive this relation from Eq. (C2) by making the transformation k → −k.
To evaluate the terms proportional to nF (εα(β )

k+q ), we can make the transformation k → −k − q so that nF (εα(β )
k+q ) → nF (εα(β )

k ).
Doing so and simplifying the expression, we find

1

m

∫
k

⎛
⎝ qynF (εα

k )(
i�m − ε

β

k+q + εα
k

)2 + kyn′
F (εα

k )

i�m − ε
β

k+q + εα
k

− (c.c., α ↔ β )

⎞
⎠. (C6)

We can explicitly write out qy = q sin θqQ, εk − εk+q = − 1
m kq cos θkq − q2

2m ± 2μBH , and ky = k sin(θqQ + θkq). The sign of
μBH determines whether α =↑, β =↓ or α =↓, β =↑. Then, integrating over θkq, we find∫

dkk

2π

m sin θqQ

q

(
iξnF (εα

k )

(k2 − ξ 2)3/2 − 1

m

(
1 + iξ√

k2 − ξ 2

)
n′

F (εα
k ) − (c.c., α ↔ β )

)
, (C7)

where we have written ξ = i�m±μBH
q − q

2 . Formally, the above expression also depends on the sign of the imaginary part of
ξ . However, since we initially symmetrized the function so that �m > 0, we can simply write the function as it is shown
above. Last, we can do integration by parts on the term proportional to n′

F (εk ) to combine both above terms. Doing so, we
find

−
∫

dkk
1

m

(
1 + iξ√

k2 − ξ 2

)
n′

F (εα
k ) = − 1

m

(
1 + iξ√

k2 − ξ 2

)
nF (εα

k )

∣∣∣∣
k=∞

k=0

−
∫

dkk
iξnF (εα

k )

(k2 − ξ 2)3/2 . (C8)

We can see this second term exactly cancels the term pro-
portional to nF (εk ) in Eq. (C7), leaving only the term at the
bounds,

−
(

1 + iξ√
−ξ 2

)
nF

(
εα

k=0

)
. (C9)

However, we can simplify this term further yet. Recalling that
�m > 0, and noting the branch cut that occurs in the square
root, we can rewrite iξ√

−ξ 2
= −1 so that the entire expression

is zero. Therefore, we only need diagrams (a) and (f) when
calculating the Q2 term of the current-current correlation func-
tion, even when both temperature and external magnetic field
are finite.

APPENDIX D: EVALUATION OF δχdia(H )

The point of departure is Eq. (29) in the main text:

δ�JJ
⊥(H ) =U 2

∑
α �=β

∫
k,q

{
�αβ (q,�m)

[
2
(
v

y
k

)2(
Gα

k+Q/2

)2

× Gα
k−Q/2Gβ

k+q+Q/2 + v
y
kv

y
k+qGα

k+Q/2

× Gα
k−Q/2Gβ

k+q+Q/2Gβ

k+q−Q/2

]}
. (D1)

We re-express it as

δ�JJ
⊥(H ) =U 2

∑
α �=β

∫
k,q

[
�αβ (q,�m)

((
v

y
k

)2
Gα

k+Q/2

× Gα
k−Q/2Gβ

k+q+Q/2

(
2Gα

k+Q/2 + Gβ

k+q−Q/2

)

+ v
y
kv

y
qGα

k+Q/2Gα
k−Q/2Gβ

k+q+Q/2Gβ

k+q−Q/2

)]
= U 2

2

∑
α �=β

∫
k,q

�αβ (q,�m)(G̃1 + G̃2), (D2)

where we have used the fact that v
y
k+q = (ky + qy)/m = v

y
k +

v
y
q for a parabolic dispersion. Since we are only interested in

the nonanalytic contribution to function when q = 0, we can
easily integrate over εk first. Therefore, unlike in the case of
H = 0, T = 0, we can series expand in Q before integrating
as long as the integral over εk is done before the integral over
frequency. We can therefore expand G̃1 and G̃2 to order Q2

in a manner that is similar calculation of the gradient term
of the spin and charge susceptibilities [43]. Expanding G̃1, we
find a total of four terms, such that G̃1 = G̃a

1 + G̃b
1 + G̃c

1 + G̃d
1 ,

where

G̃a
1 = 1

2m2

(
v

y
k

)2
(k · Q)2

(
G2

k,αG4
k+q,β + 2G3

k,αG3
k+q,β

+ 3G4
k,αG2

k+q,β + 4G5
k,αGk+q,β

)
, (D3)

G̃b
1 = Q2

2m

(
v

y
k

)2(
G2

k,αG3
k+q,β + 2G3

k,αG2
k+q,β + 3G4

k,αGk+q,β

)
,

(D4)

G̃c
1 = 1

m2

(
v

y
k

)2
(k · Q)(q · Q)

(
G2

k,αG4
k+q,β + 2G3

k,αG3
k+q,β

+ G4
k,αG2

k+q,β

)
, (D5)

G̃d
1 = 1

2m2

(
v

y
k

)2
(q · Q)2

(
G2

k,αG4
k+q,β + 2G3

k,αG3
k+q,β

)
. (D6)
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We assume that q � kF so that εk = vF (k − kF ), εk+q = εk +
vF · q, and v

y
k = v

y
F . Doing so, we can immediately see that

both G̃a
1 and G̃b

1 vanish after integration over εk . In addition,
one can show that G̃c

1 is odd over �m, so it too will vanish.
This leaves only G̃d

1 . Now, evaluating G̃2 in a similar way, we
get

G̃a
2 = 1

2m2
v

y
kv

y
q(k · Q)2

(
G4

k,αG2
k+q,β + G2

k,αG4
k+q,β

)
, (D7)

G̃b
2 = Q2

2m
v

y
kv

y
q

(
G3

k,αG2
k+q,β + G2

k,αG3
k+q,β

)
, (D8)

G̃c
2 = 1

m2
v

y
kv

y
q(k · Q)(q · Q)G2

k,αG4
k+q,β , (D9)

G̃d
2 = 1

2m2
v

y
kv

y
q(q · Q)2G2

k,αG4
k+q,β . (D10)

As before, G̃b
2 vanishes after integration over εk . In addition,

both G̃a
2 and G̃d

2 are odd �m, so they too will not contribute.
This leaves solely G̃c

2. The total contribution will then come
from only G̃d

2 and G̃c
2. After some simplification by doing

integration by parts on the integral over εk , we find

δ�JJ
⊥(H ) =2U 2

m2

∑
α �=β

∫
k,q

�αβ (q,�m)(q · Q)vy
k

(
(q · Q)vy

k

− (k · Q)vy
q

)
(Gα

k )5Gβ

k+q. (D11)

Noting that, to leading order, the factor of k is simply kF k̂,
then integrating over εk , and last over ωn and both angles, we
obtain Eq. (30) in the main text.

Verification of the result for δχdia(H )

Here we verify Eq. (30) by computing δχdia(H ) nu-
merically, not restricting to small q. The process involves
evaluating the first several integrals and/or sums analytically
until we are just left with q and �m. We then evaluate these
terms numerically, and compare the result with Eq. (30).
The numerical evaluations were done in Mathematica using
the PrincipalValue option to avoid complications from points
where � → 0 and q → 2kF , where the integral is singular but
convergent in the principal value sense.

We remind that the transverse current-current correlator
can be written as

�⊥(H ) =U 2
∑
α �=β

∫
k,p

[
�αβ (q,�m)

(
2
(
v

y
k

)2(
Gα

k+Q/2

)2

× Gα
k−Q/2Gβ

k+q+Q/2 + v
y
kv

y
k+qGα

k+Q/2Gα
k−Q/2

× Gβ

k+q+Q/2Gβ

k+q−Q/2

)]
. (D12)

We first integrate over ωn, then series expand to order Q2, and
then integrate over angles and over k. Doing this, we obtain

δχdia(H ) = U 2N2
F χ0

dia

∫ ∞

0
d�m

∫ ∞

0
dq

1

8πq3
(
√

1 − α2 − H̃ −
√

1 − β2 + H̃ )

×
(

3H̃2 − 2H̃ (q2 + 3αq + 3) + α2q2 + 2q2 + 6αq + 3

(1 − α2 − H̃ )5/2

− 3H̃2 + 2H̃ (q2 + 3βq + 3) + β2q2 + 2q2 + 6βq + 3

(1 − β2 + H̃ )5/2

)
+ (H̃ → −H̃ ), (D13)

where H̃ = μBH/EF , α = i�m+H̃
q − q

2 , and β = − i�m+H̃
q − q

2 .

We then subtract off the H = 0 term to obtain δχdia(H ) and
integrate numerically over q and �m for μBH ranging from

−0.02EF to 0.02EF . In this calculation we do not restrict to
small q. The result is shown in Fig. 6 of the main text. It
perfectly matches Eq. (30).

APPENDIX E: EVALUATION OF δχdia(T )

Here we show the procedure for evaluating the nonanalytic term in the diamagnetic susceptibility at a finite T and H = 0.
We first do summation over internal fermionic frequencies and then expand out to order Q2, as in the case of T = 0. Once the
series expansion is done, the remaining integrals over angles are elementary. The resulting expression takes an unwieldy form,
consisting of the sum of terms proportional to the Fermi distribution function and its derivatives. However, it can be simplified
to something more manageable by doing the subsequent integration over fermionic momenta by parts. Reducing the dependence
of the fermionic distribution to Fermi functions, we obtain

δχdia(T ) = 3

2
U 2N2

F χ0
diamT

∞∑
n=−∞

∫ ∞

0
dqIp(q)Ik (q), (E1)

where

Ip =
∫ ∞

0
d pp

(
− nF (εp)√

α2 − p2
− nF (εp)√

(α∗)2 − p2

)
, (E2)

Ik =
∫ ∞

0
dkk

(
nF (εk )(α2(4k2 + 3q2) + k2(k2 + 2q2) + 6αqk2 + 4α3q)

q3(α2 − k2)7/2
+ c.c.

)
, (E3)
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and α = im�n
q − q

2 . To proceed, we examine separately the contributions from small bosonic q and from |q| ≈ 2kF . For the
q = 0 contribution we show that the nonanalytic O(T ) term comes from the difference between summation and integration over
bosonic Matsubara frequencies, while fermionic distribution functions can be approximated by step functions. For the q = 2kF

contribution, the behavior of the Fermi functions near the Fermi surface become important, and we do no approximate it as a
step function.

1. Contribution from small q

We assume and then verify that a nonanalytic contribution to χ
q=0
dia comes from vF q ∼ �n ∼ T , i.e., from �n/q = O(1).

integrals over k and p. Using this, we approximate α2 − p2 by −m2�2
n

q2 − p2 + im�n in the integral over p and do the same in the
integral over k. The integral over p can be written as

Ip =
∫ kF

0
d pp

⎛
⎜⎝− 1√

−m2�2
n

q2 − p2 − im�n

− 1√
−m2�2

n
q2 − p2 + im�n

⎞
⎟⎠. (E4)

Expanding to leading order in �n, we find

Ip = −
∫ kF

0
d pp

m|�n|(
p2 + m2�2

n
q2

)3/2 . (E5)

Integrating over p, we find

Ip = q

⎛
⎜⎝−1 + |�n|√

v2
F q2 + �2

n

⎞
⎟⎠. (E6)

We next do similar analysis of the integral over k. Keeping terms of order one and of order �n in the numerator, we obtain

Ik =
∫ kF

0
dkk

⎛
⎜⎝k4 + 2im�nk2 − 4k2m2�2

n/q2 − 4im3�3
n/q2

q3
(
−m2�2

n
q2 − k2 − im�n

)7/2 + c.c.

⎞
⎟⎠. (E7)

Expanding further the denominator to leading order in �n, we find after simple algebra

Ik =
∫ kF

0
dkk

m|�n|
(
24k2m2�2

n/q2 − 3k4 − 8m4�4
n/q4

)
q3
(

k2 + m2�2
n

q2

)9/2 . (E8)

Integrating over k, we find

Ik = |�n|v2
F q2

(
v2

F q2 − 4�2
n

)
m2

(
v2

F q2 + �2
n

)7/2 . (E9)

Now, combining this with the results from the p integral, we have

IkIp = |�n|v2
F q3

(
v2

F q2 − 4�2
n

)
m2

(
v2

F q2 + �2
n

)7/2

⎛
⎜⎝ |�n|√

v2
F q2 + �2

n

− 1

⎞
⎟⎠. (E10)

The term with −1 in the last bracket vanishes after integration over q, as one can easily verify. Dropping this term and substituting
IkIp into Eq. (E3), we obtain

δχ
q=0
dia (T ) = 3

2
U 2N2

F χ0
diaT

∞∑
n=−∞

∫ ∞

0
dq

v2
F q3�2

n

(
v2

F q2 − 4�2
n

)
m
(
v2

F q2 + �2
n

)4 . (E11)

Re-expressing this result in terms of the current-current correlator �JJ, we obtain the result that we presented in Eq. (32) in the
main text.

In the main text, we evaluated the frequency sum over n and the integral over q by summing over �n first, subtracting off the
T = 0 contribution, and then integrating over q. For completeness, here we demonstrate that one can also obtain the same result
by integrating over q first and then summing over Matsubara frequencies. Since this integral is formally divergent, we must
institute an upper cutoff � on the integral over q. In addition, there is ambiguity for the n = 0 term in the Matsubara sum. For
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any finite q, it is easy to see that the n = 0 term is zero because of �2
n in the numerator of Eq. (E11). That said, if we integrate

over q first, we can see that the �2
n cancels out because the q-integration yields 1/�2

n. This last term comes from the lower bound
of q integration, i.e., from q = 0+. This ambiguity can be resolved by formally instituting a lower cutoff to this term. This lower
cutoff will not affect any terms with n �= 0, but will eliminate the n = 0 contribution. A more physically sound method is to
evaluate this integral for a finite system, eliminate the n = 0 term, and then extend the system size to infinity [10]. Once this is
done, we have

δχ
q=0
dia (T ) = 3U 2N2

F χ0
diaT

∞∑
n=1

∫ �

0
dq

v2
F q3�2

n

(
v2

F q2 − 4�2
n

)
m
(
v2

F q2 + �2
n

)4 (E12)

= −U 2N2
F χ0

dia
T

4EF

∞∑
n=1

�4
(
�2 + 6�2

n

)
(�2

n + �2)3 . (E13)

The sum over Matsubara frequencies can be evaluated analytically, and gives
∞∑

n=1

�4
(
�2 + 6�2

n

)
(�2

n + �2)3 = −64T 3 + 36�T 2 coth
(

�
2T

) − 5�3 sinh
(

�
T

)
csch4

(
�
2T

) + 18�2T csch2
(

�
2T

)
128T 3

. (E14)

In the limit of T → 0, the above expression is 9�
32T . Subtracting this term off, and then taking � → ∞, we find for the diamagnetic

susceptibility,

δχ
q=0
dia (T ) = U 2N2

F χ0
dia

T

8EF
. (E15)

This is the same expression as Eq. (33) in the main text.

2. Contribution from q ≈ 2kF

To calculate the 2kF term, we take the above expression for Ik , Eq. (E3), and twice integrate it by parts. We obtain

Ik = −
∫ ∞

0
dkkn′′

F (εk )

(
8α4 + 3k4 + 4a3q − 6αk2q − 2k2q2 + α2(q2 − 12k2)

3q3m2(α2 − k2)3/2
+ c.c.

)
. (E16)

Now, we can define variables x = k2 − k2
F , y = p2 − k2

F , and z = q2/4 − k2
F . Last, we rescale x, y, and z by mT , and expand in

powers of T . Then, the total expression is

δχ
2kF
dia (T ) = 1

32
U 2N2

F χ0
diaT

∞∑
n=−∞

∫ ∞

− k2
F

mT

dxdydznF (yT/2)n′′
F (xT/2)

(
1√

z − y − i�n
+ c.c.

)

×
(

− T

2(z − x − 2π in)3/2 + mT 2

k2
F

√
z − x − 2π in

+ O(T 3) + c.c.

)
. (E17)

We note that n′′
F is of order T −2, so to obtain the linear in T team, we must take the second term. Examining this term, we find

δχ
2kF
dia (T ) = 1

64
U 2N2

F χ0
dia

T

EF

∞∑
n=−∞

∫ ∞

−∞
dxdydznF (yT/2)n′′

F (xT/2)T 2

(
1√

z − y − 2π in
+ c.c.

)(
1√

z − x − 2π in
+ c.c.

)
.

(E18)

We can then define shift a = z − x and b = z − y to eliminate the z dependence in the square-root terms. Then, integrating over
z in the two Fermi functions, we find

δχ
2kF
dia (T ) = 1

64
U 2N2

F χ0
dia

T

EF

∞∑
n=−∞

∫ ∞

−∞
dadb g(a − b)

(
1√

b − 2π in
+ c.c.

)(
1√

a − 2π in
+ c.c.

)
,

where we have defined

g(x) = csch2

(
x

4

)(
1 − x

4
coth

x

4

)
. (E19)

We can then shift a to a + b, and integrate over b. The integral over b is formally divergent, so we institute a cutoff �/T at the
upper and lower bounds. Simultaneously, one has to restrict the summation over n to |n| < nmax, where nmax = �/(2πT ) − 1/2
(Ref. [44]). Then, we have

δχ
2kF
dia (T ) = 1

32
U 2N2

F χ0
dia

T

EF

nmax∑
n=−nmax

S(n), (E20)
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where

S(n) =
∫ ∞

−∞
dxg(x)

[
2 log �/T − log

(
π2n2 + x2

16

)]
. (E21)

We evaluate the n = 0 and the n �= 0 terms separately. For the n = 0 term, we have

S(0) =
∫ ∞

−∞
dxg(x)

[
2 log �/T − log

(
x2

16

)]
(E22)

=
[
−8 log �/T − 4

∫ ∞

0
dxg(x) log(x/4)

]
. (E23)

For the contribution from finite n we have

∑
n �=0

S(n) = 2
nmax∑
n=1

∫ ∞

−∞
dxg(x)

[
2 log �/T − log

(
π2n2 + x2

16

)]
(E24)

= 2
nmax∑
n=1

∫ ∞

−∞
dxg(x)

[
2 log �/(πT ) − 2 log n − log

(
1 + x2

16π2n2

)]
. (E25)

Using
∫ ∞
−∞ dxg(x) = −4 we rewrite Eq. (E25) as

∑
n �=0

S(n) = −2
nmax∑
n=1

[
8 log �/(πT ) − 8 log n +

∫ ∞

−∞
dxg(x) log

(
1 + x2

16π2n2

)]
. (E26)

Using

nmax∑
1

log n = (nmax + 1/2) log ((nmax + 1/2)/e) + 1

2
log 2π, (E27)

we find

∑
n �=0

S(n) = 8 log

(
2�

T

)
−

nmax∑
n=1

∫ ∞

−∞
dxg(x) log

(
1 + x2

(4πn)2

)
. (E28)

Adding together the n = 0 and n �= 0 terms, we find

δχ
2kF
dia (T ) = −1

8
U 2N2

F χ0
dia

T

EF

[∫ ∞

0
g(x) log(x/2) +

nmax∑
n=1

∫ ∞

0
dxg(x) log

(
1 + x2

(4πn)2

)]
. (E29)

The summation over n can be now safely extended to infinity. Next,

∞∑
n=1

log

(
1 + x2

(4πn)2

)
=

∞∑
m=1

ζ (2m)[x/(4π )]2m(−1)m+1

m
= log

sinh(x/4)

(x/4)
, (E30)

where ζ (2m) is the Riemann ζ function of an even integer argument. The last line in Eq. (E30) can be verified by expanding
log sinh(x/4)

(x/4) in powers of x2 and comparing terms order by order.
Substituting Eq. (E30) into Eq. (E29), we obtain

δχ
2kF
dia (T ) = −1

8
U 2N2

F χ0
dia

T

EF

∫ ∞

0
g(x) log (2 sinh(x/4)). (E31)

The product g(x) log (2 sinh(x/4)) can be re-expressed as a total derivative, hence the integral can be evaluated exactly. The
result is

∫ ∞
0 g(x) log (2 sinh(x/4)) = −1. The final result is then

δχ
2kF
dia (T ) = 1

8
U 2N2

F χ0
dia

T

EF
. (E32)

Comparing with Eq. (E15), we see that the q = 2kF contribution to the linear in T term in χdia is equal to the contribution from
small q.
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