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Instability of the U (1) spin liquid with a large spinon Fermi surface in the Heisenberg-ring
exchange model on the triangular lattice
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It is widely believed that the U (1) spin liquid with a large spinon Fermi surface (SFS state) can be realized
in the spin- 1

2 J1-J4 model on the triangular lattice, when the ring exchange coupling J4 is sufficiently strong
to suppress the 120◦ magnetic ordered state. This belief is supported by many variational studies on this
model and seems to be consistent with the observations on the organic spin liquid materials such as κ-(BEDT-
TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which are systems close to their Mott transition and thus have large
J4. Here we show through systematic variational search that such a state is never favored in the J1-J4 model on
the triangular lattice. Instead, a state with broken spatial symmetry is favored in the most probable parameter
regime for the SFS state and has an energy much lower than that of the SFS state and other proposed variational
states. More specifically, we find that for J4 � 0.09J1, the model favors a valence bond solid state with a 4 × 6
period in its local spin correlation pattern and has a variational energy that is about 5% lower than that of the
SFS state. This state is separated from the π -flux state for J4 � 0.045J1 by an intermediate symmetry-breaking
phase with a zigzag pattern in its local spin correlation. We find that the variational phase diagram we got is in
qualitative agreement with that obtained from exact diagonalization on a 6 × 6 cluster.
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I. INTRODUCTION

The search for quantum spin liquid in strongly frustrated
quantum magnets has lasted for more than three decades [1,2].
A quantum spin liquid is an exotic state of matter that can host
excitations with fractionalized quantum number and novel
exchange statistics. Such novel excitations may be respon-
sible for some major puzzles in strongly correlated electron
systems, for example, the anomalous dynamical behaviors
of some highly frustrated quantum magnets and the non-
Fermi liquid behavior of the cuprate superconductors [3–7].
These novel excitations may also be used to realize topologi-
cally protected quantum computation. However, even after the
extensive efforts of the community in the past three decades,
we are still not sure if such an exotic state of matter is indeed
realized in any real material.

The difficulty in truly identifing a quantum spin. liquid in
a real material has multiple origins. As a typical example of
state of matter that is beyond the description of the Landau
paradigm, a quantum spin liquid lacks the conventional local
order parameter to be detected experimentally. At the same
time, a quantum spin liquid usually occurs only in a very small
parameter region of model Hamiltonian in which mutually
frustrating exchange couplings are delicately balanced with
each other. Furthermore, the inevitable existence of impurities
in real materials may obscure the distinction between genuine
spin liquid behavior and some glassy behavior. These diffi-
culties are all related to the lack of physical intuition on the
nature and the mechanism of emergence of the quantum spin
liquid. In fact, we seldom have the physical intuition to judge
if a particular kind of quantum spin liquid can be realized in a
specific model.

The U (1) spin liquid with a large spinon Fermi surface
(referred to as the SFS state in the following) is a clearly an
exception in this regard. This state can be roughly thought of
as the descendant of a metallic state after a Mott transition,
in which the charge excitation has already developed a gap
but the Fermi surface remains intact. Such a situation is very
likely to occur if the system is in the close vicinity of the
Mott transition so that the multiple spin exchange coupling is
large. Indeed, in triangular lattice spin liquid materials such as
κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, peo-
ple do find evidence for the existence of such a quantum
spin liquid [8–10]. The hypothetical charge neutral spinon
Fermi surface manifests itself in the metal-like behavior of
the magnetic susceptibility and the specific heat at low tem-
perature, although the system is already a charge insulator.
Thermal conductivity measurements aiming to detect itiner-
ant fermionic spinon lead to controversial results [11–13].
Similar claims of the SFS state have also been made for
other triangular magnetic systems such as 1T-TaS2 and
YbMgGaO4 [14–17].

Motivated by these physical expectations, a large number
of theoretical efforts have been devoted to the study of the
spin- 1

2 Heisenberg-ring exchange model (the J1-J4 model) on
the triangular lattice, in which a large ring exchange coupling
J4 is introduced to frustrate the conventional 120◦ order fa-
vored by the Heisenberg exchange coupling J1. Variational
studies find that when J4 is strong enough, the SFS state be-
comes the best variational ground state of the model [18–23].
This conclusion finds some support from a DMRG simulation
of the model [24]. However, in a more recent DMRG simu-
lation [25], it is found that in the most favorable parameter
regime for the SFS state there is strong evidence of spatial
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symmetry breaking in the ground state of the model. A sys-
tematic variational investigation of the model with potential
spatial symmetry breaking allowed is thus strongly called for.

In this work, we have performed a large-scale variational
optimization of the spin- 1

2 J1-J4 model on the triangular lat-
tice without assuming any symmetry a prior. To tackle such
a challenging numerical problem, we have proposed several
improvements on the variational optimization algorithm. We
find that while the SFS state is extremely stable locally within
the subspace of the fermionic resonating valence bond (RVB)
states, it is never the true variational ground state of the
spin- 1

2 J1-J4 model on the triangular lattice. Instead, we find
that in the parameter regime which is thought to be the most
favorable for the SFS state, a symmetry-breaking state with
a 4 × 6 periodicity in its local spin correlation pattern has
an energy much lower than that of the SFS state. This state
is separated from the π -flux phase favored for small J4 by
an intermediate phase with a zigzag pattern in its local spin
correlation. We find that such a variational phase diagram has
strong similarity with that obtained from exact diagonalization
(ED) calculation on small cluster.

This paper is organized as follows. In the next section,
we introduce the spin- 1

2 J1-J4 model studied in this work
and summarize previous theoretical results about it. We then
introduce the variational wave functions we adopted in our
study in Sec. III. This is followed by an introduction of the
optimization algorithms we used in this work in Sec. IV. In
Sec. V, we present our numerical results from the variational
optimization. Here we will present the full variational phase
diagram of the J1-J4 model and the symmetry-breaking pattern
of each phase in this phase diagram. A comparison with the
ED phase diagram will also be presented in this section. In the
sixth section, we draw conclusion from our results and discuss
their implications.

II. THE J1-J4 MODEL ON THE TRIANGULAR LATTICE

The model we study in this work is described by the fol-
lowing Hamiltonian:

H = J1

∑
〈i, j〉

Si · S j + J4

∑
[i, j,k,l]

(
Pi, j,k,l + P−1

i, j,k,l

)
(1)

in which J1 denotes the Heisenberg exchange coupling
between nearest-neighboring sites of the triangular lattice, J4

denotes the four-spin ring exchange coupling around every
elementary rhombi of the triangular lattice. In the following,
we will set J1 = 1 as the unit of energy. This model and its
various extensions have been studied by many researchers
[18,20,21,24–28]. We note that the value of J1 in our notation
differs by a factor of two from that adopted in Refs. [20,21].
Now we summarize previous results about this model.

When J4 = 0, the model reduces to the Heisenberg model
with antiferromagnetic exchange couplings between nearest-
neighboring sites of the triangular lattice. It is well known
that such a model possesses a 120◦ long-range order in its
ground state. Within the RVB framework, it was found that
such a long-range ordered state can be accurately described by
a bosonic RVB ansatz [29]. Using a general theorem proved
by Seiji and Sorella relating Bosoinc and fermionic RVB state
on planar graph [30], this bosonic RVB state can be connected

continuously to the famous π -flux phase on the triangular
lattice, which is a fermionic RVB state describing a Dirac
quantum spin liquid. The short-ranged RVB state proposed
by Anderson [31] plays a key role in establishing such a
marvelous connection. Although there is no true magnetic
long-range order in the π -flux phase, the local spin correlation
in this state is very close to that in the 120◦ ordered ground
state (see Fig. 5 below). In our study, we will concentrate on
the subspace of spin rotational invariant fermionic RVB state,
within which the π -flux state is the best representative of the
120◦ ordered phase. As we will see later, the π -flux phase on
the triangular lattice is actually the global minimum at J4 = 0
within the subspace of fermionic RVB state.

The ground state of the model with J4 �= 0 is much more
complicated and is still under strong debate. ED study on
small clusters [26] find that some kind of spin liquid of un-
known character may be realized for large J4. Driven by the
experimental claim of possible spin liquid behavior in triangu-
lar lattice organic salt material κ-(BEDT-TTF)2Cu2(CN)3 [8],
the model is revisited by Moturnich in 2005 with variational
Monte Carlo method [18]. It is found that a U (1) spin liquid
state with a large spinion Fermi surface is favored for large
ring exchange coupling. Similar conclusions are also reached
from other variational studies in the large-J4 regime [20–23].
The intermediate phase between the 120◦ ordered phase and
the SFS state is proposed to take the form of a Z2 spin liquid
state with either an extended s-wave, a dx2−y2 -wave, or a
dx2−y2 + idxy-wave spinon pairing.

The SFS state is believed to host fermionic spinon ex-
citation around the hypothetical spinon Fermi surface. This
seems to be consistent with the experimental observation of a
linear-in-T specific heat and a constant magnetic susceptibility
on the triangular lattice organic salt material κ-(BEDT-
TTF)2Cu2(CN)3, which is thought to be described by the J1-J4

model. However, gauge fluctuation beyond the mean-field
description is argued to generate singular correction to the
specific heat [18,19] of the form Cv ∝ T 2/3, which is never
observed. Driven by the tension between theories and exper-
iments, several novel spin liquids other than the SFS phase
have been proposed over the years. For example, the author of
Ref. [21] proposed a Z2 spin liquid with a fully gapped gauge
fluctuation spectrum and a spinon dispersion with quadratic
band touching (QBT) at the � point. The spinon excitation
above the QBT point enjoys a finite density of state but is free
from singular gauge-field fluctuation corrections. Such a novel
state is found to have a slightly lower variational energy in the
intermediate region of the ring exchange coupling than both
the SFS state and the nematic spin liquid mentioned above.
Another proposal is to assume spinon pairing at nonzero total
momentum so that the spinon Fermi surface is only partially
gapped [32]. This proposal has no support from the calcula-
tion of the J1-J4 model.

In Ref. [33], we show that the singular gauge fluctuation
correction around the SFS state argued before is actually a
theoretical artifact of the Gaussian approximation. When we
go beyond the Gaussian level, the gauge fluctuation around the
SFS state can only contribute a subleading correction to the
specific heat of the form Cv ∝ T 2, even if the SFS state is in-
deed the true ground state of the J1-J4 model. The new theory
also provides a unified mechanism for spin fractionalization in
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both one-dimensional (1D) and 2D quantum magnets. Such a
new mechanism is built on the nontrivial topological character
of the Gutzwiller projected mean-field state rather than the
deconfinement of slave particles.

The J1-J4 model has also been studied by DMRG simula-
tions [24,25]. In an attempt to account for the possible spin
liquid behavior found in 1T-TaS2 [14–16], a rather complicate
triangular material argued to be described by an approximate
J1-J4 model at low energy, the authors of Ref. [24] revisited
the J1-J4 model with DMRG. They found that a paramag-
netic state without any detectable symmetry-breaking pattern
is realized at large value of J4. This state possesses a spin
structure factor with an approximate 2kF peak expected for a
spin liquid with a large spinon Fermi surface. However, such
a claim is challenged by a more recent DMRG simulation on
the same model [25], in which the authors report a zigzag type
symmetry-breaking phase in the parameter regime thought to
be the most favorable for the SFS state. A more thorough
investigation is thus clearly called for to determine if the SFS
state can indeed be realized in this model.

III. THE VARIATIONAL WAVE FUNCTIONS

In this work, we describe the ground state of the J1-J4

model with the fermionic RVB state of the form

| f − RVB〉 = PG

∑
{ik , jk}

N/2∏
k=1

a(ik, jk ) Pik , jk |0〉. (2)

Here

Pik , jk = [ f †
ik ,↑ f †

jk ,↓ − f †
ik ,↓ f †

jk ,↑] (3)

creates a fermionic spin singlet pair (valence bond) between
site ik and jk . f †

i,σ is the fermion creation operator on site i
and with spin σ . |0〉 is the vacuum of the f -fermion. a(ik, jk )
is the RVB amplitude of the kth valence bond and satisfies
a(ik, jk ) = a( jk, ik ).

∑
{ik , jk} denotes the sum over all valence

bond configurations on the lattice. PG denotes the Gutzwiller
projection introduced to enforce the single occupancy con-
straint on the f -fermions.

A. General fermionic RVB states

The fermionic RVB state can be expanded in the Ising basis
as

| f − RVB〉 =
∑

{σ1,...,σN }
�(σ1, . . . , σN )|σ1, . . . , σN 〉 (4)

in which

|σ1, . . . , σN 〉 =
N/2∏
k=1

f †
ik ,↑ f †

jk ,↓|0〉 (5)

denotes an Ising basis written in terms of the fermion Fock
state and

�(σ1, . . . , σN ) = Det[A] (6)

is the corresponding wave function amplitude. Here and in the
following, we will use ik and jk to denote the locations of the
kth up and the kth spin-down in the Ising basis |σ1, . . . , σN 〉
rather than the two end points of the kth valence bond. A is a

N
2 × N

2 matrix with its matrix element given by a(ik, jk′ ) at its
kth row and k′th column.

In practice, we can treat the RVB amplitude a(ik, jk )
as variational parameter directly. The variational state con-
structed in this way will be referred to as the general RVB
state (gRVB) in the following discussion. The number of vari-
ational parameters in the gRVB state increases very rapidly
with the system size. As we will see in the next section,
such an unfavorable feature of the gRVB state is compensated
partly by the fact that the calculation of the energy gradient in
the gRVB state is rather cheap.

B. Fermionic RVB states generated from mean-field ansatzs

The fermionic RVB state can also be generated by
Gutzwiller projection of mean-field ground state of the fol-
lowing Bogoliubov–de Gennes Hamiltonian:

HMF = −
∑

{i, j},σ
(χi, j f †

i,σ f j,σ + H.c.)

+
∑
{i, j}

(�i, j f †
i,↑ f †

j,↓ + H.c.). (7)

Here the condition �i, j = � j,i is imposed to enforce spin
rotational symmetry of the variational ground state. In gen-
eral, both χi, j and �i, j can be chosen complex. In our work,
χi, j and �i, j will be chosen real and be restricted to the
nearest-neighboring bonds. They are otherwise free of any
assumption.

HMF is usually referred to as a mean-field ansatz or a
variational ansatz of the fermionic RVB state. To generate
| f − RVB〉, we rewrite HMF in the following form:

HMF = ψ†

(−χ �

�† χ∗

)
ψ = ψ†Mψ (8)

in which

ψ† = ( f †
1,↑, . . . , f †

N,↑, f1,↓, . . . , fN,↓). (9)

Here χ and � are N × N matrices with χi, j and �i, j as their
matrix elements. HMF can be diagonalized by the following
unitary transformation:

ψ =
(

u v

−v u

)
γ , (10)

in which u and v are N × N matrices. The diagonalized
Hamiltonian takes the form of

HMF = γ †

(
E 0
0 −E

)
γ , (11)

in which E is a N × N diagonal matrix with positive definite
diagonal matrix elements. When � �= 0, the RVB amplitude
a(ik, jk ) of the corresponding fermionic RVB state is given by

a(ik, jk ) = (u−1v)ik , jk . (12)

When � = 0, the RVB amplitude is given by

a(ik, jk ) =
∑

Em<μ

ϕ∗
m(ik )ϕm( jk ), (13)
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in which ϕm( jk ) is the eigenvector of the matrix χ with
eigenvalue Em. Here μ denotes the chemical potential of the
fermionic spinon at half filling.

C. Particle-hole transformation

In practical variational calculation, it is often convenient
to adopt a particle-hole transformation on the down-spin
fermions, which is given by

f †
i,↓ → f̃i,↓. (14)

The mean-field ground state of HMF is then constructed by
filling up the lowest N eigenvectors of M. More specifically,
we can expand the RVB state as

| f − RVB〉 =
∑

{i1,...iN/2}
�̃(i1, . . . , iN/2)

N/2∏
k=1

f †
ik ,↑ f̃ †

ik ,↓|0̃〉, (15)

in which

|0̃〉 =
N∏

i=1

f †
ik ,↓|0〉 (16)

is the reference state with all sites occupied by spin-down
fermions (or the vacuum of f̃ operators). Here i1, . . . , iN/2

denote the locations of the N/2 spin-up fermions. Note that
they are also the locations of the N/2 holes of the spin-down
fermion. The wave function in the particle-hole transformed
picture then takes the form of

�̃(i1, . . . , iN/2) = Det[�], (17)

in which � is a N × N matrix of the form

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ1(i1) . . φN (i1)
. . . .

φ1(iN/2) . . φN (iN/2)
φ1(i1 + N ) . . φN (i1 + N )

. . . .

φ1(iN/2 + N ) . . φN (iN/2 + N )

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Here φn(i) denotes the ith component of the nth eigenvector
of the matrix M with negative eigenvalue.

D. Number of variational parameters

In this study, we use either the general fermionic RVB state
or RVB state generated from mean-field ansatz to describe the
ground state of the J1-J4 model. For the general RVB state,
there will be N (N−1)

2 variational parameters to be optimized on
a finite cluster with N sites. For RVB state generated from
mean-field ansatz, we can choose either a U (1) ansatz, in
which � = 0, or a Z2 ansatz, in which both χ and � are
nonzero. In the U (1) ansatz, there are 3N variational param-
eters to be optimized, which are the hopping amplitude χi, j

on the 3N nearest-neighboring bonds. In the Z2 ansatz, there
are 6N + 1 variational parameters to be optimized, which are
the hopping amplitude χi, j and the pairing amplitude �i, j on
the 3N nearest-neighboring bonds and the chemical poten-
tial setting the Fermi level of the spinon. The gRVB state
represents the most general form of a fermionic RVB state
and it may not be generated by any short-ranged mean-field
ansatz. Correspondingly, it contains a much larger number

of variational parameters. The optimization of large number
of variational parameters calls for very efficient optimization
algorithm, which we will now introduce.

IV. SOME NEW DEVELOPMENTS OF VARIATIONAL
OPTIMIZATION ALGORITHM

The key step in the variational Monte Carlo optimization
is the computation of the variational energy and its gradient.
Suppose that the wave function of the variational state |�〉 in a
orthonormal basis |R〉 is given by �(R); the variational energy
is then given by

E = 〈H〉� = 〈�|H |�〉
〈�|�〉 =

∑
R |�(R)|2Eloc(R)∑

R |�(R)|2 , (18)

in which the local energy Eloc(R) is defined by

Eloc(R) =
∑

R′
〈R|H |R′〉�(R′)

�(R)
. (19)

The gradient of the variational energy with respect to the
variational parameters is given by

∇E = 〈∇ ln �(R)Eloc(R)〉� − E〈∇ ln �(R)〉�. (20)

Here we denotes the variational parameters as α and abbre-
viate ∇α as ∇. These two quantities can be computed by
standard Monte Carlo sampling on the distribution generated
by |�(R)|2. In the calculation of the gradient, the key quantity
is ∇ ln �(R). For the general RVB state, it is given by

∇ ln �(R) = Tr[∇AA−1]. (21)

Since we take the RVB amplitude a(ik, jk ) directly as the
variational parameters, the matrix elements of ∇A is either 1
or 0, depending on whether the gradient is taken on a given
RVB amplitude. For RVB state generated from Gutzwiller
projection of the ground state of a mean-field ansatz, we have

∇ ln �(R) = Tr[∇��−1]. (22)

The matrix elements of ∇� can be calculated from the first-
order perturbation theory as follows:

∇φn =
∑
Em>0

〈φm|∇HMF|φn〉
En − Em

φm. (23)

Here |φn〉 and En denote the nth eigenvector and eigenvalue of
the mean-field Hamiltonian HMF.

To proceed the optimization procedure, one need also the
Hessian matrix of E with respect to the variational parame-
ters. However, the Hessian matrix is usually too expensive to
be calculated numerically. Different variational optimization
algorithms differ in their way to approximate the Hessian
matrix, which we will now review briefly.

A. The steepest descent

The steepest descent (SD) algorithm is the simplest op-
timization algorithm. It corresponds to setting the Hessian
matrix proportional to the identity matrix. In the SD algo-
rithm, the variational parameters are updated as follows:

α → α − δ∇E , (24)
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in which δ is the step length. The step length is usually ad-
justed by trial and error. A more intelligent way to adjust the
step length is the following self-learning trick, in which the
step length is updated according to the change in the direction
of the gradient as follows:

δ → δ ×
(

1 + η
∇E · ∇E ′

|∇E ||∇E ′|
)

. (25)

Here η ∈ (0, 1) is an acceleration factor and ∇E and ∇E ′ are
the gradients of the energy in the current and the previous
step. Suitable choice of η can accelerate significantly the
optimization procedure at the initial stage, when the energy
gradient is large.

The SD algorithm usually works very well at the initial
stage of the optimization procedure. However, it loses effi-
ciency when the optimization procedure encounters a long and
narrow valley with flat bottom in the energy landscape. In such
a situation, there will be large fluctuation in the eigenvalues of
the Hessian matrix. Approximating the Hessian matrix with
an identity matrix is then clearly not a wise choice.

B. Stochastic reconfiguration

The stochastic reconfiguration algorithm is a widely used
variational optimization algorithm. It mimics the effect of
the Hessian matrix with a positive-definite Hermitian matrix
S generated from the metric of the variational state in the
variational space [30]. More specifically, S is given by

S = 〈∇ln�(R)∇ln�(R)〉� − 〈∇ln�(R)〉�〈∇ln�(R)〉�.

(26)

It is easy to show that S is just the Hessian matrix of the
following quantity with respect to the change of variational
parameters:

�SR = 2 − 2
〈�|� ′〉√〈�|�〉〈� ′|� ′〉 . (27)

Here we assume that |�〉 is fixed and |� ′〉 is varying. �SR

defined in this way can be interpreted as the distance between
|�〉 and |� ′〉 in the Hilbert space.

In the SR algorithm, the variational parameters are updated
as follows:

α → α − δ S−1∇E , (28)

in which δ is the step length. The self-learning acceleration
trick is also applicable in the SR method.

The introduction of the S matrix in the SR method amounts
to replace the naive distance in the Euclidean space of varia-
tional parameters with the distance in the Hilbert space. Such
a regulation procedure can be very helpful when some varia-
tional parameters are nearly redundant. However, since S only
depends on the variational state but not on the Hamiltonian,
it cannot approximate the effect of the true Hessian matrix
correctly in certain situations. In practice, the SR method
may still suffer slow convergence or even run away from true
minimum. A better approximation of the effect of the Hessian
matrix is needed.

C. BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
is a quasi-Newton method. It generates an iterative approxi-
mation for the (inverse) of the Hessian matrix [34] from the
gradient. The approximate (inverse)Hessian matrix is updated
as follows:

Bk+1 =
(

I − skyT
k

yT
k sk

)
Bk

(
I − yksT

k

yT
k sk

)
+ sksT

k

yT
k sk

, (29)

in which k = 0, 1, 2 . . . ,

sk = αk+1 − αk,

yk = ∇Ek+1 − ∇Ek, (30)

are the difference between successive variational parameters
and energy gradient. αk=0 is the initial guess of the variational
parameters and ∇Ek=0 is the energy gradient at the starting
point. The Hessian matrix is initially set to be the identity
matrix, namely Bk=0 = I.

Using such an iterative approximation on the Hessian ma-
trix, the variational parameters are updated as follows:

αk+1 = αk + δ Bk∇Ek . (31)

Here δ is the step length. In principle the step length
should be determined by a linear search in the direction of
Bk∇Ek . Such a linear search can be accomplished in princi-
ple in the variational Monte Carlo simulation by reweighting
in the searching direction. However, to reduce computa-
tional expense, we choose a fixed step length by trial and
error.

D. Conjugate gradient

Another simpler method to go beyond the steepest descent
method is the conjugate gradient (CG) method [34]. It corrects
the searching direction as follows:

dk+1 = −∇Ek+1 + βk+1dk, (32)

in which k = 0, 1, 2, . . . ,

βk+1 = ∇Ek+1 · ∇Ek+1

∇Ek · ∇Ek
(33)

or

βk+1 = max

(∇Ek+1 · (∇Ek+1 − ∇Ek )

∇Ek · ∇Ek
, 0

)
. (34)

Initially we set β0 = 0.
The variational parameters are updated in the conjugate

gradient method as follows:

αk+1 = αk + δ dk, (35)

in which the step length δ should be determined by linear
search in the direction of dk . In practice, to reduce compu-
tational expense we choose a fixed step length by trial and
error.

E. Comparison of the performance of different
optimization algorithms

We note that for both the BFGS and the CG method, the
initial step of the optimization is just the SD update. As a
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FIG. 1. The comparison of the performance of the four optimiza-
tion algorithms in a typical situation. Shown here is the variational
energy of the J1-J4 model at J4 = 0.065 with a U (1) mean-field
ansatz, starting from the same initial guess and using the same
normalized step length.

result of the finite accuracy in the computation of the energy
and the gradient in variational Monte Carlo simulation, we cut
off the BFGS and the CG iteration at a finite depth. We find
empirically that 10 steps of BFGS or CG iteration has the best
balance between numerical efficiency and numerical stability,
after which we restart the iteration by setting k = 0.

Figure 1 compares the performance of the four algorithms
in a typical situation. Here we optimize the variational energy
of the J1-J4 model at J4 = 0.065 with the U (1) mean-field
ansatz. We start from the same initial guess and use the same
normalized step length. We find that the BFGS method has
the best numerical efficiency and stability among the four
algorithms. The CG algorithm exhibits a similar numerical ef-
ficiency as the BFGS algorithm but with a significantly larger
fluctuation. Both the steepest descent and the stochastic recon-
figuration method fail to escape from the the local minimum
around E ≈ −0.4976 within 2000 optimization steps. In the
following, we will mainly use the BFGS method. However,
we note that the conjugate gradient method has the advantage
that it does not need to store the approximate Hessian matrix,
which is huge when the number of variational parameters is
large.

V. THE VARIATIONAL PHASE DIAGRAM
OF THE J1-J4 MODEL

We have performed variational optimization of the J1-J4

model on a L × L cluster with periodic boundary condition in
both the a1 and the a2 direction(see Fig. 2). We have adopted
both the general RVB state and the RVB state generated from
a mean-field ansatz of either the U (1) or the Z2 form. No
further assumption is made on the form of the RVB state.
Figure 3 shows the variational phase diagram we get from
the optimization. For clearness we only present the result for
the Z2 RVB state. The results for the gRVB state and the
U (1) RVB state are qualitatively similar, with the variational
energies satisfying EgRVB � EZ2 � EU (1).

FIG. 2. The triangular lattice and its reciprocal vectors. Our
calculation is done on an L × L cluster with periodic boundary con-
dition in both the a1 and the a2 direction.

We find that there are three phases in the phase dia-
gram of the J1-J4 model. For 0 � J4 � 0.045, the optimized
RVB state is the well-known π -flux phase on the triangular
lattice [30]. The optimized variational energy exhibits only
a tiny curvature in this regime, indicating that the π -flux
phase, the best representative of the 120◦ ordered phase in
the space of fermionic RVB state, enjoys a finite range of
stability when we increase the ring exchange coupling. For
J4 � 0.09, the variational energy also has a very small cur-
vature. We find that the optimized RVB state in this regime
breaks the translational symmetry and exhibits a 4 × 6 peri-
odicity in its local spin correlation pattern. This phase will

0.00 0.03 0.06 0.09 0.12 0.15

-0.60

-0.57

-0.54

-0.51

-0.48

-0.45

E

J4

π-flux 4*6Zigzag

SFS

π-flux

FIG. 3. The variational phase diagram of the J1-J4 model on the
triangular lattice. Shown here is the result obtained from the Z2 RVB
state. The computation is done on a 12 × 12 cluster with periodic
boundary condition. The results for the gRVB state and the U (1)
RVB state are qualitatively similar. Here the thick blue line and thick
red line represent the variational energies of the SFS state and the
π -flux phase. The 4 × 6 phase in the large J4 region exhibits 4 × 6
periodicity in its local spin correlation pattern. The dashed line within
the zigzag phase separates two phases with different translational
symmetries.
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FIG. 4. The variational energies of the three kinds of RVB state
as functions of J4 in the range 0 � J4 � 0.045, computed on a 12 ×
12 cluster with periodic boundary condition. The variational state is
essentially independent of J4 in this regime and corresponds to the
π -flux phase on the triangular lattice.

thus be called the 4 × 6 phase in the following. For 0.045 �
J4 � 0.09, we find another symmetry-breaking phase with
zigzag spin correlation pattern. This intermediate phase will
be called the zigzag phase in the following. Notably, we find
that the optimized variational energy is significantly lower
than that of the SFS state. In fact, the SFS state is found
to be never a good approximation of the ground state of
the J1-J4 model. This is the most important finding of this
work.

Below we will present the results for each of the three
phases in more detail.

A. The π-flux phase

Figure 4 plots the variational energies computed from the
three kinds of RVB state as a function of J4 for 0 � J4 �
0.045. The variational energies of all these three kinds of RVB
state are very close to each other and are within statistical
error perfect linear functions of J4. Such a nearly zero cur-
vature behavior in the variational energy indicates that the
variational ground state is almost independent of J4. In the
case of the U (1) RVB state, the optimized variational state
reduces to the well-known π -flux phase on the triangular lat-
tice. This can be explicitly seen from the optimized variational
parameters of the U (1) ansatz, which indeed encloses a gauge
flux of π around every elementary rhombi of the triangular
lattice. We find that the small difference in the optimized
variational energies between the Z2 and the U (1) RVB state
can be attributed to finite-size effect. On a 24 × 24 cluster,
the optimized variational energy of the two states become
indistinguishable within the statistical error of the variational
Monte Carlo simulation. The equivalence between the opti-
mized U (1) and Z2 RVB state in this low-J4 regime can also
be seen from the static spin structure factor S(q), which is

defined as

S(q) = 1

N

∑
i, j

Si · S j eiq·(Ri−R j ). (36)

Here we define the components of the wave vector as follows:

q = q1b1 + q2q2, (37)

in which b1,2 are the two reciprocal vectors of the triangular
lattice. In Fig. 5, we present the static spin structure factor of
the optimized U (1) and Z2 RVB state at J4 = 0. We find that
S(q) is within statistical error independent of J4 in the whole
0 � J4 � 0.045 regime and features pronounced peaks at the
wave vector corresponding to the 120◦ ordered phase, namely
q = ( 2π

3 , 4π
3 ) and q = ( 4π

3 , 2π
3 ).

The energy difference between the general RVB state and
the U (1) or the Z2 RVB state is more tricky. We find that
the optimized gRVB state cannot be generated by any short-
ranged mean-field ansatz. However, the static spin structure
factor of the optimized gRVB state is essentially indistin-
guishable from that of the optimized U (1) or Z2 RVB state
[see Fig. 5(c) and 5(d)]. It is currently impossible to conduct
the optimization of the gRVB state on a cluster significantly
larger than the 12 × 12 cluster. For example, on a 24 × 24
cluster, the number of variational parameters in the gRVB
state becomes N (N−1)

2 = 165 600, which is too large to be
reliably optimized.

In all, we find that the optimized RVB state in the whole
0 � J4 � 0.045 regime represents a state essentially equiva-
lent to the π -flux phase on the triangular lattice, which is the
closest counterpart of the 120◦ ordered phase in the space of
fermionic RVB state.

B. The large-J4 phase

It is generally believed that in the large-J4 regime the SFS
state is the most favorable variational ground state. Indeed,
we find that the SFS state is locally extremely stable in this
regime. The SFS state is generated by the following mean-
field ansatz:

χi, j =
{

1, nearest neighbor
0, otherwise

�i, j = 0. (38)

As a result of the translational and rotational symmetry of the
mean-field ansatz, the energy gradient must be also transla-
tional and rotational symmetric. The energy gradient in the
SFS phase thus must vanish since the Gutzwiller projected
state is invariant under a uniform rescaling of all variational
parameters. In other words, the SFS phase is an exact saddle
point in the space of fermionic RVB state. To illustrate the
local stability of the SFS state, we have performed variational
optimization at J4 = 0.15 starting from the following initial
guess of the mean-field ansatz:

χi, j =
{

1 ± ηr, nearest neighbor
0, otherwise

�i, j = 0. (39)
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FIG. 5. The static spin structure factor S(q) of the optimized
(a) U (1), (b) Z2, and (c) gRVB states for J4 = 0. S(q) is essentially
independent of J4 for 0 � J4 � 0.045. (d) Comparison of the static
spin structure factor of the three kind of RVB states along the path
(0, 2π ) → (2π, 0).
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FIG. 6. The convergence of the variational energy (a) and the
variational parameters (b) towards those of the SFS state. Here we set
the distance of the initial guess from the SFS ansatz to be η = 0.75.

Here r is a random number distributed uniformly in the range
of r ∈ (0, 1), η is a constant measuring the distance of the
initial guess from the SFS ansatz. As is shown in Fig. 6, even
if we choose η as large as η = 0.75, the variational energy still
converges to a value very close to that of the SFS state, which
is E ≈ −0.576 at J4 = 0.15. The corresponding variational
parameters also converge to that of the SFS ansatz.

However, the SFS state is only locally stable. To illustrate
this point, we have performed variational optimization starting
from fully random initial guess of the variational parameters.
The optimization is done for J4 = 0.15 on a 12 × 12 cluster
with periodic boundary condition. A preliminary trial shows
that the optimized variational ground state exhibits an approx-
imate 4 × 6 modulation in its local spin correlation pattern.
This is illustrated in Fig. 7. We note that the modulation in
the local spin correlation is very strong, ranging from almost
pure spin singlet correlation to pure spin triplet correlation be-
tween nearest-neighboring spins. The translational symmetry
is seriously broken.

We then refine the optimization by assuming a 4 × 6 peri-
odicity in the variational parameters. We find that for both the
U (1) and the Z2 mean-field ansatz, the optimized variational
energy converge to values much lower than that of the SFS
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FIG. 7. The optimized variational ground state at J4 = 0.15 ex-
hibits 4 × 6 modulation in its local spin correlation pattern. Shown
here is the spin correlation between nearest-neighboring sites. Note
that the magnitude of the modulation in the local spin correlation is
very large, ranging from nearly pure spin singlet correlation to almost
pure spin triplet correlation between nearest-neighboring spins.

state. Figure 8 and Fig. 9 illustrate the convergence of the vari-
ational energies for randomly chosen initial guess of the U (1)
and the Z2 mean-field ansatz. For U (1) mean-field ansatz,
we find that about 1/3 of the variational optimization trials
converge to the lowest variational energy of E ≈ −0.603.
For Z2 mean-field ansatz, about 1/2 of the variational opti-
mization trials converge to the lowest variational energy of
E ≈ −0.606. The optimized variational energy for both types
of RVB states are about 5% lower than the energy of the SFS
state, which is E ≈ −0.576 at J4 = 0.15.

On the 12 × 12 cluster studied here, the most general
periodicity of the mean-field ansatz that is compatible with
the periodic boundary condition of the cluster is C1 × C2,
in which C1,2 = 1, 2, 3, 4, 6, 12 denotes the period in the a1

and a2 directions. We have performed refined variational op-
timization assuming each of such periodicity. We find that the
lowest variational energy is always obtained with the 4 × 6
periodicity at J4 = 0.15.

We find that the optimized variational energy as a function
of J4 exhibits a very small curvature in the large-J4 regime
(see Fig. 10). This implies that the variational ground state
is almost independent of J4 in this part of the phase diagram
also. A naive linear extrapolation of the variational energy
implies that the SFS state cannot be the true ground state of
the J1-J4 model for J4 � 0.5. To check if the SFS state can
be stabilized at still larger J4, we have performed variational
optimization for J4 = 10, a value that is too large to be realis-
tic for real materials. We find that a symmetry-breaking phase
with the same 4 × 6 periodicity in its spin correlation pattern
is still significantly lower in energy than the SFS state. More
specifically, we find that the optimized variational energy is
E ≈ −16.09 at J4 = 10. This is again about 5% lower than
the energy of the SFS state, which is E ≈ −15.33 at J4 = 10.
Figure 11 illustrates the local spin correlation pattern in the
optimized state, which is similar to that at J4 = 0.15. We thus
conclude that the SFS state is never the best RVB state for
the J1-J4 model and that the 4 × 6 state is the best variational
ground state in the whole range of J4 � 0.09. Such a state
breaks both the translational and the point group symmetry
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FIG. 8. (a) The convergence of the variational energy at J4 =
0.15 for a U (1) mean-field ansatz. Shown here is the results
from 82 optimization trials starting from randomly chosen initial
guess of the U (1) mean-field ansatz with 4 × 6 periodicity. The
calculation is done on a 12 × 12 cluster with periodic boundary
condition. About 1/3 of the optimization trials converge to the lowest
variational energy of E ≈ −0.603. This is much lower than the
energy of the SFS state, which is E ≈ −0.576. (b) The histogram
of the optimized variational energies from the 82 optimization
trials.

of the model and exhibits 4 × 6 modulation in its local spin
correlation pattern.

C. The intermediate phase(s)

The optimized variational ground state in the interme-
diate regime of 0.045 � J4 � 0.09 is characterized by a
zigzag modulation in its local spin correlation pattern. As
is illustrated in Fig. 12, the zigzag pattern manifests itself
most evidently in the antiferromagnetic correlated backbones
running through the 2a1-a2 or equivalent directions of the
triangular lattice. The translational symmetry and the ro-
tational symmetry are thus spontaneously broken. Looking
more closely, we find that the zigzag pattern in the 0.045 �
J4 � 0.055 regime differs from that in the 0.055 � J4 �
0.09 regime by an additional twofold translational symmetry
breaking. Figure 13 shows the optimized variational energy
for the zigzag phase. The energy difference between the SFS
state and the zigzag state is even more significant than that
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FIG. 9. (a) The convergence of the variational energy at J4 =
0.15 for a Z2 mean-field ansatz. Shown here is the results from 57
optimization trials starting from randomly chosen initial guess of the
Z2 mean-field ansatz with 4 × 6 periodicity. The calculation is done
on a 12 × 12 cluster with periodic boundary condition. About 1/2 of
the optimization trials converge to the lowest variational energy of
E ≈ −0.606. This is also much lower than the energy of the SFS
state, which is E ≈ −0.576. (b) The histogram of the optimized
variational energies from the 57 optimization trials.

in the 4 × 6 phase. A closer inspection also shows that the
energy difference between the U (1) and the Z2 state is more
significant in the zigzag regime than that in the π -flux and the
large-J4 regime.

Instead of the zigzag phase found here, several translational
invariant phases have been proposed in the intermediate-J4

regime in the literature. In Ref. [20], a nodal d-wave Z2

state with nematic spinon dispersion is proposed to be the
variational ground state in the intermediate regime. It is later
found that another Z2 state with d + id-wave spinon pairing
and quadratic band touching (QBT) in the spinon dispersion
is more favorable than the nodal d-wave state in a tiny range
of J4 [21]. The QBT state hosts gapless spinon excitation with
a finite density of state and a gapped gauge fluctuation spec-
trum as a result of the d + id-wave spinon pairing. Such an
excitation characteristics is argued to be helpful to resolve the
puzzle related to the anomalous gauge fluctuation correction
to the specific heat in the SFS state. While we think that the
anomalous gauge fluctuation correction in the SFS state is
only a theoretical artifact of the conventional gauge theory
argument [33], it is nevertheless interesting to compare the
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FIG. 10. The variational energies of the three kinds of RVB state
in the range of 0.09 � J4 � 0.15. The computation is done on a
12 × 12 cluster with periodic boundary condition. The optimized
variational ground state is found to be almost independent of J4 in
this regime, as is evident from the smallness of the curvature in the
optimized variational energy. Such a state is found to exhibit a 4 × 6
modulation in its local spin correlation pattern.

variational energies of these novel states to our variational
result. In Fig. 14, we plot the variational energies of the major
candidates of the variational ground state of the J1-J4 model
in the intermediate-J4 regime. From this figure we see that the
energy advantage of the QBT state over the nodal d-wave state
is meaningless when compared to the huge energy difference
between these states and the zigzag state we find from varia-
tional optimization. This establishes firmly the zigzag nature
of the variational ground state in the intermediate regime.

A zigzag phase has also been reported in a similar param-
eter regime in a recent DMRG study of the J1-J2-J4 model
[25], in which J2 denotes the exchange coupling between
next nearest-neighboring spins. Different from what we found
here, the zigzag phase reported in Ref. [25] exhibits magnetic

FIG. 11. The optimized variational ground state at J4 = 10 ex-
hibits the same 4 × 6 modulation in its local spin correlation pattern
as that for J4 = 0.15. Shown here is the spin correlation between
nearest-neighboring sites.
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FIG. 12. The local spin correlation pattern of the optimized vari-
ational ground state for (a) 0.045 � J4 � 0.055 and (b) 0.055 �
J4 � 0.09. Both states exhibit zigzag spin correlation pattern, with
the antiferromagnetic correlated backbones (plotted here in blue)
running through (a) the 2a1-a2 direction and (b) the 2a2-a1 direction.
(c) The local spin correlation pattern in a classical zigzag state,
in which the neighboring spin correlation takes the value of −1,
+ 1

4 , and − 1
4 on the blue, red, and green bonds. The zigzag pattern

shown in (a) differs from that shown in (b) by an additional twofold
translational symmetry breaking.

long-range order. The fermionic RVB state we adopted in this
study is not expected to describe accurately such magnetic
long-range ordered phases. However, as we have seen in the
case of the π -flux phase for 0 � J4 � 0.045, the fermionic
RVB state can nevertheless reproduce correctly the qualitative
feature of the spin structure factor of the magnetic ordered
phase. We find that this is also the case in the zigzag phase.
In Fig. 15 we plot the spin structure factor of the model at
J4 = 0.06 calculated from the optimized gRVB state [35]. The
spin structure factor is characterized by the prominent peaks
at q = (±π

2 , π ) and the weaker peak at q = (π, 0). These
are exactly the positions of the magnetic Bragg peaks in the
classical zigzag phase [illustrated in Fig. 15(c)].
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FIG. 13. The variational energies of the three kinds of RVB state
as functions of J4 in the range of 0.045 � J4 � 0.09. The computa-
tion is done on a 12 × 12 cluster with periodic boundary condition.
The optimized variational ground state in this regime is found to
exhibit a zigzag local spin correlation pattern. The zigzag pattern
in the 0.045 � J4 � 0.055 regime differs from that in the 0.055 �
J4 � 0.09 regime by an additional twofold translational symmetry
breaking.

With these considerations in mind, it is better to interpret
the π -flux phase in the small-J4 regime and the zigzag phase
in the intermediate-J4 regime both as the closest approxima-
tion of the corresponding magnetic ordered phases, namely
the 120◦ ordered phase and the zigzag ordered phase. Thus,

FIG. 14. The variational energies of the major candidates of
the variational ground state of the J1-J4 model in the intermediate
regime. The inset shows an enlarged view of the crossing region of
the nodal d-wave and the d + id QBT state. The energy of the nodal
d-wave and the QBT state are taken from Ref. [21]. The results of
this work are computed on a 12 × 12 cluster with periodic boundary
condition.
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FIG. 15. (a) The spin structure factor of the J1-J4 model at
J4 = 0.06 calculated from the optimized gRVB state. (b) The spin
structure factor in a classical zigzag phase. (c) Illustration of the
classical zigzag phase on the triangular lattice. The thick blue bonds
highlight the antiferromagnetic correlated backbones in the zigzag
phase. The spin structure factor shown in (b) is calculated assuming
that cot φ = 1

3 and that the spin has a unit length.

the transition at J4 = 0.045 should be better understood as
a first-order transition between two magnetic ordered phases
rather than the transition between a spin liquid phase and
a valence bond solid phase. According to Ref. [21], the
120◦ ordered phase becomes degenerate with the nodal d-
wave state at J4 = 0.0525. Since the energy of the zigzag
phase found here is lower than that of the nodal d-wave
state at J4 = 0.0525, we expect that the transition between
the 120◦ ordered phase and the zigzag phase to occur at a
smaller value of J4 than 0.0525. This is indeed the case in
our calculation.
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FIG. 16. (a) The ground-state energy of the J1-J4 model calcu-
lated from exact diagonalization on a 6 × 6 cluster with periodic
boundary condition (black dots). This is compared with the varia-
tional energies of the π -flux phase (green dots), the SFS phase (blue
dots), and the optimized Z2 RVB state (red dots) we obtained on a
12 × 12 cluster with periodic boundary condition. (b) The lowest two
eigenvalues in the identity representation of the 6 × 6 cluster cross
at both J4 = 0.049 and J4 = 0.059, implying potential first-order
transition there in the thermodynamic limit.

D. Comparison with the phase diagram obtained
from exact diagonalization

To provide further support to the variational results, we
have performed exact diagonalization (ED) calculation on a
6 × 6 cluster with periodic boundary condition. Here we focus
on the identity representation. Using translational and point
group symmetry, together with the spin rotational symmetry
along the z axis, we can reduce the number of symmetrized
basis to 31 554 903. The Hamiltonian matrix is then diag-
onalized by the Lanczos method to obtain its lowest few
eigenvalues. Figure 16 shows the ground-state energy as a
function of J4 obtained from the ED calculation. Two features
of the ground-state energy curve are of particular interest to
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FIG. 17. The local spin correlation pattern of the optimized vari-
ational ground state at J4 = 0.15 on a 6 × 6 cluster with periodic
boundary condition. This state exhibits a

√
3 × √

3 local spin cor-
relation pattern rather than the 4 × 6 pattern we find above on the
12 × 12 cluster. The magnitude of the modulation in the local spin
correlation is also much smaller than that in the 4 × 6 state.

us. First, the curvature of the ground-state energy is very small
in both the small-J4 and the large-J4 regime, a trend in good
agreement with the variational result presented above. Sec-
ond, in the intermediate-J4 regime, level crossings between
the ground state and the first excited state are observed, imply-
ing potential first-order transition in the thermodynamic limit.
Such transitions may be closely related to the appearance of
the zigzag phase we obtained in the variational study. Clearly,
to make more solid conclusion on this issue, more systematic
ED calculation is needed.

We note that the finite-size effect on a 6 × 6 cluster can
be very significant, especially when the considered state is
gapless. For example, if we perform variational optimization
on a 6 × 6 cluster with periodic boundary condition, then what
we would obtain at J4 = 0.15 is a symmetry broken state with
a

√
3 × √

3 modulation in its local spin correlation pattern (as
is illustrated in Fig. 17) rather the 4 × 6 state we find on the
12 × 12 cluster. The modulation of the local spin correlation
in the

√
3 × √

3 state is found to be much weaker than that
in the 4 × 6 state. Such a result is partially expected since
the 4 × 6 state is incompatible with the periodic boundary
condition of the 6 × 6 cluster. However, when we extend the
optimized ansatz of such a

√
3 × √

3 state to a 12 × 12 cluster,
we find that the variational energy is very bad. On the other
hand, when we extend the optimized ansatz of the 4 × 6 state
on the 12 × 12 cluster to a 24 × 24 cluster, the variational
energy is essentially unchanged. Figure 18 illustrates such
contrasting behavior of the

√
3 × √

3 state and the 4 × 6 state.
Thus, the dominance of the nearly uniform

√
3 × √

3 state on
the 6 × 6 cluster is purely a finite-size effect. This indicates
that a sufficiently large cluster is needed to draw conclusion
on the phase diagram of model.

VI. DISCUSSIONS AND CONCLUSIONS

While it is generally believed that the long-sought U (1)
spin liquid with a large spinon Fermi surface can be realized
in the large-J4 regime of the J1-J4 model on the triangular lat-
tice, recent DMRG simulation indicates that the expected spin
liquid phase may be replaced by some symmetry-breaking
phase in the real phase diagram of this model. The tension

×

×
× ×

×
×

FIG. 18. The contrasting behavior of the
√

3 × √
3 state and the

4 × 6 state during the optimization procedure at J4 = 0.15. (a) While
the

√
3 × √

3 state is the best variational state at J4 = 0.15 on a 6 ×
6 cluster, it generates a very bad variational energy on a 12 × 12
cluster. (b) On the other hand, the variational energy of the 4 × 6 state
is essentially unchanged when the calculation is extended from the
12 × 12 cluster to the much larger 24 × 24 cluster. This contrasting
behavior indicates that the dominance of the

√
3 × √

3 state on the
6 × 6 cluster is purely a finite-size effect.

between such a DMRG result and the abundant variational
results on this model calls for a systematic variational study
of the J1-J4 model without assuming any symmetry a prior.
This is a formidable numerical task. With the increase of the
number of variational parameters, the variational optimiza-
tion procedure becomes increasingly tricky as a result of the
abundance of local minimum in the energy landscape and/or
the large fluctuation in the eigenvalues of the Hessian matrix.
The J1-J4 model is a typical example in this regard. As we
have shown in the last section, the SFS state is an extremely
stable local minimum of the variational energy of this model
as a result of its special symmetry properties.

To map out the genuine ground-state phase diagram of the
J1-J4 model on the triangular lattice, we have proposed several
improvements on the variational optimization algorithm. The
key to such improvements is a better approximation of the
Hessian matrix with the gradient information. We find that
the finite depth BFGS algorithm has the best balance between
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numerical efficiency and stability. It can often proceed further
the optimization procedure when the conventional steepest
descent and the stochastic reconfiguration algorithm get stuck.

We have used the improved algorithms to optimize three
kinds of fermionic RVB state for the J1-J4 model on the
triangular lattice, namely a general RVB state whose RVB
amplitudes are treated directly as variational parameters, a
U (1) RVB state generated from Gutzwiller projection of the
ground state of a mean-field Hamiltonian with only fermion
hopping terms, and a Z2 RVB state generated from Gutzwiller
projection of the ground state of a BCS-type mean-field
Hamiltonian. We get consistent results from all these three
kinds of RVB state on the ground-state phase diagram of the
J1-J4 model on the triangular lattice.

From our variational optimization, we find that for 0 �
J4 � 0.045, the best variational state of the model is the well-
known π -flux phase on the triangular lattice. This state is
the closest approximation of the 120◦ ordered phase on the
triangular lattice within the subspace of the fermionic RVB
state, as can be seen from its static spin structure factor. In-
deed, such a Dirac spin liquid state can be tuned continuously
into a bosonic RVB state [30], which provides an extremely
accurate description of the ground state of the antiferromag-
netic Heisenberg model on the triangular lattice [29]. We
find that the variational state for 0 � J4 � 0.045 is almost
independent of J4, consistent with the observation that the
variational energy has nearly zero curvature as a function of
J4. Such an observation agrees well with the result obtained
from ED calculation on a 6 × 6 cluster. Thus, while the π -
flux phase does not posses true magnetic long-range order, it
nevertheless captures correctly the spin correlation pattern in
the 120◦ ordered phase. We thus expect that an extended vari-
ational calculation involving magnetic long-range order will
not change the structure of the phase diagram qualitatively.

For J4 � 0.09, a regime which is thought to be the most
favorable for the SFS state, we find that the optimized vari-
ational ground state exhibits a 4 × 6 modulation in its local
spin correlation pattern. The magnitude of the modulation
is found to be very large, ranging from nearly pure spin
singlet correlation to nearly pure spin triplet correlation be-
tween nearest-neighboring spins. The energy gain related to
such a symmetry breaking is found to be quite large. More
specifically, the energy gain of the 4 × 6 state over the SFS
state is found to be about 5% in the whole J4 � 0.09 regime.
We find that this conclusion is robust on larger clusters. In
addition, we find that the curvature in the variational energy is
also very small in the J4 � 0.09 regime, implying the nearly
J4-independent nature of the variational ground state. These
results indicate collectively that the 4 × 6 phase is the varia-
tional ground state in the whole J4 � 0.09 regime.

The variational ground state of the intermediate regime of
0.045 � J4 � 0.09 is found to exhibit zigzag modulation in its

local spin correlation pattern. Depending on if an additional
translational symmetry is broken or not, the intermediate
regime can be further divided into a type-I zigzag phase for
0.045 � J4 � 0.055 and a type-II zigzag phase for 0.055 �
J4 � 0.09. All these different phases are found to be con-
nected by first-order transitions. We find that the variational
energy of the zigzag phase is not only much lower than that
of the SFS state, but is also much lower than that of other
previously proposed variational states, in particular, the nodal
d-wave phase and the d + id-wave phase with quadratic band
touching in spinon dispersion.

Taken all these results together, we conclude that while
the SFS state is locally extremely stable, it is never the true
variational ground state of the J1-J4 model on the triangular
lattice. In addition, no translational symmetric spin liquid
state can be stabilized in the J1-J4 model. We find that the
energy advantage by breaking the translational symmetry can
be very significant. Compared to such large energy gain, the
tiny energy difference between the nodal d-wave state and the
d + id-wave state with quadratic band touching in the spinon
dispersion appears meaningless. Thus, any serious variational
study of the ground-state phase diagram of the J1-J4 model
should take into account the possibility of translational sym-
metry breaking. We think that this is true not only for the
particular model studied in this paper, but also applies in the
variational study of general highly frustrated quantum anti-
ferromagnetic models. The BFGS algorithm proposed in this
paper thus has much broader range of applications in future
study of quantum spin liquids.

Another lesson that we can learn from our result is that the
finite-size effect may significantly distort the phase diagram
of a highly frustrated spin model on a finite cluster, since
the model may develop symmetry-breaking pattern with a
rather large unit cell in its ground state. To extract the genuine
behavior of the model in the thermodynamic limit, sufficiently
large system (or sufficiently wide system in the case of DMRG
simulation) is needed. This calls for new developments
in the variational optimization algorithm and the DMRG
algorithm.

Finally, while the SFS state is unstable against the 4 × 6
state in the large-J4 regime, it may still be stabilized in real
materials by additional couplings that frustrate the 4 × 6 mod-
ulation pattern. A thorough study involving other major spin
couplings that can be generated from the strong coupling
expansion of the Hubbard model on the triangular lattice [27]
is necessary to fully address this problem. We leave such a
study to future works.
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