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Topological phases realized in time-reversal invariant (TRI) systems are foundational to the experimental
study of the broader canon of topological condensed matter as they do not require exotic magnetic orders
for realization. We therefore introduce topological skyrmion phases of matter realized in TRI systems as a
foundational step towards experimental realization of topological skyrmion phases. A different bulk-boundary
correspondence hidden from the tenfold way classification scheme is revealed by the presence of a nontrivial
value of a Z2 spin skyrmion invariant. This quantized topological invariant gives a finer description of the topol-
ogy in two-dimensional (2D) TRI systems as it indicates the presence or absence of robust helical edge states
for open boundary conditions, in cases where the Z2 invariant computed with projectors onto occupied states
takes a trivial value. Physically, we show that this hidden bulk-boundary correspondence derives from additional
spin momentum locking of the helical edge states associated with the topological skyrmion phase.. ARPES
techniques and transport measurements can detect these signatures of topological spin-momentum-locking and
helical gapless modes. Our work therefore lays the foundation for experimental study of these phases of matter.
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I. INTRODUCTION

Topological phases of matter have challenged our under-
standing since the discovery of the integer and fractional
quantum Hall effects [1–3] and the prediction of the paradig-
matic Chern insulator [4,5], culminating in the experimental
realization of the quantum spin Hall insulator (QSHI) [6–14]
followed by the three-dimensional (3D) topological insu-
lator (TI) [15–21]. Due to the natural time-reversal (TR)
symmetry of most experimental setups, many materials
with TR-invariant topology have been identified such as in
TI ultrathin films [22–24], van der Waals heterostructures
[25–28], and transition-metal dichalcogenides in particular,
given their large spin-orbit coupling [29,30]. These exotic
states of matter present distinct bulk and edge properties
generically characterized by topological invariants [31–37]. In
the case of effectively noninteracting topological phases, it is
well known [32,38,39] that a nontrivial topological invariant
characterizes the topological phase in the bulk and implies
the presence or absence of topologically robust metallic edge
states which persist up to closing of the minimum direct bulk
energy gap when the symmetries protecting the topological
phase are respected [6,9,17–20,40]. These topological phases
correspond to topologically nontrivial mappings from the full
Brillouin zone (BZ) to the space of projectors onto occu-
pied states [31,32,38,39,41], with the number of topologically
distinct sectors defined by homotopy groups. An equivalent
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classification scheme is also derived by examining the nonlin-
ear sigma models characterizing the topologically protected
states localized at the boundary, with explicit calculation of
homotopy groups facilitated by K-theory [31,41].

The set of mappings from the full Brillouin zone to
the space of an observable O generally exhibits topological
sectors if the mappings correspond to a nontrivial homotopy
group, however [42,43]. The expectation value of O corre-
sponding to such a nontrivial homotopy group can wind over
the Brillouin zone to yield quantized, nontrivial topological
charge for mappings in topological sectors; this topological
charge is, in general, distinct from the topological charge
due to winding of the projectors onto occupied states. A
physically relevant degree of freedom that has been studied
in previous works is spin [42–44], though only recent work
[42,43] considers cases where the spin topological invariant
is not locked in value to the projector topological invariant
[44]. These topological phases associated with the spin degree
of freedom specifically are known as topological skyrmion
phases of matter [42], which are now understood to be lat-
tice counterparts and first evidence of quantized transport of
magnetic skyrmions, a quantum skyrmion Hall effect [45].
Notably, the quantization of topological charge computed as
the winding of the ground state spin expectation value over
the full BZ is guaranteed whenever the minimum magnitude
of the ground state spin expectation value is finite, even when
spin is not a conserved quantity [42,43].

II. MODELS

In the following, we consider tight-binding Hamiltonians
which preserve time-reversal symmetry (TRS) and real-
ize skyrmions in spin textures over the Brillouin zone. To
construct such Hamiltonians, we combine a TRS-breaking
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Hamiltonian, which realizes a topological skyrmion phase,
with its time-reversed partner, and couple these two
Hamiltonians with additional spin-orbit coupling (SOC)
terms. This approach takes inspiration from construction of
some Hamiltonians describing QSHI, by pairing a Chern insu-
lator with its time-reversed partner, and then adding nonneg-
ligible SOC terms [6,7,9]. A similar construction was used to
realize first examples of helical topological skyrmion phases
[42] characterized by nontrivial skyrmion numbers computed
for mirror subsectors, equal in magnitude and opposite in sign.
The present work goes beyond this past study in that block
diagonalization is not required, and time-reversal symmetry
is present. While topological skyrmion phases of matter are
realized by three-band Bloch Hamiltonians [45], the simplest
cases of topological skyrmion phases are, arguably, in four-
band models with generalized particle-hole symmetry [42,43],
therefore we consider an eight-band model. The additional
degree of freedom has to be given by the spin of the elec-
tron since the four-band models possess no TR symmetry.
We therefore reinterpret the skyrmion for each spin sector
as forming in the texture of a pseudospin degree of freedom
over the Brillouin zone. This is consistent with past work on
topological skyrmion phases: ultimately, any pseudospin with
the appropriate set of deformations to yield a nontrivial homo-
topy group has the potential to realize a topological skyrmion
phase [45].

Explicitly, we consider the following Hamiltonian for the
time-reversal invariant (TRI) topological skyrmion phase:

H1(k) = s0[sin kyτ0σy + ε(kx, ky)τzσz] + sin kxszτzσx

+ �(kx, ky ) + VSOC + Vbulk, (1)

where sμ, τμ, σμ, μ = 0, 1, 2, 3 are Pauli matrices act-
ing on the spin, particle-hole, and pseudospin degrees of
freedom, respectively. We have defined ε(k) = 2 + M −
t (cos kx + cos ky), where t, M are real numbers describing
hopping and staggered potential amplitudes. We further re-
strict ourselves to spin-triplet pairing in the pseudospin sector
�(k) = �0(sin kxs0τyσ0 − sin kyszτxσz ), where �0 is the pair-
ing strength, and spin orbit coupling term VSOC = csxτ0σy.

Given the high symmetry of the Hamiltonians, there is
some possibility of other symmetries protecting other topo-
logical phases besides those characterized by the Z2 projector
invariant of the QSHI, or the skyrmion invariant. We therefore
also include the term Vbulk, which may contain additional
perturbations to break all symmetries save for particle-hole
symmetry and time-reversal symmetry as discussed below.
For negligible SOC, this Hamiltonian consists of two topo-
logical skyrmion phase Hamiltonians, which possess a total
Chern number Ctot of +2 or −2 and skyrmion number Q of
−1 or +1 for half-filling, respectively, depending on the spin
sector. For nonnegligible SOC, this corresponds to a trivial
value for the Z2 projector topological invariant of the quantum
spin Hall insulator phase, and a nontrivial value for the Z2

skyrmion topological invariant.
To explore the consequences of the nontrivial skyrmion

topology, we additionally consider a counterpart TRS
Hamiltonian constructed from topological skyrmion phase
Hamiltonians with an even total Chern number and even

skyrmion number:

H2(k) = s0[t cos kxτzσx + cos (kx + ky)τzσz]

+ t cos kyszτ0σy + �(kx, ky) + VSOC. (2)

As these two Hamiltonians each possess particle-hole sym-
metry (PHS), they can be written in the Nambu ba-
sis to describe superconductors at mean-field level using
Bogoliubov de Gennes formalism [46,47]. Equations (1)
and (2) are invariant under the particle-hole operators C1 =
szτxσzK and C2 = τxK , respectively, which each square to one.
By construction, each model is also invariant under the spinful
time-reversal operation T = −isyK .

III. TOPOLOGICAL CHARACTERIZATION

To characterize the topology of these models, we employ
a generalization of the skyrmion invariant to TRI systems.
The use of the total skyrmion number to characterize the
topology fails since, in analogy to the Chern number, it
is always zero when spinful TRS is present, as proved in
Appendix S1 [48]. In the case of the quintessential two-
dimensional (2D) TR-invariant systems classified by the
tenfold way, one can construct a nonzero topological invariant
in multiple equivalent formalisms. One such path involves
the usage of Kramer’s theorem to express the Hamiltonian
in terms of the helicity basis or Kramers pair basis, where
the Hamiltonian is block diagonal. This can be done in the
case of negligible SOC. Then, for each Hamiltonian one can
calculate the Chern number and define a parity index ν =
(C − CT R)/2 mod(2) = (−1)C . The parity index is equivalent
to the celebrated Z2 invariant of Kane-Mele [6,9].

In analogy to this parity invariant, we may compute
a skyrmion number for each spin sector, characterizing a
topological pseudospin texture over the Brillouin zone. The
explicit form of the spin operators is given in Appendix S2
[48] and a schematic visualization of this mapping is shown
in Fig. 1. Once these operators are defined, the topolog-
ical skyrmion invariant can be calculated for each spin
sector so as to obtain two QI ,QII ∈ Z integers. As de-
tailed in Appendix S2 [48], these quantities are opposite
in sign and equal in magnitude so that it is natural to
define a TR-skyrmion invariant or skyrmion parity given
by νQ = (QI − QII )/2 mod(2). This invariant, which now
fully takes into account the TR-invariant nature of the
system, will be shown to be linked to a bulk-boundary
correspondence when open boundary conditions (OBC) in
x or y are applied. It will be further shown numerically that the
helical edge states that present when the TR-skyrmion invari-
ant is nontrivial are robust to disorder and local perturbations.
Furthermore, the remarkable behavior displayed by this phase
does not rely on crystalline point group symmetries, as will be
shown by explicitly breaking all symmetries except for time
reversal and particle hole.

IV. RESULTS

Starting with the simplest case of negligible spin-orbit
coupling, we consider two uncoupled Hamiltonians labeled
by spin sector, which each possess four bands, with a well-
defined Chern number and skyrmion number as described

235102-2



TIME-REVERSAL INVARIANT TOPOLOGICAL SKYRMION … PHYSICAL REVIEW B 108, 235102 (2023)

ŜI(k)

ŜII(k)ŜII(k)

FIG. 1. Pseudospin textures of the TR skyrmion phase analyzed
in the main text. The arrows represent the pseudospin expectation
value 〈SI

μ〉k for one TR sector denoted by I , and this skyrmion texture
has a TR partner (lower skyrmion texture), which is given by the
pseudospin expectation value 〈SII

μ 〉k of the II TR sector. The color is
proportional to the polar angle of the texture. The skyrmion numbers
correspond to QI = +1, QII = −1 for the model of (1) with M =
−1, �0 = 0.5, λ = 0.3, and c = 0.5.

in Liu et al. [43]. For H1(k) the total Chern number of
each sector takes only two nontrivial values CI = ±2 and
CII = −CI because of TRS. As the topological invariant for
a quantum spin Hall insulator with nonnegligible SOC ac-
cording to the tenfold way classification scheme is ν = (CI −
CII )/2 mod(2), the value of ν for our Hamiltonian is then
always trivial as ν = 2 mod(2) = 0 mod 2.

In contrast, QI = ∓1 in the regions of the phase diagram
where CI = ±2. Therefore, the skyrmion number for the
TRI system νQ evaluates to νQ = (QI − QII )/2 mod(2) =
1 mod(2) for these regions of the phase diagram. The sys-
tem with nonnegligible SOC is therefore in a topologically
nontrivial phase according to the skyrmion invariant, even
when the projector invariant indicates the system is topologi-
cally trivial.

To explore the consequences of the nontrivial skyrmion
number paired with the trivial projector topological invari-
ant, we consider the case of the trivial projector invariant
and trivial skyrmion number by comparing results for the
Hamiltonian given by Eq. (1) with those for the Hamiltonian
given by Eq. (2). In the case of Eq. (2), CI = ±4 in the topo-
logically nontrivial regions of the phase diagram, correspond-
ing to ν = 0 when SOC is nonnegligible, and QI = ∓2, yield-
ing a trivial νQ = 0 as well. Comparing these two cases, we
observe additional structure that is captured by the skyrmion
invariant, which is richer than the tenfold way classification
scheme.

The previous analysis is valid when no SOC term is
present. For ν even, it is known that as long as VSOC does not
break TRS and does not close the minimum direct bulk energy
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FIG. 2. (a) Phase diagram of the TR-skyrmion invariant νQ for
a fixed value of �0 = 0.5 and bulk perturbation λ = 0.3 of model
(1). (b) Minimum direct gap as a function of c and M for the same
parameter values. (c) Minimum pseudospin magnitude for the first
TR or spin up sector. (d) Skyrmion texture for vanishing magnitude
c = 1.5, M = −1, for the first TR sector, the arrows represent the
vector (〈Sx

I 〉, 〈Sy
I 〉) while the color represents 〈Sz

I 〉.

gap, then the invariant will always be trivial and the system
is expected to be topologically trivial. We therefore explore
the effects of nonnegligible SOC in systems characterized by
the ν invariant, but also the previously unidentified skyrmion
invariant νQ.

Having defined this TR-skyrmion invariant νQ, we com-
pute phase diagrams characterizing the skyrmion topology for
Hamiltonian Eq. (1), which are shown in Fig. 2. νQ is shown
in Fig. 2(a) for �0 = 0.5, as a function of SOC constant c
and mass parameter M. To understand the stability of the TRI
topological skyrmion phase and corresponding quantization
of νQ, we also show the minimum direct bulk energy gap
�E in Fig. 2(b) and the minimum spin magnitude |〈SI〉| in
Fig. 2(c), respectively, each as a function of c and M. For this
parameter set, two regimes are distinguished in the case of
H1(k): the trivial regime of zero skyrmion number, and the
region of QI = ±1,QII = ∓1. Quantization of νQ survives
for finite c and is nontrivial for the regime −2 < M < 0 when
each of �E and |〈SI〉| are finite. For sufficiently large c,
|〈SI〉| goes to zero, and νQ is finite but unquantized, smoothly
approaching zero with further increase of c. The pseudospin
texture corresponding to one of these unquantized values of
νQ is shown in Fig. 2(d). This situation is analogous to the loss
of quantization of the Hall conductivity in a Chern insulator
when the Fermi level intersects bands, rather than bands being
completely filled or empty.

For this model, νQ only changes when �E = 0 cor-
responding to a type-I topological phase transition. This
corresponds to symmetry protection of two sets of spin op-
erators, each with 4 × 4 matrix representation, as opposed
to a lower-symmetry model with a single set of spin oper-
ators with 8 × 8 matrix representations: we have effectively
two four-band toy models for topological skyrmion phases
still despite finite SOC terms, and it is previously known
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FIG. 3. Normalized ground state pseudospin expectation value
plots for the model of (1) with M = −1.3, �0 = 0.5, λ = 0.4,
and c = 0.8. (a) and (c) show the x-y pseudospin texture and nor-
malized |〈[S I

x (k),S I
y (k)]〉|, |〈[S II

x (k),S II
y (k)]〉|, respectively. (b) and

(d) show the normalized z component of the pseudospin texture 〈Sz
I〉

and 〈Sz
II 〉, respectively.

that four-band models for topological skyrmion phases with
generalized particle-hole symmetry C ′ lack sufficient degrees
of freedom to realize the type-II topological phase transition
[43], although three-band models without C ′ symmetry realize
type-II topological phase transitions quite generically [45].

An example of the skyrmion texture with QI = +1, with
M = −1.3, �0 = 0.5, and c = 0.8 is shown in Figs. 3(a) and
3(b). The time reverse partner with the antiskyrmion QII =
−1 is shown in Figs. 3(c) and 3(d) for the same parameter
values.

We now include the effect of a symmetry-breaking term
additionally to the normal SOC given by

Vbulk(k) = λ[sin(kx + ky) cos(ky)syτxσ0 + sin(kx )sxτzσ0].

(3)

This extra term in the Hamiltonian breaks all spurious crys-
talline symmetries of the original Hamiltonian in Eq. (1).
Included in those symmetries is inversion so that inversion is
broken in the bulk as well as C ′ symmetry. The only remaining
symmetries in the model are particle-hole C and time-reversal
T symmetry as well as the combined chiral CT .

Figure 3 shows a winding within each of the two TR sectors
(I and II) that remains even with nonnegligible SOC.

An important region of the phase diagram is the zero
energy and zero pseudospin magnitude regime above approxi-
mately c = 1.2. In this case, because of the gapless spectrum,
the skyrmion number destabilizes and QI ,QII are not well
defined just as the prototypical Z2 invariant. Remarkably,
as shown in Fig. 2(d), the pseudospin still winds in such a
manner that almost everywhere in the BZ it forms a skyrmion.
The points of zero spin magnitude seem to not deform the
global structure that give rise to the skyrmion texture, al-
though the TR skyrmion invariant is destabilized in this case.
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FIG. 4. (a) Skyrmion numbers QI (red) and QII (blue) com-
puted for M = 1, �0 = 0.5 as a function of SOC c for the model
Hamiltonian of Eq. (2). (b) Minimum direct gap between bands
enclosing zero Fermi energy. (c and d) Normalized ground state
pseudospin expectation value plots with t = 1, �0 = 0.5, λ = 0.4,
and c = 0.5. (c) shows the x-y pseudospin texture |〈[S I

x (k),S I
y (k)]〉|,

while (d) shows the normalized z component of the pseudospin
texture 〈Sz

I〉.

It is worth noting that we can also do the same analysis for
the second Hamiltonian H2(k); in this case the pseudospin
textures for each TR subsector result in a quantized skyrmion
invariant of ±2 and thus not only a trivial projector invariant
but also a trivial skyrmion parity. This is shown as a function
of SOC in Fig. 4 along with an example of a skyrmion texture.
It is worth mentioning that even if the skyrmion parity is
trivial across the phase diagram, we still observe quantization
of the skyrmion invariant as well as the nontrivial relation
QI = −QII holding for all parameter values.

V. BULK-BOUNDARY CORRESPONDENCE

The two Hamiltonians, Eqs. (1) and (2), each possess a
C ′-invariant Chern insulator with even Chern number and its
TR partner. For Eq. (1), the magnitude of this Chern number is
2, and for Eq. (2), it is 4. For nonnegligible SOC or other per-
turbations breaking Sz conservation, the Z2 projector invariant
calculated from ν = (C − CT R)/2 mod(2) will always be triv-
ial for these even Chern numbers as long as the bulk gap does
not close according to the tenfold way [32,39]. One therefore
expects the edge states present for zero SOC associated with
the Chern insulators will hybridize and gap out immediately
for finite coupling between the sectors related by TRS. More
generally, all even Chern number Hamiltonians coupled to
their TR partners are predicted to yield a topologically trivial
phase due to Z2 classification in these cases.

We observe a counterexample to this statement, that all
Hamiltonians with an even total Chern number coupled to
their TR partners are predicted to yield a topologically
trivial phase, for νQ odd in value, however. We first
consider the Hamiltonians Eqs. (1) and (2) for λ = 0, c = 0
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corresponding to negligible SOC and negligible bulk
perturbation, respectively. Each exhibits localized edge
states in its slab spectrum that connect bulk conduction and
valence bands. We observe an even number of Kramers
pairs at the boundary, in agreement with TR symmetry. For a
QSHI, finite c corresponding to the nonnegligible SOC term is
expected to gap out the helical edge modes as the topological
classification associated with mappings to projectors onto
occupied sites reduces from Z to Z2. However, in the model
considered here, the boundary states appearing from applying
OBC to the Hamiltonian (1) do not gap out for finite c and
nonnegligible SOC. The helical modes instead remain gapless
and localized on the edges. Furthermore, the edge states of
Eq. (2) gap out for finite c corresponding to nonnegligible
SOC, with the energy gap being proportional to c, as expected
for a trivial phase. This shows there is some correspondence
between additional robustness of the helical edge modes and
νQ odd in value.

We further investigate the mechanism for this unexpected
robustness of the helical edge modes for trivial Z2 projector
invariant and nontrivial Z2 skyrmion invariant by considering
λ finite, where λ is the free parameter of a bulk perturbation
that breaks all symmetries of Eq. (1), except for TR and
particle-hole. The results of this perturbation are summarized
in Fig. 5. Figures 5(a) and 5(b) show that, even with all crys-
talline symmetries broken, the gapless edge states are present.
This shows that the gapless edge states are not protected by
crystalline point group symmetries of the bulk.

We investigate the robustness of the gapless modes against
edge perturbations. Figures 5(c) and 5(d) show the slab spectra
for an additional edge perturbation in Eq. (1), which has
previously been shown to gap edge states of the QSHI [49]:

Vedge(y, kx ) =

⎧⎪⎨
⎪⎩

V1 cos(kx )s0τ0σz y = 0
−V1 sin(kx )sxτzσ0 y = Ny

0 else.
(4)

This perturbation can also be applied for the case of OBC
in the x direction by interchanging the x and y labels in its
definition. As is clear from the plots in Figs. 5(a)–5(d), the
gapless points may shift, but they remain present even in the
presence of spin-orbit coupling.

We also investigate the effects of on-site disorder on the
edge dispersion and localization of the edge states protected
by the skyrmion topology. We add on-site disorder of the
form Vjs0τzσ0 for OBC in y, with j being the layer index. This
form of disorder preserves time-reversal and particle-hole
symmetries. The effects on the energy spectrum are shown
in Figs. 5(e) and 5(f), respectively. We find that the gapless
edge states persist in the presence of a random disorder
realization, as shown in Fig. 5(e). To compute corresponding
disorder-averaged results, we compute the spectrum of Eq. (1)
in this slab geometry for each kx, and then combine these
energy eigenvalues for each kx into a single larger array,
which we then sort in energy. This is computed for each of
100 disorder realizations, and the average of these sorted
spectra is shown in Fig. 5(f). We find the edge states of this
disorder-averaged spectrum remain gapless, corresponding to
each disorder realization simply shifting the crossing point of
the helical modes in kx.
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FIG. 5. (a) Energy spectrum for the model of Eq. (1) with OBC
in y and periodic in x with parameters M = −1, �0 = 0.5, c = 0.4,
length Ny = 200, and λ = 0.0. (b) Energy spectrum for the same
conditions except λ = 0.3. (c) Edge spectrum with OBC in y for
M = −1, �0 = 0.5, c = 0.5, and λ = 0.3 with the edge perturbation
discussed in the text V1 = 0.1. (d) Same parameters and perturbation
but now with OBC in x. (e) Edge spectrum with OBC in y for the
same parameters as (c) but with some random disorder realization
respecting particle-hole and TR. (d) Same parameters and perturba-
tion but now with OBC in x. (f) Energy spectrum as a function of
eigenvalue index i for a disorder average over 100 on-site potentials
Vjs0τzσ0 distributed with zero mean and standard deviation 0.1. For
a system with open boundary conditions in y, periodic in x and
parameters M = −1, �0 = 0.5, c = 0.5, and λ = 0.3.

We now also explore how the nontrivial skyrmion
invariant νQ alters the character of the edge states to
prevent hybridization. Given related work introducing
the observable-enriched partial trace and characterizing the
additional spin momentum locking of edge states due to
nontrivial skyrmion number, we compute the pseudospin
expectation values for the edge states for a given TR sector in
a slab geometry with either x or y directions open so as to have
ky or kx as a good quantum number. We find that, even though
nonneglible SOC is present, the edge state pseudospin texture
has a very distinct pattern depending on the orientation of
the edge. For open boundary conditions in the y direction,
near the crossing of the edge modes the pseudospin 〈SI

y〉, 〈SI
z〉

seems to average to zero for each edge, while 〈SI
x〉 does not,

as seen in Fig. 6. Instead the value of 〈SI
x〉 on each edge seems

to be minus the one of the other edge.
We additionally confirm the nontrivial nature of the edge

states by computing the σxx conductivity as a function of
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FIG. 6. (a) x component of the pseudospin expectation value for
the edge states of the Hamiltonian in Eq. (1) with parameters M =
−1, �0 = 0.5, λ = 0.3, c = 0.5 and open boundary conditions on y.
The color is proportional to the localization on either edge, computed
by taking the probability density at each edge and subtracting them.
(b) and (c) show the y, z components of the pseudospin expectation
value for the edge states, respectively. (d) Probability density for the
edge states of the Hamiltonian in Eq. (1). (e) Conductivity along xx
as a function of energy for the Hamiltonian in Eq. 1 with param-
eters M = −1, �0 = 0.5, λ = 0.0, c = 0.5 and full open boundary
conditions; random Gaussian disorder along the whole sample with
standard deviation 0.01 is present. (f) Two-point reduced correlation
spectrum for the Hamiltonian in Eq. 1 with parameters M = −1,
�0 = 0.5, λ = 0.3, c = 0.5 and all T , C symmetry allowed pertur-
bations with amplitude 0.5 turned on, for a cut along the y axis and
traced over L = 200 lattice sites and particle-hole degree of freedom.

energy as shown in Fig. 6(e). Here, the conduction band of
the system starts around 0.6 in units of the hopping, since
this was set to be one by default, and so a trivial zero con-
ductance would be expected below it. Instead a quantized
longitudinal conductivity of 4e2/h appears, even in the pres-
ence of disorder. Such a signature implies the existence of
transmission channels present in the system which necessarily
come from edge state transmission since the bulk material is
an insulator [50–52]. Specifically for the case of the QSHI,
it has been shown that a quantized transport robust to dis-
order, as in Fig. 6(e), is indeed linked to the presence of
topologically protected edge states which for the QSHI carry
a 2e2/h conductance [53]. We indeed observe a quantization
to 4e2/h consistent with the four edge states per edge which
appear when opening boundary conditions as discussed in
the previous paragraphs. The robustness to disorder for this
ν = 0, νQ = 1 case is consistent with quenching of SOC by

the topological spin polarization of the edge states that is part
of the bulk-boundary correspondence of topological skyrmion
phases of matter. We may also understand it from the per-
spective of the lower-symmetry realizations of topological
skyrmion phases in the study of the quantum skyrmion Hall
effect [45]: three-band tight-binding models for topological
skyrmion phases of matter without C ′ symmetry realize gen-
eralized Thouless pumps, in which spin angular momentum is
pumped, rather than electric charge. The spin polarization of
edge states observed here corresponds to a C ′-symmetric and
TR-symmetric Thouless pump of spin angular momentum,
and gaplessness of edge states is required for this pumping
in correspondence with nontrivial νQ.

However, the most robust astonishing feature associated
with the skyrmion invariant is seen upon tracing out the
particle-hole degree of freedom in each spin sector, by
performing the observable-enriched partial trace defined in
Appendix S3. That is, we characterize the skyrmion topol-
ogy by tracing out the particle-hole degree of freedom—in
addition to a virtual cut in real space [54]—to compute a
reduced two-point function and corresponding entanglement
spectrum computed from the ground state as seen in Fig. 6(f).
In correspondence with the nontrivial skyrmion invariant, this
observable-enriched entanglement spectrum exhibits helical
edge modes. We may therefore understand the spin polar-
ization of edge states in the full system as consequences
of the bulk-boundary correspondence of a potentially open
subsystem, realized by tracing out the particle-hole degree of
freedom.

In addition to the previous characterization of the edge
states, we finally also explore the remarkable robustness of
the gapless helical edge modes for trivial projector invariant
and nontrivial skyrmion invariant, by enumerating all pos-
sible spin-orbit coupling terms that preserve time-reversal
symmetry and particle-hole symmetry. Out of all possible six
momentum-even terms, the gapless helical edge modes are
robust against three of these terms, and the other three gap
them out. These terms are provided in Appendix S4 [48]. We
distinguish the three SOC terms, preserving the gapless helical
edge modes from those which gap them out by additional
symmetry protection.

First, we find that certain 4 × 4 submatrices of the
Hamiltonian must preserve (CT )p symmetry (defined in
Appendix S4 [48]), otherwise an effective Rashba SOC term
is introduced, permitting finite y component of spin in sector
I/II for the edge states in the vicinity of the gapless point(s)
in the edge spectrum. That is, the spin momentum locking
of the edge states is relaxed. As discussed in Appendix S4
[48], clockwise spin rotation about the z axis within sector I/II
for one state at the edge is compensated by counterclockwise
rotation of the second state at that edge within the same sector
(the C ′ partner of the first state), such that the net spin of
these edge states in combination remains polarized in the x
direction. We may compute the observable-enriched entan-
glement spectrum as defined in Appendix S3 [48] to examine
bulk-boundary correspondence in our system upon tracing out
the particle-hole degree of freedom of each spin sector to
further characterize this edge state spin texture, shown in Ap-
pendix S4 [48]. We find the spin textures are consistent with
gapless states of the spin subsystem propagating along the
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edge deep within the bulk gap of the entanglement spectrum.
Indeed, we examine the edge spectrum of the spin subsystem
explicitly to show the nontrivial spin topology is preserved
in this lower-symmetry case, but the observable-enriched en-
tanglement spectrum exhibits additional kx-dependent Rashba
splitting. This finite y spin component permits hybridization
between edge states previously forced to zero by the stricter
spin momentum locking for (CT )p preserved, gapping out the
helical edge states protected by the spin topology.

Second, in this system, we have three twofold degrees of
freedom, corresponding to the s, τ , and σ Pauli matrices,
respectively. The symmetry operator C ′, which acts on the τ

and σ degrees of freedom only (acting simply as a constant
in the s sector), is required to define two skyrmion numbers,
QI and QII , computed as winding of spin SI and SII in terms
of the matrices discussed in Appendix S2 [48], respectively.
The precise statements of these symmetry requirements are
provided in Appendix S4 [48]. This additional symmetry pro-
tection reflects the fact that the helical edge modes are being
protected by topology of subsets of the degrees of freedom,
and indicates that the concept of symmetry protection for
topological phases must be generalized in light of the topo-
logical skyrmion phases of matter.

VI. CONCLUSIONS

In this paper, we introduce TRI topological skyrmion
phases of matter. These are topological phases realized in
systems with time-reversal symmetry as required to protect
the quantum spin Hall insulator (QSHI) phase, but which are
distinct from the QSHI phase. The QSHI is a topological
phase of the tenfold way classification scheme [32], resulting
from mappings from the full Brillouin zone to the space of
projectors onto occupied states, while the TRI skyrmion phase
arises from topologically nontrivial mappings from the full
Brillouin zone to the space of ground state spin expectation
values. The TRI skyrmion phases are therefore characterized
in the bulk by formation of a skyrmion in the texture of the
ground-state spin expectation value over the Brillouin zone
in general, rather than in the texture of the projector onto
occupied states over the Brillouin zone.

We construct toy models for the TRI skyrmion phase by
combining the Bloch Hamiltonian invariant under generalized
particle-hole conjugation C ′ but time-reversal symmetry-
breaking topological skyrmion phase with its time-reversed
partner into a Bloch Hamiltonian matrix representation with
time-reversal symmetry. We may therefore characterize the
time-reversal symmetric (TRS) skyrmion phase with two
skyrmion numbers related to one another by time-reversal
symmetry in simpler cases corresponding to a helical topo-
logical skyrmion phase. More generally, we may also include
a spin-orbit coupling term VSOC coupling these two sectors, in
which case the phase is characterized by a single topological
invariant νQ, which is equal to the skyrmion number for one
sector, modulo 2. This corresponds to a more general Z2

classification of νQ.
Performing an observable-enriched partial trace on the

density matrix of the occupied states for a system with open
boundary conditions corresponding to a slab geometry to
compute the observable-enriched reduced density matrix of

the spin subsystem, we find odd νQ corresponds to topo-
logically protected gapless modes in the observable-enriched
entanglement spectrum. We show this bulk-boundary corre-
spondence of the spin subsystem has consequences for the
bulk-boundary correspondence of the full system, demanding
robust helical gapless edge states at the boundary of the sys-
tem for open boundary conditions, even when the system is
not in a quantum spin Hall insulator phase according to the
Z2 projector invariant ν. That is, for ν even and trivial, but
νQ odd and nontrivial, we find topologically robust, helical
gapless edge modes protected by nontrivial νQ. When each of
ν and νQ is even, topologically protected helical edge modes
are absent.

We find the persistence of the helical modes for non-
trivial νQ—when ν is trivial—is related to the strict spin
momentum locking enforced on edge states in the full sys-
tem by nontrivial νQ. This spin momentum locking derives
from the requirement of gapless helical boundary modes
in the observable-enriched slab entanglement spectrum of
the spin subsystem due to nontrivial νQ in the bulk. We
add terms to the bulk Hamiltonian such that projectors onto
the occupied states possess only time-reversal symmetry T
and particle-hole symmetry C. We find that the helical gap-
less modes observed for trivial ν and nontrivial νQ are
robust for nonnegligible spin-orbit coupling term VSOC re-
specting a generalized particle-hole symmetry C ′ of a subset
of the degrees of freedom, as well as lacking a generalized
Rashba spin-orbit coupling, which softens spin momentum
locking at the edge while still yielding the gapless helical
edge modes of the spin subsystem after observable-enriched
partial trace.

Recent work [45] demonstrates that time-reversal
symmetry-breaking (TRB) topological skyrmion phases
are realized in three-band Bloch Hamiltonians without
particle-hole symmetry, which demonstrates that particle-hole
symmetry is not required to stabilize topological skyrmion
phases of matter. The role of particle-hole symmetry in
the present work is only to yield a particularly simple spin
representation and realize topological skyrmion phases
in toy models of a particularly simple form [42,43,45].
For time-reversal-invariant topological skyrmion phases,
similarly, only time-reversal symmetry is required for
stabilization, and particle-hole symmetry simply yields a
particular spin representation useful for studying this physics
in a particular class of simple Hamiltonians. Given this,
future work will include characterization of TRI topological
skyrmion phases realized in time-reversal-invariant six-band
models constructed from the TRB three-band models,
following the construction methods presented in this work.

We expect time-reversal-invariant topological skyrmion
phases realized in normal state models (without particle-hole
symmetry) will exhibit more robust helical edge modes than
those observed here, as well as type-II topological phase
transitions [42,45]. While previous work on normal state
topological skyrmion phases considers a basis and spin repre-
sentation relevant to transition metal compounds [42,45], the
TRI skyrmion phases are more broadly expected in normal
state systems, in particular those with nonnegligible coupling
of at least two degrees of freedom, such as spin and or-
bital, or even pseudospins such as valley or layer, including
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van der Waals heterostructures or transition-metal dichalco-
genides [25–28].

Notably, these helical gapless modes affect computation of
the projector topological invariant: spectral flow [55] winds
nontrivially in correspondence with the presence of helical
gapless modes, contradicting Z2 classification of ν. This indi-
cates the projector invariant ν must be generalized to incorpo-
rate changes due to νQ, rather than treated as independent of
νQ. This is also consistent with results of three-band models
for topological skyrmion phases, where the nontrivial total
Chern number as determined by bulk spectral flow does not
necessarily yield chiral transport on the edge. These failures
relate to reliance of much topological characterization on the
flat-band limit assumption and topological stability up to clos-
ing of a charge gap, which does not hold in general [42,45].

Topologically protected gapless helical modes and ad-
ditional spin momentum locking may then be observed
in transport measurements or spin-ARPES and serve as

important signatures and consequences of topological
skyrmion phases of matter. The realization of these signatures
in time-reversal invariant systems is also highly desirable
for experiment, as the nontrivial topology is realized with-
out the need for particular magnetic orders which generally
complicate experimental realization. Our work is therefore
significant in bringing the study of topological skyrmion
phases—including their role in extending topological classi-
fication schemes—much closer to experimental realization.
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